PDF4QT/Pdf4QtLib/sources/pdfpattern.cpp

3689 lines
141 KiB
C++

// Copyright (C) 2019-2021 Jakub Melka
//
// This file is part of PDF4QT.
//
// PDF4QT is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// with the written consent of the copyright owner, any later version.
//
// PDF4QT is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with PDF4QT. If not, see <https://www.gnu.org/licenses/>.
#include "pdfpattern.h"
#include "pdfdocument.h"
#include "pdfexception.h"
#include "pdfutils.h"
#include "pdfcolorspaces.h"
#include "pdfexecutionpolicy.h"
#include "pdfconstants.h"
#include <QPainter>
#include <execution>
namespace pdf
{
PatternType PDFShadingPattern::getType() const
{
return PatternType::Shading;
}
const PDFAbstractColorSpace* PDFShadingPattern::getColorSpace() const
{
return m_colorSpace.data();
}
QMatrix PDFShadingPattern::getPatternSpaceToDeviceSpaceMatrix(const PDFMeshQualitySettings& settings) const
{
return m_matrix * settings.userSpaceToDeviceSpaceMatrix;
}
QMatrix PDFShadingPattern::getPatternSpaceToDeviceSpaceMatrix(const QMatrix& userSpaceToDeviceSpaceMatrix) const
{
return m_matrix * userSpaceToDeviceSpaceMatrix;
}
PDFShadingSampler* PDFShadingPattern::createSampler(QMatrix userSpaceToDeviceSpaceMatrix) const
{
Q_UNUSED(userSpaceToDeviceSpaceMatrix);
return nullptr;
}
ShadingType PDFAxialShading::getShadingType() const
{
return ShadingType::Axial;
}
PDFPatternPtr PDFPattern::createPattern(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const PDFObject& object,
const PDFCMS* cms,
RenderingIntent intent,
PDFRenderErrorReporter* reporter)
{
const PDFObject& dereferencedObject = document->getObject(object);
const PDFDictionary* patternDictionary = nullptr;
QByteArray streamData;
if (dereferencedObject.isDictionary())
{
patternDictionary = dereferencedObject.getDictionary();
}
else if (dereferencedObject.isStream())
{
const PDFStream* stream = dereferencedObject.getStream();
patternDictionary = stream->getDictionary();
streamData = document->getDecodedStream(stream);
}
if (patternDictionary)
{
PDFDocumentDataLoaderDecorator loader(document);
const PatternType patternType = static_cast<PatternType>(loader.readIntegerFromDictionary(patternDictionary, "PatternType", static_cast<PDFInteger>(PatternType::Invalid)));
switch (patternType)
{
case PatternType::Tiling:
{
const PDFTilingPattern::PaintType paintType = static_cast<PDFTilingPattern::PaintType>(loader.readIntegerFromDictionary(patternDictionary, "PaintType", static_cast<PDFInteger>(PDFTilingPattern::PaintType::Invalid)));
const PDFTilingPattern::TilingType tilingType = static_cast<PDFTilingPattern::TilingType>(loader.readIntegerFromDictionary(patternDictionary, "TilingType", static_cast<PDFInteger>(PDFTilingPattern::TilingType::Invalid)));
const QRectF boundingBox = loader.readRectangle(patternDictionary->get("BBox"), QRectF());
const PDFReal xStep = loader.readNumberFromDictionary(patternDictionary, "XStep", 0.0);
const PDFReal yStep = loader.readNumberFromDictionary(patternDictionary, "YStep", 0.0);
PDFObject resources = document->getObject(patternDictionary->get("Resources"));
QMatrix matrix = loader.readMatrixFromDictionary(patternDictionary, "Matrix", QMatrix());
// Verify the data
if (paintType != PDFTilingPattern::PaintType::Colored && paintType != PDFTilingPattern::PaintType::Uncolored)
{
throw PDFException(PDFTranslationContext::tr("Invalid tiling pattern - wrong paint type %1.").arg(static_cast<PDFInteger>(paintType)));
}
if (tilingType != PDFTilingPattern::TilingType::ConstantSpacing && tilingType != PDFTilingPattern::TilingType::NoDistortion && tilingType != PDFTilingPattern::TilingType::ConstantSpacingAndFasterTiling)
{
throw PDFException(PDFTranslationContext::tr("Invalid tiling pattern - wrong tiling type %1.").arg(static_cast<PDFInteger>(tilingType)));
}
if (!boundingBox.isValid())
{
throw PDFException(PDFTranslationContext::tr("Invalid tiling pattern - bounding box is invalid.").arg(static_cast<PDFInteger>(paintType)));
}
if (isZero(xStep) || isZero(yStep))
{
throw PDFException(PDFTranslationContext::tr("Invalid tiling pattern - steps are invalid.").arg(static_cast<PDFInteger>(paintType)));
}
PDFTilingPattern* pattern = new PDFTilingPattern();
pattern->m_boundingBox = boundingBox;
pattern->m_matrix = matrix;
pattern->m_paintType = paintType;
pattern->m_tilingType = tilingType;
pattern->m_xStep = xStep;
pattern->m_yStep = yStep;
pattern->m_resources = resources;
pattern->m_content = qMove(streamData);
return PDFPatternPtr(pattern);
}
case PatternType::Shading:
{
PDFObject patternGraphicState = document->getObject(patternDictionary->get("ExtGState"));
QMatrix matrix = loader.readMatrixFromDictionary(patternDictionary, "Matrix", QMatrix());
return createShadingPattern(colorSpaceDictionary, document, patternDictionary->get("Shading"), matrix, patternGraphicState, cms, intent, reporter, false);
}
default:
throw PDFException(PDFTranslationContext::tr("Invalid pattern."));
}
return PDFPatternPtr();
}
throw PDFException(PDFTranslationContext::tr("Invalid pattern."));
return PDFPatternPtr();
}
PDFPatternPtr PDFPattern::createShadingPattern(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const PDFObject& shadingObject,
const QMatrix& matrix,
const PDFObject& patternGraphicState,
const PDFCMS* cms,
RenderingIntent intent,
PDFRenderErrorReporter* reporter,
bool ignoreBackgroundColor)
{
const PDFObject& dereferencedShadingObject = document->getObject(shadingObject);
if (!dereferencedShadingObject.isDictionary() && !dereferencedShadingObject.isStream())
{
throw PDFException(PDFTranslationContext::tr("Invalid shading."));
}
PDFDocumentDataLoaderDecorator loader(document);
const PDFDictionary* shadingDictionary = nullptr;
const PDFStream* stream = nullptr;
if (dereferencedShadingObject.isDictionary())
{
shadingDictionary = dereferencedShadingObject.getDictionary();
}
else if (dereferencedShadingObject.isStream())
{
stream = dereferencedShadingObject.getStream();
shadingDictionary = stream->getDictionary();
}
// Parse common data for all shadings
PDFColorSpacePointer colorSpace = PDFAbstractColorSpace::createColorSpace(colorSpaceDictionary, document, document->getObject(shadingDictionary->get("ColorSpace")));
if (colorSpace->asPatternColorSpace())
{
throw PDFException(PDFTranslationContext::tr("Pattern color space is not valid for shading patterns."));
}
QColor backgroundColor;
PDFColor originalBackgroundColor;
if (!ignoreBackgroundColor)
{
std::vector<PDFReal> backgroundColorValues = loader.readNumberArrayFromDictionary(shadingDictionary, "Background");
if (!backgroundColorValues.empty())
{
backgroundColor = colorSpace->getCheckedColor(PDFAbstractColorSpace::convertToColor(backgroundColorValues), cms, intent, reporter);
}
originalBackgroundColor.resize(backgroundColorValues.size());
for (size_t i = 0; i < backgroundColorValues.size(); ++i)
{
originalBackgroundColor[i] = backgroundColorValues[i];
}
}
QRectF boundingBox = loader.readRectangle(shadingDictionary->get("BBox"), QRectF());
bool antialias = loader.readBooleanFromDictionary(shadingDictionary, "AntiAlias", false);
const PDFObject& extendObject = document->getObject(shadingDictionary->get("Extend"));
bool extendStart = false;
bool extendEnd = false;
if (extendObject.isArray())
{
const PDFArray* array = extendObject.getArray();
if (array->getCount() != 2)
{
throw PDFException(PDFTranslationContext::tr("Invalid shading pattern extends. Expected 2, but %1 provided.").arg(array->getCount()));
}
extendStart = loader.readBoolean(array->getItem(0), false);
extendEnd = loader.readBoolean(array->getItem(1), false);
}
std::vector<PDFFunctionPtr> functions;
const PDFObject& functionsObject = document->getObject(shadingDictionary->get("Function"));
if (functionsObject.isArray())
{
const PDFArray* functionsArray = functionsObject.getArray();
functions.reserve(functionsArray->getCount());
for (size_t i = 0, functionCount = functionsArray->getCount(); i < functionCount; ++i)
{
functions.push_back(PDFFunction::createFunction(document, functionsArray->getItem(i)));
}
}
else if (!functionsObject.isNull())
{
functions.push_back(PDFFunction::createFunction(document, functionsObject));
}
const ShadingType shadingType = static_cast<ShadingType>(loader.readIntegerFromDictionary(shadingDictionary, "ShadingType", static_cast<PDFInteger>(ShadingType::Invalid)));
switch (shadingType)
{
case ShadingType::Function:
{
PDFFunctionShading* functionShading = new PDFFunctionShading();
PDFPatternPtr result(functionShading);
std::vector<PDFReal> functionDomain = loader.readNumberArrayFromDictionary(shadingDictionary, "Domain", { 0.0, 1.0, 0.0, 1.0 });
if (functionDomain.size() != 4)
{
throw PDFException(PDFTranslationContext::tr("Invalid function shading pattern domain. Expected 4 values, but %1 provided.").arg(functionDomain.size()));
}
if (functionDomain[1] < functionDomain[0] || functionDomain[3] < functionDomain[2])
{
throw PDFException(PDFTranslationContext::tr("Invalid function shading pattern domain. Invalid domain ranges."));
}
QMatrix domainToTargetTransform = loader.readMatrixFromDictionary(shadingDictionary, "Matrix", QMatrix());
size_t colorComponentCount = colorSpace->getColorComponentCount();
if (functions.size() > 1 && colorComponentCount != functions.size())
{
throw PDFException(PDFTranslationContext::tr("Invalid axial shading pattern color functions. Expected %1 functions, but %2 provided.").arg(int(colorComponentCount)).arg(int(functions.size())));
}
// Load items for function shading
functionShading->m_antiAlias = antialias;
functionShading->m_backgroundColor = backgroundColor;
functionShading->m_originalBackgroundColor = qMove(originalBackgroundColor);
functionShading->m_colorSpace = colorSpace;
functionShading->m_boundingBox = boundingBox;
functionShading->m_domain = QRectF(functionDomain[0], functionDomain[2], functionDomain[1] - functionDomain[0], functionDomain[3] - functionDomain[2]);
functionShading->m_domainToTargetTransform = domainToTargetTransform;
functionShading->m_functions = qMove(functions);
functionShading->m_matrix = matrix;
functionShading->m_patternGraphicState = patternGraphicState;
return result;
}
case ShadingType::Axial:
{
PDFAxialShading* axialShading = new PDFAxialShading();
PDFPatternPtr result(axialShading);
std::vector<PDFReal> coordinates = loader.readNumberArrayFromDictionary(shadingDictionary, "Coords");
if (coordinates.size() != 4)
{
throw PDFException(PDFTranslationContext::tr("Invalid axial shading pattern coordinates. Expected 4, but %1 provided.").arg(coordinates.size()));
}
std::vector<PDFReal> domain = loader.readNumberArrayFromDictionary(shadingDictionary, "Domain");
if (domain.empty())
{
domain = { 0.0, 1.0 };
}
if (domain.size() != 2)
{
throw PDFException(PDFTranslationContext::tr("Invalid axial shading pattern domain. Expected 2, but %1 provided.").arg(domain.size()));
}
size_t colorComponentCount = colorSpace->getColorComponentCount();
if (functions.size() > 1 && colorComponentCount != functions.size())
{
throw PDFException(PDFTranslationContext::tr("Invalid axial shading pattern color functions. Expected %1 functions, but %2 provided.").arg(int(colorComponentCount)).arg(int(functions.size())));
}
// Load items for axial shading
axialShading->m_antiAlias = antialias;
axialShading->m_backgroundColor = backgroundColor;
axialShading->m_originalBackgroundColor = qMove(originalBackgroundColor);
axialShading->m_colorSpace = colorSpace;
axialShading->m_boundingBox = boundingBox;
axialShading->m_domainStart = domain[0];
axialShading->m_domainEnd = domain[1];
axialShading->m_startPoint = QPointF(coordinates[0], coordinates[1]);
axialShading->m_endPoint = QPointF(coordinates[2], coordinates[3]);
axialShading->m_extendStart = extendStart;
axialShading->m_extendEnd = extendEnd;
axialShading->m_functions = qMove(functions);
axialShading->m_matrix = matrix;
axialShading->m_patternGraphicState = patternGraphicState;
return result;
}
case ShadingType::Radial:
{
PDFRadialShading* radialShading = new PDFRadialShading();
PDFPatternPtr result(radialShading);
std::vector<PDFReal> coordinates = loader.readNumberArrayFromDictionary(shadingDictionary, "Coords");
if (coordinates.size() != 6)
{
throw PDFException(PDFTranslationContext::tr("Invalid radial shading pattern coordinates. Expected 6, but %1 provided.").arg(coordinates.size()));
}
std::vector<PDFReal> domain = loader.readNumberArrayFromDictionary(shadingDictionary, "Domain");
if (domain.empty())
{
domain = { 0.0, 1.0 };
}
if (domain.size() != 2)
{
throw PDFException(PDFTranslationContext::tr("Invalid radial shading pattern domain. Expected 2, but %1 provided.").arg(domain.size()));
}
size_t colorComponentCount = colorSpace->getColorComponentCount();
if (functions.size() > 1 && colorComponentCount != functions.size())
{
throw PDFException(PDFTranslationContext::tr("Invalid radial shading pattern color functions. Expected %1 functions, but %2 provided.").arg(int(colorComponentCount)).arg(int(functions.size())));
}
if (coordinates[2] < 0.0 || coordinates[5] < 0.0)
{
throw PDFException(PDFTranslationContext::tr("Radial shading cannot have negative circle radius."));
}
// Load items for axial shading
radialShading->m_antiAlias = antialias;
radialShading->m_backgroundColor = backgroundColor;
radialShading->m_originalBackgroundColor = qMove(originalBackgroundColor);
radialShading->m_colorSpace = colorSpace;
radialShading->m_boundingBox = boundingBox;
radialShading->m_domainStart = domain[0];
radialShading->m_domainEnd = domain[1];
radialShading->m_startPoint = QPointF(coordinates[0], coordinates[1]);
radialShading->m_r0 = coordinates[2];
radialShading->m_endPoint = QPointF(coordinates[3], coordinates[4]);
radialShading->m_r1 = coordinates[5];
radialShading->m_extendStart = extendStart;
radialShading->m_extendEnd = extendEnd;
radialShading->m_functions = qMove(functions);
radialShading->m_matrix = matrix;
radialShading->m_patternGraphicState = patternGraphicState;
return result;
}
case ShadingType::FreeFormGouradTriangle:
case ShadingType::LatticeFormGouradTriangle:
case ShadingType::CoonsPatchMesh:
case ShadingType::TensorProductPatchMesh:
{
PDFLatticeFormGouradTriangleShading* latticeFormGouradTriangleShading = nullptr;
PDFType4567Shading* type4567Shading = nullptr;
switch (shadingType)
{
case ShadingType::FreeFormGouradTriangle:
{
type4567Shading = new PDFFreeFormGouradTriangleShading();
break;
}
case ShadingType::LatticeFormGouradTriangle:
{
latticeFormGouradTriangleShading = new PDFLatticeFormGouradTriangleShading();
type4567Shading = latticeFormGouradTriangleShading;
break;
}
case ShadingType::CoonsPatchMesh:
{
type4567Shading = new PDFCoonsPatchShading;
break;
}
case ShadingType::TensorProductPatchMesh:
{
type4567Shading = new PDFTensorProductPatchShading;
break;
}
default:
{
Q_ASSERT(false);
break;
}
}
PDFPatternPtr result(type4567Shading);
PDFInteger bitsPerCoordinate = loader.readIntegerFromDictionary(shadingDictionary, "BitsPerCoordinate", -1);
if (!contains(bitsPerCoordinate, std::initializer_list<PDFInteger>{ 1, 2, 4, 8, 12, 16, 24, 32 }))
{
throw PDFException(PDFTranslationContext::tr("Invalid bits per coordinate (%1) for shading.").arg(bitsPerCoordinate));
}
PDFInteger bitsPerComponent = loader.readIntegerFromDictionary(shadingDictionary, "BitsPerComponent", -1);
if (!contains(bitsPerComponent, std::initializer_list<PDFInteger>{ 1, 2, 4, 8, 12, 16 }))
{
throw PDFException(PDFTranslationContext::tr("Invalid bits per component (%1) for shading.").arg(bitsPerComponent));
}
std::vector<PDFReal> decode = loader.readNumberArrayFromDictionary(shadingDictionary, "Decode");
if (!functions.empty())
{
if (decode.size() != 6)
{
throw PDFException(PDFTranslationContext::tr("Invalid domain for shading. Expected size is 6, actual size is %1.").arg(decode.size()));
}
}
else
{
const size_t expectedSize = colorSpace->getColorComponentCount() * 2 + 4;
if (decode.size() != expectedSize)
{
throw PDFException(PDFTranslationContext::tr("Invalid domain for shading. Expected size is %1, actual size is %2.").arg(expectedSize).arg(decode.size()));
}
}
type4567Shading->m_antiAlias = antialias;
type4567Shading->m_backgroundColor = backgroundColor;
type4567Shading->m_originalBackgroundColor = qMove(originalBackgroundColor);
type4567Shading->m_colorSpace = colorSpace;
type4567Shading->m_matrix = matrix;
type4567Shading->m_patternGraphicState = patternGraphicState;
type4567Shading->m_bitsPerCoordinate = static_cast<uint8_t>(bitsPerCoordinate);
type4567Shading->m_bitsPerComponent = static_cast<uint8_t>(bitsPerComponent);
type4567Shading->m_xmin = decode[0];
type4567Shading->m_xmax = decode[1];
type4567Shading->m_ymin = decode[2];
type4567Shading->m_ymax = decode[3];
type4567Shading->m_limits = std::vector<PDFReal>(std::next(decode.cbegin(), 4), decode.cend());
type4567Shading->m_colorComponentCount = !functions.empty() ? 1 : colorSpace->getColorComponentCount();
type4567Shading->m_functions = qMove(functions);
type4567Shading->m_data = document->getDecodedStream(stream);
switch (shadingType)
{
case ShadingType::FreeFormGouradTriangle:
case ShadingType::CoonsPatchMesh:
case ShadingType::TensorProductPatchMesh:
{
PDFInteger bitsPerFlag = loader.readIntegerFromDictionary(shadingDictionary, "BitsPerFlag", -1);
if (!contains(bitsPerFlag, std::initializer_list<PDFInteger>{ 2, 4, 8 }))
{
throw PDFException(PDFTranslationContext::tr("Invalid bits per flag (%1) for shading.").arg(bitsPerFlag));
}
type4567Shading->m_bitsPerFlag = bitsPerFlag;
break;
}
case ShadingType::LatticeFormGouradTriangle:
{
latticeFormGouradTriangleShading->m_verticesPerRow = loader.readIntegerFromDictionary(shadingDictionary, "VerticesPerRow", -1);
if (latticeFormGouradTriangleShading->m_verticesPerRow < 2)
{
throw PDFException(PDFTranslationContext::tr("Invalid vertices per row (%1) for lattice-form gourad triangle meshing.").arg(latticeFormGouradTriangleShading->m_verticesPerRow));
}
break;
}
default:
break;
}
return result;
}
default:
{
throw PDFException(PDFTranslationContext::tr("Invalid shading pattern type (%1).").arg(static_cast<PDFInteger>(shadingType)));
}
}
throw PDFException(PDFTranslationContext::tr("Invalid shading."));
return PDFPatternPtr();
}
class PDFFunctionShadingSampler : public PDFShadingSampler
{
public:
PDFFunctionShadingSampler(const PDFFunctionShading* functionShadingPattern, QMatrix userSpaceToDeviceSpaceMatrix) :
PDFShadingSampler(functionShadingPattern),
m_functionShadingPattern(functionShadingPattern),
m_domain(functionShadingPattern->getDomain())
{
QMatrix patternSpaceToDeviceSpaceMatrix = functionShadingPattern->getMatrix() * userSpaceToDeviceSpaceMatrix;
QMatrix domainToDeviceSpaceMatrix = functionShadingPattern->getDomainToTargetTransform() * patternSpaceToDeviceSpaceMatrix;
if (domainToDeviceSpaceMatrix.isInvertible())
{
m_deviceSpaceToDomainMatrix = domainToDeviceSpaceMatrix.inverted();
}
else
{
m_deviceSpaceToDomainMatrix = QMatrix();
}
}
virtual bool sample(const QPointF& devicePoint, PDFColorBuffer outputBuffer, int limit) const override
{
Q_UNUSED(limit);
if (!m_pattern->getColorSpace() || m_pattern->getColorSpace()->getColorComponentCount() != outputBuffer.size())
{
// Invalid color space, or invalid color buffer
return false;
}
QPointF domainPoint = m_deviceSpaceToDomainMatrix.map(devicePoint);
if (!m_domain.contains(domainPoint))
{
return fillBackgroundColor(outputBuffer);
}
const auto& functions = m_functionShadingPattern->getFunctions();
std::array<PDFReal, PDF_MAX_COLOR_COMPONENTS> colorBuffer = { };
if (colorBuffer.size() < outputBuffer.size())
{
// Jakub Melka: Too much colors - we cant process it
return false;
}
std::array<PDFReal, 2> input = { domainPoint.x(), domainPoint.y() };
if (functions.size() == 1)
{
Q_ASSERT(outputBuffer.size() <= colorBuffer.size());
PDFFunction::FunctionResult result = functions.front()->apply(input.data(), input.data() + input.size(), colorBuffer.data(), colorBuffer.data() + outputBuffer.size());
if (!result)
{
// Function call failed
return false;
}
}
else
{
if (functions.size() != outputBuffer.size())
{
// Invalid number of functions
return false;
}
Q_ASSERT(outputBuffer.size() <= colorBuffer.size());
for (size_t i = 0, count = outputBuffer.size(); i < count; ++i)
{
PDFFunction::FunctionResult result = functions[i]->apply(input.data(), input.data() + input.size(), colorBuffer.data() + i, colorBuffer.data() + i + 1);
if (!result)
{
// Function call failed
return false;
}
}
}
for (size_t i = 0, count = outputBuffer.size(); i < count; ++i)
{
outputBuffer[i] = colorBuffer[i];
}
return true;
}
private:
const PDFFunctionShading* m_functionShadingPattern;
QRectF m_domain;
QMatrix m_deviceSpaceToDomainMatrix;
};
ShadingType PDFFunctionShading::getShadingType() const
{
return ShadingType::Function;
}
PDFMesh PDFFunctionShading::createMesh(const PDFMeshQualitySettings& settings, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
PDFMesh mesh;
QMatrix patternSpaceToDeviceSpaceMatrix = getPatternSpaceToDeviceSpaceMatrix(settings);
QMatrix domainToDeviceSpaceMatrix = m_domainToTargetTransform * patternSpaceToDeviceSpaceMatrix;
QLineF topLine(m_domain.topLeft(), m_domain.topRight());
QLineF leftLine(m_domain.topLeft(), m_domain.bottomLeft());
Q_ASSERT(domainToDeviceSpaceMatrix.isInvertible());
QMatrix deviceSpaceToDomainMatrix = domainToDeviceSpaceMatrix.inverted();
QLineF topLineDS = domainToDeviceSpaceMatrix.map(topLine);
QLineF leftLineDS = domainToDeviceSpaceMatrix.map(leftLine);
const size_t colorComponents = m_colorSpace->getColorComponentCount();
auto resolutions = { settings.preferredMeshResolution,
interpolate(0.25, 0.0, 1.0, settings.preferredMeshResolution, settings.minimalMeshResolution),
interpolate(0.50, 0.0, 1.0, settings.preferredMeshResolution, settings.minimalMeshResolution),
interpolate(0.75, 0.0, 1.0, settings.preferredMeshResolution, settings.minimalMeshResolution),
settings.minimalMeshResolution
};
for (PDFReal resolution : resolutions)
{
const PDFReal xSteps = qMax(std::floor(topLineDS.length() / resolution), 2.0);
const PDFReal ySteps = qMax(std::floor(leftLineDS.length() / resolution), 2.0);
const PDFReal xStep = 1.0 / xSteps;
const PDFReal yStep = 1.0 / ySteps;
// Prepare x/y ordinates array for given resolution
std::vector<PDFReal> xOrdinates;
std::vector<PDFReal> yOrdinates;
xOrdinates.reserve(xSteps + 1);
yOrdinates.reserve(ySteps + 1);
for (PDFReal x = 0.0; x <= 1.0; x += xStep)
{
xOrdinates.push_back(x);
}
if (xOrdinates.back() + PDF_EPSILON >= 1.0)
{
xOrdinates.pop_back();
}
xOrdinates.push_back(1.0);
for (PDFReal y = 0.0; y <= 1.0; y += yStep)
{
yOrdinates.push_back(y);
}
if (yOrdinates.back() + PDF_EPSILON >= 1.0)
{
yOrdinates.pop_back();
}
yOrdinates.push_back(1.0);
// We have determined x/y ordinates. Now we must create result array with colors,
// which for each x/y ordinate tells us, what color in the given position is.
const size_t rowCount = yOrdinates.size();
const size_t columnCount = xOrdinates.size();
const size_t nodesCount = rowCount * columnCount;
const size_t stride = columnCount * colorComponents;
std::vector<size_t> indices;
indices.resize(nodesCount, 0);
std::iota(indices.begin(), indices.end(), 0);
auto indexToRowColumn = [columnCount](size_t index) -> std::pair<size_t, size_t>
{
return std::make_pair(index / columnCount, index % columnCount);
};
auto rowColumnToIndex = [columnCount](size_t row, size_t column) -> size_t
{
return row * columnCount + column;
};
auto rowColumnToFirstColorComponent = [stride, colorComponents](size_t row, size_t column) -> size_t
{
return row * stride + column * colorComponents;
};
const bool isSingleFunction = m_functions.size() == 1;
std::vector<PDFReal> sourceColorBuffer;
sourceColorBuffer.resize(indices.size() * colorComponents, 0.0);
std::vector<QPointF> gridPoints;
gridPoints.resize(nodesCount);
QMutex functionErrorMutex;
PDFFunction::FunctionResult functionError(true);
auto setColor = [&](size_t index)
{
auto [row, column] = indexToRowColumn(index);
QPointF nodeDS = topLineDS.pointAt(xOrdinates[column]) + leftLineDS.pointAt(yOrdinates[row]) - topLineDS.p1();
QPointF node = deviceSpaceToDomainMatrix.map(nodeDS);
const size_t colorComponentIndex = rowColumnToFirstColorComponent(row, column);
Q_ASSERT(colorComponentIndex <= sourceColorBuffer.size());
gridPoints[index] = nodeDS;
PDFReal* sourceColorBegin = sourceColorBuffer.data() + colorComponentIndex;
PDFReal* sourceColorEnd = sourceColorBegin + colorComponents;
std::array<PDFReal, 2> uv = { node.x(), node.y() };
if (isSingleFunction)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(uv.data(), uv.data() + uv.size(), sourceColorBegin, sourceColorEnd);
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
if (!functionError)
{
functionError = result;
}
}
}
else
{
for (size_t i = 0, count = colorComponents; i < count; ++i)
{
PDFFunction::FunctionResult result = m_functions[i]->apply(uv.data(), uv.data() + uv.size(), sourceColorBegin + i, sourceColorBegin + i + 1);
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
if (!functionError)
{
functionError = result;
}
}
}
}
};
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Content, indices.cbegin(), indices.cend(), setColor);
if (!functionError)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh generation of shading: %1").arg(functionError.errorMessage));
}
// Check the colors, if mesh is bad, then refine it
std::atomic_bool isMeshOK = true;
auto validateMesh = [&](size_t index)
{
if (!isMeshOK.load(std::memory_order_relaxed))
{
return;
}
auto [row, column] = indexToRowColumn(index);
const size_t colorComponentIndex = rowColumnToFirstColorComponent(row, column);
// Check, if color left doesn't differ too much
if (column > 0)
{
const size_t colorOtherComponentIndex = rowColumnToFirstColorComponent(row, column - 1);
for (size_t i = 0; i < colorComponents; ++i)
{
if (std::fabs(sourceColorBuffer[colorComponentIndex + i] - sourceColorBuffer[colorOtherComponentIndex + i]) > settings.tolerance)
{
isMeshOK.store(false, std::memory_order_relaxed);
return;
}
}
}
if (row > 0)
{
const size_t colorOtherComponentIndex = rowColumnToFirstColorComponent(row - 1, column);
for (size_t i = 0; i < colorComponents; ++i)
{
if (std::fabs(sourceColorBuffer[colorComponentIndex + i] - sourceColorBuffer[colorOtherComponentIndex + i]) > settings.tolerance)
{
isMeshOK.store(false, std::memory_order_relaxed);
return;
}
}
}
};
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Content, indices.cbegin(), indices.cend(), validateMesh);
if (!isMeshOK && resolution != settings.minimalMeshResolution)
{
continue;
}
// Now, we are ready to generate the mesh
std::vector<QRgb> colors;
colors.resize(rowCount * columnCount, QRgb());
mesh.setVertices(qMove(gridPoints));
std::vector<PDFMesh::Triangle> triangles;
triangles.resize((rowCount - 1) * (columnCount - 1) * 2);
auto generateTriangle = [&](size_t index)
{
auto [row, column] = indexToRowColumn(index);
if (row == 0 || column == 0)
{
return;
}
Q_ASSERT(index == rowColumnToIndex(row, column));
const size_t triangleIndex1 = ((row - 1) * (columnCount - 1) + column - 1) * 2;
const size_t triangleIndex2 = triangleIndex1 + 1;
const size_t v1 = rowColumnToIndex(row - 1, column - 1);
const size_t v2 = rowColumnToIndex(row - 1, column);
const size_t v3 = index;
const size_t v4 = rowColumnToIndex(row, column - 1);
std::vector<PDFReal> colorBuffer;
colorBuffer.resize(colorComponents, 0.0);
auto calculateColor = [&](const PDFMesh::Triangle& triangle)
{
QPointF centerDS = mesh.getTriangleCenter(triangle);
QPointF center = deviceSpaceToDomainMatrix.map(centerDS);
std::array<PDFReal, 2> uv = { center.x(), center.y() };
if (isSingleFunction)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(uv.data(), uv.data() + uv.size(), colorBuffer.data(), colorBuffer.data() + colorBuffer.size());
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
if (!functionError)
{
functionError = result;
}
}
}
else
{
for (size_t i = 0, count = colorComponents; i < count; ++i)
{
PDFFunction::FunctionResult result = m_functions[i]->apply(uv.data(), uv.data() + uv.size(), colorBuffer.data() + i, colorBuffer.data() + i + 1);
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
if (!functionError)
{
functionError = result;
}
}
}
}
return m_colorSpace->getColor(PDFAbstractColorSpace::convertToColor(colorBuffer), cms, intent, reporter, true);
};
PDFMesh::Triangle triangle1;
triangle1.v1 = static_cast<uint32_t>(v1);
triangle1.v2 = static_cast<uint32_t>(v2);
triangle1.v3 = static_cast<uint32_t>(v3);
triangle1.color = calculateColor(triangle1).rgb();
PDFMesh::Triangle triangle2;
triangle2.v1 = static_cast<uint32_t>(v3);
triangle2.v2 = static_cast<uint32_t>(v4);
triangle2.v3 = static_cast<uint32_t>(v1);
triangle2.color = calculateColor(triangle2).rgb();
triangles[triangleIndex1] = triangle1;
triangles[triangleIndex2] = triangle2;
};
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Content, indices.cbegin(), indices.cend(), generateTriangle);
mesh.setTriangles(qMove(triangles));
if (!functionError)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh generation of shading: %1").arg(functionError.errorMessage));
}
break;
}
if (m_backgroundColor.isValid())
{
QPainterPath backgroundPath;
backgroundPath.addRect(settings.deviceSpaceMeshingArea);
QPainterPath paintedPath;
paintedPath.addPolygon(domainToDeviceSpaceMatrix.map(m_domain));
backgroundPath = backgroundPath.subtracted(paintedPath);
mesh.setBackgroundPath(backgroundPath);
mesh.setBackgroundColor(m_backgroundColor);
}
// Create bounding path
if (m_boundingBox.isValid())
{
QPainterPath boundingPath;
boundingPath.addPolygon(patternSpaceToDeviceSpaceMatrix.map(m_boundingBox));
mesh.setBoundingPath(boundingPath);
}
return mesh;
}
PDFShadingSampler* PDFFunctionShading::createSampler(QMatrix userSpaceToDeviceSpaceMatrix) const
{
return new PDFFunctionShadingSampler(this, userSpaceToDeviceSpaceMatrix);
}
PDFMesh PDFAxialShading::createMesh(const PDFMeshQualitySettings& settings, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
PDFMesh mesh;
QMatrix patternSpaceToDeviceSpaceMatrix = getPatternSpaceToDeviceSpaceMatrix(settings);
QPointF p1 = patternSpaceToDeviceSpaceMatrix.map(m_startPoint);
QPointF p2 = patternSpaceToDeviceSpaceMatrix.map(m_endPoint);
// Strategy: for simplification, we rotate the line clockwise so we will
// get the shading axis equal to the x-axis. Then we will determine the shading
// area and create mesh according the settings.
QLineF line(p1, p2);
const double angle = line.angleTo(QLineF(0, 0, 1, 0));
// Matrix p1p2LCS is local coordinate system of line p1-p2. It transforms
// points on the line to the global coordinate system. So, point (0, 0) will
// map onto p1 and point (length(p1-p2), 0) will map onto p2.
QMatrix p1p2LCS;
p1p2LCS.translate(p1.x(), p1.y());
p1p2LCS.rotate(angle);
QMatrix p1p2GCS = p1p2LCS.inverted();
QPointF p1m = p1p2GCS.map(p1);
QPointF p2m = p1p2GCS.map(p2);
Q_ASSERT(isZero(p1m.y()));
Q_ASSERT(isZero(p2m.y()));
Q_ASSERT(p1m.x() <= p2m.x());
QPainterPath meshingArea;
meshingArea.addPolygon(p1p2GCS.map(settings.deviceSpaceMeshingArea));
meshingArea.addRect(p1m.x(), p1m.y() - settings.preferredMeshResolution * 0.5, p2m.x() - p1m.x(), settings.preferredMeshResolution);
QRectF meshingRectangle = meshingArea.boundingRect();
PDFReal xl = meshingRectangle.left();
PDFReal xr = meshingRectangle.right();
PDFReal yt = meshingRectangle.top();
PDFReal yb = meshingRectangle.bottom();
// Create coordinate array filled with stops, where we will determine the color
std::vector<PDFReal> xCoords;
xCoords.reserve((xr - xl) / settings.minimalMeshResolution + 3);
xCoords.push_back(xl);
for (PDFReal x = p1m.x(); x <= p2m.x(); x += settings.minimalMeshResolution)
{
if (!qFuzzyCompare(xCoords.back(), x))
{
xCoords.push_back(x);
}
}
if (xCoords.back() + PDF_EPSILON < p2m.x())
{
xCoords.push_back(p2m.x());
}
if (!qFuzzyCompare(xCoords.back(), xr))
{
xCoords.push_back(xr);
}
const PDFReal tAtStart = m_domainStart;
const PDFReal tAtEnd = m_domainEnd;
const PDFReal tMin = qMin(tAtStart, tAtEnd);
const PDFReal tMax = qMax(tAtStart, tAtEnd);
const bool isSingleFunction = m_functions.size() == 1;
std::vector<PDFReal> colorBuffer(m_colorSpace->getColorComponentCount(), 0.0);
auto getColor = [this, isSingleFunction, &colorBuffer](PDFReal t) -> PDFColor
{
if (isSingleFunction)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(&t, &t + 1, colorBuffer.data(), colorBuffer.data() + colorBuffer.size());
if (!result)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
}
}
else
{
for (size_t i = 0, count = colorBuffer.size(); i < count; ++i)
{
PDFFunction::FunctionResult result = m_functions[i]->apply(&t, &t + 1, colorBuffer.data() + i, colorBuffer.data() + i + 1);
if (!result)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
}
}
}
return PDFAbstractColorSpace::convertToColor(colorBuffer);
};
// Determine color of each coordinate
std::vector<std::pair<PDFReal, PDFColor>> coloredCoordinates;
coloredCoordinates.reserve(xCoords.size());
for (PDFReal x : xCoords)
{
if (x < p1m.x() - PDF_EPSILON && !m_extendStart)
{
// Move to the next coordinate, this is skipped
continue;
}
if (x > p2m.x() + PDF_EPSILON && !m_extendEnd)
{
// We are finished no more triangles will occur
break;
}
// Determine current parameter t
const PDFReal t = interpolate(x, p1m.x(), p2m.x(), tAtStart, tAtEnd);
const PDFReal tBounded = qBound(tMin, t, tMax);
const PDFColor color = getColor(tBounded);
coloredCoordinates.emplace_back(x, color);
}
// Filter coordinates according the meshing criteria
std::vector<std::pair<PDFReal, PDFColor>> filteredCoordinates;
filteredCoordinates.reserve(coloredCoordinates.size());
for (auto it = coloredCoordinates.cbegin(); it != coloredCoordinates.cend(); ++it)
{
// We will skip this coordinate, if both of meshing criteria have been met:
// 1) Color difference is small (lesser than tolerance)
// 2) Distance from previous and next point is less than preferred meshing resolution OR colors are equal
if (it != coloredCoordinates.cbegin() && std::next(it) != coloredCoordinates.cend())
{
auto itNext = std::next(it);
const std::pair<PDFReal, PDFColor>& prevItem = filteredCoordinates.back();
const std::pair<PDFReal, PDFColor>& currentItem = *it;
const std::pair<PDFReal, PDFColor>& nextItem = *itNext;
if (currentItem.first != p1m.x() && currentItem.first != p2m.x())
{
if (prevItem.second == currentItem.second && currentItem.second == nextItem.second)
{
// Colors are same, skip the test
continue;
}
if (PDFAbstractColorSpace::isColorEqual(prevItem.second, currentItem.second, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(currentItem.second, nextItem.second, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(prevItem.second, nextItem.second, settings.tolerance) &&
(nextItem.first - prevItem.first < settings.preferredMeshResolution))
{
continue;
}
}
}
filteredCoordinates.push_back(*it);
}
if (!filteredCoordinates.empty())
{
size_t vertexCount = filteredCoordinates.size() * 2;
size_t triangleCount = filteredCoordinates.size() * 2 - 2;
if (m_backgroundColor.isValid())
{
vertexCount += 8;
triangleCount += 4;
}
mesh.reserve(vertexCount, triangleCount);
PDFColor previousColor = filteredCoordinates.front().second;
uint32_t topLeft = mesh.addVertex(QPointF(filteredCoordinates.front().first, yt));
uint32_t bottomLeft = mesh.addVertex(QPointF(filteredCoordinates.front().first, yb));
for (auto it = std::next(filteredCoordinates.cbegin()); it != filteredCoordinates.cend(); ++it)
{
const std::pair<PDFReal, PDFColor>& item = *it;
uint32_t topRight = mesh.addVertex(QPointF(item.first, yt));
uint32_t bottomRight = mesh.addVertex(QPointF(item.first, yb));
PDFColor mixedColor = PDFAbstractColorSpace::mixColors(previousColor, item.second, 0.5);
QColor color = m_colorSpace->getColor(mixedColor, cms, intent, reporter, true);
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, color.rgb());
topLeft = topRight;
bottomLeft = bottomRight;
previousColor = item.second;
}
}
// Create background color triangles
if (m_backgroundColor.isValid() && (!m_extendStart || !m_extendEnd))
{
if (!m_extendStart && xl + PDF_EPSILON < p1m.x())
{
uint32_t topLeft = mesh.addVertex(QPointF(xl, yt));
uint32_t topRight = mesh.addVertex(QPointF(p1m.x(), yt));
uint32_t bottomLeft = mesh.addVertex(QPointF(xl, yb));
uint32_t bottomRight = mesh.addVertex(QPointF(p1m.x(), yb));
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, m_backgroundColor.rgb());
}
if (!m_extendEnd && p2m.x() + PDF_EPSILON < xr)
{
uint32_t topRight = mesh.addVertex(QPointF(xr, yt));
uint32_t topLeft = mesh.addVertex(QPointF(p2m.x(), yt));
uint32_t bottomRight = mesh.addVertex(QPointF(xr, yb));
uint32_t bottomLeft = mesh.addVertex(QPointF(p2m.x(), yb));
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, m_backgroundColor.rgb());
}
}
// Transform mesh to the device space coordinates
mesh.transform(p1p2LCS);
// Create bounding path
if (m_boundingBox.isValid())
{
QPainterPath boundingPath;
boundingPath.addPolygon(patternSpaceToDeviceSpaceMatrix.map(m_boundingBox));
mesh.setBoundingPath(boundingPath);
}
return mesh;
}
class PDFAxialShadingSampler : public PDFShadingSampler
{
public:
PDFAxialShadingSampler(const PDFAxialShading* axialShadingPattern, QMatrix userSpaceToDeviceSpaceMatrix) :
PDFShadingSampler(axialShadingPattern),
m_axialShadingPattern(axialShadingPattern),
m_xStart(0.0),
m_xEnd(0.0),
m_tAtStart(0.0),
m_tAtEnd(0.0),
m_tMin(0.0),
m_tMax(0.0)
{
QMatrix patternSpaceToDeviceSpace = axialShadingPattern->getMatrix() * userSpaceToDeviceSpaceMatrix;
QPointF p1 = patternSpaceToDeviceSpace.map(axialShadingPattern->getStartPoint());
QPointF p2 = patternSpaceToDeviceSpace.map(axialShadingPattern->getEndPoint());
// Strategy: for simplification, we rotate the line clockwise so we will
// get the shading axis equal to the x-axis. Then we will determine the shading
// area and create mesh according the settings.
QLineF line(p1, p2);
const double angle = line.angleTo(QLineF(0, 0, 1, 0));
// Matrix p1p2LCS is local coordinate system of line p1-p2. It transforms
// points on the line to the global coordinate system. So, point (0, 0) will
// map onto p1 and point (length(p1-p2), 0) will map onto p2.
QMatrix p1p2LCS;
p1p2LCS.translate(p1.x(), p1.y());
p1p2LCS.rotate(angle);
QMatrix p1p2GCS = p1p2LCS.inverted();
QPointF p1m = p1p2GCS.map(p1);
QPointF p2m = p1p2GCS.map(p2);
Q_ASSERT(isZero(p1m.y()));
Q_ASSERT(isZero(p2m.y()));
Q_ASSERT(p1m.x() <= p2m.x());
m_xStart = p1m.x();
m_xEnd = p2m.x();
m_tAtStart = axialShadingPattern->getDomainStart();
m_tAtEnd = axialShadingPattern->getDomainEnd();
m_tMin = qMin(m_tAtStart, m_tAtEnd);
m_tMax = qMax(m_tAtStart, m_tAtEnd);
m_p1p2GCS = p1p2GCS;
}
virtual bool sample(const QPointF& devicePoint, PDFColorBuffer outputBuffer, int limit) const override
{
Q_UNUSED(limit);
if (!m_pattern->getColorSpace() || m_pattern->getColorSpace()->getColorComponentCount() != outputBuffer.size())
{
// Invalid color space, or invalid color buffer
return false;
}
QPointF mappedPoint = m_p1p2GCS.map(devicePoint);
const PDFReal x = mappedPoint.x();
PDFReal t = m_tAtStart;
if (x < m_xStart)
{
if (!m_axialShadingPattern->isExtendStart())
{
return false;
}
if (fillBackgroundColor(outputBuffer))
{
return true;
}
t = m_tAtStart;
}
else if (x > m_xEnd)
{
if (!m_axialShadingPattern->isExtendEnd())
{
return false;
}
if (fillBackgroundColor(outputBuffer))
{
return true;
}
t = m_tAtEnd;
}
else
{
t = interpolate(x, m_xStart, m_xEnd, m_tAtStart, m_tAtEnd);
t = qBound(m_tMin, t, m_tMax);
}
const auto& functions = m_axialShadingPattern->getFunctions();
std::array<PDFReal, PDF_MAX_COLOR_COMPONENTS> colorBuffer = { };
if (colorBuffer.size() < outputBuffer.size())
{
// Jakub Melka: Too much colors - we cant process it
return false;
}
if (functions.size() == 1)
{
Q_ASSERT(outputBuffer.size() <= colorBuffer.size());
PDFFunction::FunctionResult result = functions.front()->apply(&t, &t + 1, colorBuffer.data(), colorBuffer.data() + outputBuffer.size());
if (!result)
{
// Function call failed
return false;
}
}
else
{
if (functions.size() != outputBuffer.size())
{
// Invalid number of functions
return false;
}
Q_ASSERT(outputBuffer.size() <= colorBuffer.size());
for (size_t i = 0, count = outputBuffer.size(); i < count; ++i)
{
PDFFunction::FunctionResult result = functions[i]->apply(&t, &t + 1, colorBuffer.data() + i, colorBuffer.data() + i + 1);
if (!result)
{
// Function call failed
return false;
}
}
}
for (size_t i = 0, count = outputBuffer.size(); i < count; ++i)
{
outputBuffer[i] = colorBuffer[i];
}
return true;
}
private:
const PDFAxialShading* m_axialShadingPattern;
QMatrix m_p1p2GCS;
PDFReal m_xStart;
PDFReal m_xEnd;
PDFReal m_tAtStart;
PDFReal m_tAtEnd;
PDFReal m_tMin;
PDFReal m_tMax;
};
PDFShadingSampler* PDFAxialShading::createSampler(QMatrix userSpaceToDeviceSpaceMatrix) const
{
return new PDFAxialShadingSampler(this, userSpaceToDeviceSpaceMatrix);
}
void PDFMesh::paint(QPainter* painter, PDFReal alpha) const
{
if (m_triangles.empty())
{
return;
}
painter->save();
painter->setPen(Qt::NoPen);
painter->setRenderHint(QPainter::Antialiasing, true);
// Set the clipping area, if we have it
if (!m_boundingPath.isEmpty())
{
painter->setClipPath(m_boundingPath, Qt::IntersectClip);
}
if (!m_backgroundPath.isEmpty() && m_backgroundColor.isValid())
{
QColor backgroundColor = m_backgroundColor;
backgroundColor.setAlphaF(alpha);
painter->setBrush(QBrush(backgroundColor, Qt::SolidPattern));
painter->drawPath(m_backgroundPath);
}
QColor color;
// Draw all triangles
for (const Triangle& triangle : m_triangles)
{
if (color != triangle.color)
{
QColor newColor(triangle.color);
newColor.setAlphaF(alpha);
painter->setPen(newColor);
painter->setBrush(QBrush(newColor, Qt::SolidPattern));
color = newColor;
}
std::array<QPointF, 3> triangleCorners = { m_vertices[triangle.v1], m_vertices[triangle.v2], m_vertices[triangle.v3] };
painter->drawConvexPolygon(triangleCorners.data(), static_cast<int>(triangleCorners.size()));
}
painter->restore();
}
void PDFMesh::transform(const QMatrix& matrix)
{
for (QPointF& vertex : m_vertices)
{
vertex = matrix.map(vertex);
}
m_boundingPath = matrix.map(m_boundingPath);
m_backgroundPath = matrix.map(m_backgroundPath);
}
void PDFMesh::addMesh(std::vector<QPointF>&& vertices, std::vector<PDFMesh::Triangle>&& triangles)
{
if (isEmpty())
{
m_vertices = qMove(vertices);
m_triangles = qMove(triangles);
}
else
{
size_t offset = m_vertices.size();
m_vertices.insert(m_vertices.cend(), vertices.cbegin(), vertices.cend());
for (Triangle& triangle : triangles)
{
triangle.v1 += static_cast<uint32_t>(offset);
triangle.v2 += static_cast<uint32_t>(offset);
triangle.v3 += static_cast<uint32_t>(offset);
}
m_triangles.insert(m_triangles.cend(), triangles.cbegin(), triangles.cend());
}
}
QPointF PDFMesh::getTriangleCenter(const PDFMesh::Triangle& triangle) const
{
return (m_vertices[triangle.v1] + m_vertices[triangle.v2] + m_vertices[triangle.v3]) / 3.0;
}
qint64 PDFMesh::getMemoryConsumptionEstimate() const
{
qint64 memoryConsumption = sizeof(*this);
memoryConsumption += sizeof(QPointF) * m_vertices.capacity();
memoryConsumption += sizeof(Triangle) * m_triangles.capacity();
memoryConsumption += sizeof(QPainterPath::Element) * m_boundingPath.capacity();
memoryConsumption += sizeof(QPainterPath::Element) * m_backgroundPath.capacity();
return memoryConsumption;
}
void PDFMesh::invertColors()
{
for (Triangle& triangle : m_triangles)
{
triangle.color = 0x00FFFFFF - triangle.color;
}
m_backgroundColor = invertColor(m_backgroundColor);
}
void PDFMeshQualitySettings::initResolution()
{
Q_ASSERT(deviceSpaceMeshingArea.isValid());
PDFReal size = qMax(deviceSpaceMeshingArea.width(), deviceSpaceMeshingArea.height());
minimalMeshResolution = size * minimalMeshResolutionRatio;
preferredMeshResolution = size * qMax(preferredMeshResolutionRatio, minimalMeshResolutionRatio);
}
ShadingType PDFRadialShading::getShadingType() const
{
return ShadingType::Radial;
}
PDFMesh PDFRadialShading::createMesh(const PDFMeshQualitySettings& settings, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
PDFMesh mesh;
QMatrix patternSpaceToDeviceSpaceMatrix = getPatternSpaceToDeviceSpaceMatrix(settings);
QPointF p1 = patternSpaceToDeviceSpaceMatrix.map(m_startPoint);
QPointF p2 = patternSpaceToDeviceSpaceMatrix.map(m_endPoint);
QPointF r1TestPoint = patternSpaceToDeviceSpaceMatrix.map(QPointF(m_startPoint.x(), m_startPoint.y() + m_r0));
QPointF r2TestPoint = patternSpaceToDeviceSpaceMatrix.map(QPointF(m_endPoint.x(), m_endPoint.y() + m_r1));
const PDFReal r1 = QLineF(p1, r1TestPoint).length();
const PDFReal r2 = QLineF(p2, r2TestPoint).length();
// Strategy: for simplification, we rotate the line clockwise so we will
// get the shading axis equal to the x-axis. Then we will determine the shading
// area and create mesh according the settings.
QLineF line(p1, p2);
const double angle = line.angleTo(QLineF(0, 0, 1, 0));
// Matrix p1p2LCS is local coordinate system of line p1-p2. It transforms
// points on the line to the global coordinate system. So, point (0, 0) will
// map onto p1 and point (length(p1-p2), 0) will map onto p2.
QMatrix p1p2LCS;
p1p2LCS.translate(p1.x(), p1.y());
p1p2LCS.rotate(angle);
QMatrix p1p2GCS = p1p2LCS.inverted();
QPointF p1m = p1p2GCS.map(p1);
QPointF p2m = p1p2GCS.map(p2);
Q_ASSERT(isZero(p1m.y()));
Q_ASSERT(isZero(p2m.y()));
Q_ASSERT(p1m.x() <= p2m.x());
QPainterPath meshingArea;
meshingArea.addPolygon(p1p2GCS.map(settings.deviceSpaceMeshingArea));
QRectF meshingRectangle = meshingArea.boundingRect();
PDFReal xl = p1m.x();
PDFReal xr = p2m.x();
if (m_extendStart)
{
// Well, we must calculate the "zero" point, i.e. when starting radius become zero.
// It will happen, when r1 < r2, if r1 >= r2, then radius never become zero. We also
// bound the start by target draw area. We have line between points:
//
// Line: (x1, r1) to (x2, r2)
// and we will calculate intersection with x axis. If we found intersection points, which
// is on the left side, then we
if (r1 > r2)
{
xl = meshingRectangle.left() - 2 * r1;
}
else
{
QLineF radiusInterpolationLine(p1m.x(), r1, p2m.x(), r2);
QLineF xAxisLine(p1m.x(), 0, p2m.x(), 0);
QPointF intersectionPoint;
if (radiusInterpolationLine.intersect(xAxisLine, &intersectionPoint) != QLineF::NoIntersection)
{
xl = qBound(meshingRectangle.left() - r1, intersectionPoint.x(), xl);
}
else
{
xl = meshingRectangle.left() - 2 * r1;
}
}
}
if (m_extendEnd)
{
// Similar as in previous case, find the "zero" point, i.e. when ending radius become zero.
if (r1 < r2)
{
xr = meshingRectangle.right() + 2 * r2;
}
else
{
QLineF radiusInterpolationLine(p1m.x(), r1, p2m.x(), r2);
QLineF xAxisLine(p1m.x(), 0, p2m.x(), 0);
QPointF intersectionPoint;
if (radiusInterpolationLine.intersect(xAxisLine, &intersectionPoint) != QLineF::NoIntersection)
{
xr = qBound(xr, intersectionPoint.x(), meshingRectangle.right() + r2);
}
else
{
xr = meshingRectangle.right() + 2 * r2;
}
}
}
// Create coordinate array filled with stops, where we will determine the color
std::vector<PDFReal> xCoords;
xCoords.reserve((xr - xl) / settings.minimalMeshResolution + 3);
xCoords.push_back(xl);
for (PDFReal x = p1m.x(); x <= p2m.x(); x += settings.minimalMeshResolution)
{
if (!qFuzzyCompare(xCoords.back(), x))
{
xCoords.push_back(x);
}
}
if (xCoords.back() + PDF_EPSILON < p2m.x())
{
xCoords.push_back(p2m.x());
}
if (!qFuzzyCompare(xCoords.back(), xr))
{
xCoords.push_back(xr);
}
const PDFReal tAtStart = m_domainStart;
const PDFReal tAtEnd = m_domainEnd;
const PDFReal tMin = qMin(tAtStart, tAtEnd);
const PDFReal tMax = qMax(tAtStart, tAtEnd);
const bool isSingleFunction = m_functions.size() == 1;
std::vector<PDFReal> colorBuffer(m_colorSpace->getColorComponentCount(), 0.0);
auto getColor = [this, isSingleFunction, &colorBuffer](PDFReal t) -> PDFColor
{
if (isSingleFunction)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(&t, &t + 1, colorBuffer.data(), colorBuffer.data() + colorBuffer.size());
if (!result)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
}
}
else
{
for (size_t i = 0, count = colorBuffer.size(); i < count; ++i)
{
PDFFunction::FunctionResult result = m_functions[i]->apply(&t, &t + 1, colorBuffer.data() + i, colorBuffer.data() + i + 1);
if (!result)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
}
}
}
return PDFAbstractColorSpace::convertToColor(colorBuffer);
};
// Determine color of each coordinate
std::vector<std::pair<PDFReal, PDFColor>> coloredCoordinates;
coloredCoordinates.reserve(xCoords.size());
for (PDFReal x : xCoords)
{
// Determine current parameter t
const PDFReal t = interpolate(x, p1m.x(), p2m.x(), tAtStart, tAtEnd);
const PDFReal tBounded = qBound(tMin, t, tMax);
const PDFColor color = getColor(tBounded);
coloredCoordinates.emplace_back(x, color);
}
// Filter coordinates according the meshing criteria
std::vector<std::pair<PDFReal, PDFColor>> filteredCoordinates;
filteredCoordinates.reserve(coloredCoordinates.size());
for (auto it = coloredCoordinates.cbegin(); it != coloredCoordinates.cend(); ++it)
{
// We will skip this coordinate, if both of meshing criteria have been met:
// 1) Color difference is small (lesser than tolerance)
// 2) Distance from previous and next point is less than preferred meshing resolution OR colors are equal
if (it != coloredCoordinates.cbegin() && std::next(it) != coloredCoordinates.cend())
{
auto itNext = std::next(it);
const std::pair<PDFReal, PDFColor>& prevItem = filteredCoordinates.back();
const std::pair<PDFReal, PDFColor>& currentItem = *it;
const std::pair<PDFReal, PDFColor>& nextItem = *itNext;
if (currentItem.first != p1m.x() && currentItem.first != p2m.x())
{
if (prevItem.second == currentItem.second && currentItem.second == nextItem.second)
{
// Colors are same, skip the test
continue;
}
if (PDFAbstractColorSpace::isColorEqual(prevItem.second, currentItem.second, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(currentItem.second, nextItem.second, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(prevItem.second, nextItem.second, settings.tolerance) &&
(nextItem.first - prevItem.first < settings.preferredMeshResolution))
{
continue;
}
}
}
filteredCoordinates.push_back(*it);
}
if (!filteredCoordinates.empty())
{
constexpr const int SLICES = 120;
size_t vertexCount = filteredCoordinates.size() * SLICES * 4;
size_t triangleCount = filteredCoordinates.size() * SLICES * 2;
if (m_backgroundColor.isValid())
{
vertexCount += 4;
triangleCount += 2;
}
mesh.reserve(vertexCount, triangleCount);
// Create background color triangles
if (m_backgroundColor.isValid())
{
uint32_t topLeft = mesh.addVertex(meshingRectangle.topLeft());
uint32_t topRight = mesh.addVertex(meshingRectangle.topRight());
uint32_t bottomLeft = mesh.addVertex(meshingRectangle.bottomRight());
uint32_t bottomRight = mesh.addVertex(meshingRectangle.bottomLeft());
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, m_backgroundColor.rgb());
}
// Create radial shading triangles
QLineF rLine(QPointF(p1m.x(), r1), QPointF(p2m.x(), r2));
const PDFReal rlength = rLine.length();
for (auto it = std::next(filteredCoordinates.cbegin()); it != filteredCoordinates.cend(); ++it)
{
const std::pair<PDFReal, PDFColor>& leftItem = *std::prev(it);
const std::pair<PDFReal, PDFColor>& rightItem = *it;
const PDFReal x0 = leftItem.first;
const PDFReal x1 = rightItem.first;
const PDFColor mixedColor = PDFAbstractColorSpace::mixColors(leftItem.second, rightItem.second, 0.5);
const PDFReal angleStep = 2 * M_PI / SLICES;
const PDFReal r0 = rLine.pointAt((x0 - p1m.x()) / rlength).y();
const PDFReal r1 = rLine.pointAt((x1 - p1m.x()) / rlength).y();
PDFReal angle0 = 0;
for (int i = 0; i < SLICES; ++i)
{
const PDFReal angle1 = angle0 + angleStep;
const PDFReal cos0 = std::cos(angle0);
const PDFReal sin0 = std::sin(angle0);
const PDFReal cos1 = std::cos(angle1);
const PDFReal sin1 = std::sin(angle1);
QPointF p1(x0 + cos0 * r0, sin0 * r0);
QPointF p2(x1 + cos0 * r1, sin0 * r1);
QPointF p3(x1 + cos1 * r1, sin1 * r1);
QPointF p4(x0 + cos1 * r0, sin1 * r0);
uint32_t v1 = mesh.addVertex(p1);
uint32_t v2 = mesh.addVertex(p2);
uint32_t v3 = mesh.addVertex(p3);
uint32_t v4 = mesh.addVertex(p4);
QColor color = m_colorSpace->getColor(mixedColor, cms, intent, reporter, true);
mesh.addQuad(v1, v2, v3, v4, color.rgb());
angle0 = angle1;
}
}
}
// Transform mesh to the device space coordinates
mesh.transform(p1p2LCS);
// Create bounding path
if (m_boundingBox.isValid())
{
QPainterPath boundingPath;
boundingPath.addPolygon(patternSpaceToDeviceSpaceMatrix.map(m_boundingBox));
mesh.setBoundingPath(boundingPath);
}
return mesh;
}
class PDFRadialShadingSampler : public PDFShadingSampler
{
public:
PDFRadialShadingSampler(const PDFRadialShading* radialShadingPattern, QMatrix userSpaceToDeviceSpaceMatrix) :
PDFShadingSampler(radialShadingPattern),
m_radialShadingPattern(radialShadingPattern),
m_xStart(0.0),
m_xEnd(0.0),
m_tAtStart(0.0),
m_tAtEnd(0.0),
m_tMin(0.0),
m_tMax(0.0),
m_r0(0.0),
m_r1(0.0)
{
QMatrix patternSpaceToDeviceSpace = radialShadingPattern->getMatrix() * userSpaceToDeviceSpaceMatrix;
QPointF p1 = patternSpaceToDeviceSpace.map(radialShadingPattern->getStartPoint());
QPointF p2 = patternSpaceToDeviceSpace.map(radialShadingPattern->getEndPoint());
QPointF r0TestPoint = patternSpaceToDeviceSpace.map(radialShadingPattern->getStartPoint() + QPointF(0.0, radialShadingPattern->getR0()));
QPointF r1TestPoint = patternSpaceToDeviceSpace.map(radialShadingPattern->getEndPoint() + QPointF(0.0, radialShadingPattern->getR1()));
const PDFReal r0 = QLineF(p1, r0TestPoint).length();
const PDFReal r1 = QLineF(p2, r1TestPoint).length();
// Strategy: for simplification, we rotate the line clockwise so we will
// get the shading axis equal to the x-axis.
QLineF line(p1, p2);
const double angle = line.angleTo(QLineF(0, 0, 1, 0));
// Matrix p1p2LCS is local coordinate system of line p1-p2. It transforms
// points on the line to the global coordinate system. So, point (0, 0) will
// map onto p1 and point (length(p1-p2), 0) will map onto p2.
QMatrix p1p2LCS;
p1p2LCS.translate(p1.x(), p1.y());
p1p2LCS.rotate(angle);
QMatrix p1p2GCS = p1p2LCS.inverted();
QPointF p1m = p1p2GCS.map(p1);
QPointF p2m = p1p2GCS.map(p2);
Q_ASSERT(isZero(p1m.y()));
Q_ASSERT(isZero(p2m.y()));
Q_ASSERT(p1m.x() <= p2m.x());
m_xStart = p1m.x();
m_xEnd = p2m.x();
m_tAtStart = radialShadingPattern->getDomainStart();
m_tAtEnd = radialShadingPattern->getDomainEnd();
m_tMin = qMin(m_tAtStart, m_tAtEnd);
m_tMax = qMax(m_tAtStart, m_tAtEnd);
m_r0 = r0;
m_r1 = r1;
m_p1p2GCS = p1p2GCS;
}
virtual bool sample(const QPointF& devicePoint, PDFColorBuffer outputBuffer, int limit) const override
{
Q_UNUSED(limit);
if (!m_pattern->getColorSpace() || m_pattern->getColorSpace()->getColorComponentCount() != outputBuffer.size())
{
// Invalid color space, or invalid color buffer
return false;
}
QPointF mappedPoint = m_p1p2GCS.map(devicePoint);
// Well, how to proceed with sampling? We would like to find parameter s for point (x_p, y_p),
// where (x_p, y_p) is mappedPoint. According to the formulas in the PDF 2.0 specification, we want
// to find variable s:
//
// x_c = x_0 + s * (x_1 - x_0)
// y_c = y_0 + s * (y_1 - y_0)
// r = r_0 + s * (r_1 - r_0)
//
// Where (x_c, y_c) is center of the circle. We assume this simplification: we translate the pattern
// to horizontal axis, this implies y_0 = y_1 = 0, so y_c will be always zero. This will allow us to use
// simplification.
//
// This is general equation, which we want to solve:
//
// (x_p - x_c)^2 + (y_p - y_c)^2 = r^2,
// where (x_p, y_p) is sample point, (x_c, y_c) is coordinate of the circle center and r is radius.
// If we use y_c = 0, then we get following equation:
//
// (x_p - x_c)^2 + y_p^2 = r^2,
//
// If we substitute x_c and r with formulas above, we get:
//
// (x_p - x_0 - s * (x_1 - x_0))^2 + y_p^2 = (r_0 + s * (r_1 - r_0))^2,
//
// We also have x_0 = 0, because we have origin at (0, 0), so we get following final equation:
//
// (x_p - s * x_1)^2 + y_p^2 = (r_0 + s * (r_1 - r_0))^2,
//
// which is easily solvable quadratic equation in variable s. Using wxMaxima, we get following formula
// for our variable s:
//
// a.s^2 + b.s + c = 0,
//
// where:
//
// a = x_1 * x_1 - r_1 * r_1 + 2.0 * r_0 * r_1 - r_0 * r_0 = (x_1 - r_1 + r_0) * (x_1 + r_1 - r_0)
// b = 2.0 * (-x_1 * x_p - r_0 * r_1 + r_0 * r_0)
// c = y_p * y_p + x_p * x_p - r_0 * r_0
//
Q_ASSERT(qIsNull(m_xStart));
const PDFReal x_p = mappedPoint.x();
const PDFReal y_p = mappedPoint.y();
const PDFReal x_1 = m_xEnd;
const PDFReal r_0 = m_r0;
const PDFReal r_1 = m_r1;
const PDFReal r_1_0 = r_1 - r_0;
const PDFReal a = x_1 * x_1 - r_1_0 * r_1_0;
const PDFReal b = 2.0 * (-x_1 * x_p - r_0 * r_1 + r_0 * r_0);
const PDFReal c = y_p * y_p + x_p * x_p - r_0 * r_0;
const PDFReal Dsqr = b * b - 4.0 * a * c;
if (Dsqr < 0.0)
{
return false;
}
PDFReal s1 = 0.0;
PDFReal s2 = 0.0;
if (qFuzzyIsNull(a))
{
// We have equation b.s + c = 0
if (qFuzzyIsNull(b))
{
return false;
}
const PDFReal solution = -c / b;
s1 = solution;
s2 = solution;
}
else
{
const PDFReal D = std::sqrt(Dsqr);
s1 = (-b - D) / (2.0 * a);
s2 = (-b + D) / (2.0 * a);
}
PDFReal s = 0.0;
while (true)
{
const PDFReal radius2 = r_0 + s2 * r_1_0;
if (radius2 >= 0.0)
{
if (m_radialShadingPattern->isExtendStart())
{
s2 = qMax(s2, 0.0);
}
if (m_radialShadingPattern->isExtendEnd())
{
s2 = qMin(s2, 1.0);
}
if (s2 >= 0.0 && s2 <= 1.0)
{
s = s2;
break;
}
}
const PDFReal radius1 = r_0 + s1 * r_1_0;
if (radius1 >= 0.0)
{
if (m_radialShadingPattern->isExtendStart())
{
s1 = qMax(s1, 0.0);
}
if (m_radialShadingPattern->isExtendEnd())
{
s1 = qMin(s1, 1.0);
}
if (s1 >= 0.0 && s1 <= 1.0)
{
s = s1;
break;
}
}
return false;
}
PDFReal t = interpolate(s, 0.0, 1.0, m_tAtStart, m_tAtEnd);
t = qBound(m_tMin, t, m_tMax);
const auto& functions = m_radialShadingPattern->getFunctions();
std::array<PDFReal, PDF_MAX_COLOR_COMPONENTS> colorBuffer = { };
if (colorBuffer.size() < outputBuffer.size())
{
// Jakub Melka: Too much colors - we cant process it
return false;
}
if (functions.size() == 1)
{
Q_ASSERT(outputBuffer.size() <= colorBuffer.size());
PDFFunction::FunctionResult result = functions.front()->apply(&t, &t + 1, colorBuffer.data(), colorBuffer.data() + outputBuffer.size());
if (!result)
{
// Function call failed
return false;
}
}
else
{
if (functions.size() != outputBuffer.size())
{
// Invalid number of functions
return false;
}
Q_ASSERT(outputBuffer.size() <= colorBuffer.size());
for (size_t i = 0, count = outputBuffer.size(); i < count; ++i)
{
PDFFunction::FunctionResult result = functions[i]->apply(&t, &t + 1, colorBuffer.data() + i, colorBuffer.data() + i + 1);
if (!result)
{
// Function call failed
return false;
}
}
}
for (size_t i = 0, count = outputBuffer.size(); i < count; ++i)
{
outputBuffer[i] = colorBuffer[i];
}
return true;
}
private:
const PDFRadialShading* m_radialShadingPattern;
QMatrix m_p1p2GCS;
PDFReal m_xStart;
PDFReal m_xEnd;
PDFReal m_tAtStart;
PDFReal m_tAtEnd;
PDFReal m_tMin;
PDFReal m_tMax;
PDFReal m_r0;
PDFReal m_r1;
};
PDFShadingSampler* PDFRadialShading::createSampler(QMatrix userSpaceToDeviceSpaceMatrix) const
{
return new PDFRadialShadingSampler(this, userSpaceToDeviceSpaceMatrix);
}
class PDFTriangleShadingSampler : public PDFShadingSampler
{
private:
struct Triangle
{
std::array<uint32_t, 3> vertexIndices = { };
std::array<PDFColor, 3> vertexColors;
QMatrix barycentricCoordinateMatrix;
};
public:
PDFTriangleShadingSampler(const PDFType4567Shading* shadingPattern, QMatrix userSpaceToDeviceSpaceMatrix) :
PDFShadingSampler(shadingPattern),
m_type4567ShadingPattern(shadingPattern)
{
Q_UNUSED(userSpaceToDeviceSpaceMatrix);
}
virtual bool sample(const QPointF& devicePoint, PDFColorBuffer outputBuffer, int limit) const override
{
Q_UNUSED(limit);
for (const Triangle& triangle : m_triangles)
{
// Calculate barycentric coordinates
QPointF b1b2 = triangle.barycentricCoordinateMatrix.map(devicePoint);
const qreal b1 = b1b2.x();
const qreal b2 = b1b2.y();
const qreal b3 = 1.0 - b1 - b2;
if (b1 >= 0.0 && b2 >= 0.0 && b3 >= 0.0 && qFuzzyCompare(b1 + b2 + b3, 1.0))
{
// Jakub Melka: we got hit, we are in the triangle. Using the barycentric
// coordinates, we can calculate result color.
const PDFColor& c1 = triangle.vertexColors[0];
const PDFColor& c2 = triangle.vertexColors[1];
const PDFColor& c3 = triangle.vertexColors[2];
Q_ASSERT(c1.size() == c2.size());
Q_ASSERT(c2.size() == c3.size());
const size_t inputColorSize = c1.size();
PDFColor interpolatedColor;
interpolatedColor.resize(inputColorSize);
for (size_t i = 0; i < inputColorSize; ++i)
{
interpolatedColor[i] = c1[i] * b1 + c2[i] * b2 + c3[i] * b3;
}
interpolatedColor = m_type4567ShadingPattern->getColor(interpolatedColor);
if (interpolatedColor.size() != outputBuffer.size())
{
return false;
}
for (size_t i = 0; i < outputBuffer.size(); ++i)
{
outputBuffer[i] = interpolatedColor[i];
}
return true;
}
}
return false;
}
void addTriangle(std::array<uint32_t, 3> vertexIndices, std::array<PDFColor, 3> vertexColors)
{
Triangle triangle;
triangle.vertexIndices = qMove(vertexIndices);
triangle.vertexColors = qMove(vertexColors);
// Compute barycentric coordinate matrix, which will tranform cartesian coordinates of given
// point in the plane into the barycentric coordinates in the triangle. Barycentric coordinate system
// is three point coordinates (b1, b2, b3), where b1,b2,b3 >= 0 and b1 + b2 + b3 = 1.0, such that
//
// (x, y) = b1 * p1 + b2 * p2 + b3 * p3, where
// triangle consists of vertices p1, p2, p3 and (x, y) is point inside triangle. If requirements
// of b1, b2, b3 are not met, then point doesn't lie in the triangle.
//
// We will use following transformation from caresian plane to barycentric coordinate system:
// Usign equation b1 + b2 + b3 = 1.0 we get b3 = 1.0 - b1 - b2, so we will get following system
// of equations:
//
// x = b1 * x1 + b2 * x2 + (1.0 - b1 - b2) * x3
// y = b1 * y1 + b2 * y2 + (1.0 - b1 - b2) * y3
//
// b1 * (x1 - x3) + b2 * (x2 - x3) = x - x3
// b1 * (y1 - y3) + b2 * (y2 - y3) = y - y3
//
// Now, we have system of two linear equation of two variables (b1, b2) and b3 can be computed
// easily from equation b1 + b2 + b3 = 1.0. Now, we will introduce matrix B:
//
// B = ( x1 - x3, x2 - x3)
// ( y1 - y3, y2 - y3)
//
// And we will have final equation:
//
// (b1, b2) = B^-1 * (p - p3)
//
QPointF p1 = m_vertices[triangle.vertexIndices[0]];
QPointF p2 = m_vertices[triangle.vertexIndices[1]];
QPointF p3 = m_vertices[triangle.vertexIndices[2]];
QPointF p1p3 = p1 - p3;
QPointF p2p3 = p2 - p3;
QMatrix B(p1p3.x(), p1p3.y(), p2p3.x(), p2p3.y(), 0.0, 0.0);
if (!B.isInvertible())
{
// Jakub Melka: B is is not invertible, triangle is degenerated
return;
}
// We precalculate B^-1 * (-p3), so we do not have it to compute it
// in each iteration.
QMatrix Binv = B.inverted();
QPointF pt = Binv.map(-p3);
Binv.setMatrix(Binv.m11(), Binv.m12(), Binv.m21(), Binv.m22(), pt.x(), pt.y());
triangle.barycentricCoordinateMatrix = Binv;
m_triangles.emplace_back(qMove(triangle));
}
void setVertexArray(std::vector<QPointF>&& vertices) { m_vertices = qMove(vertices); }
void reserveSpaceForTriangles(size_t triangleCount) { m_triangles.reserve(triangleCount); }
private:
const PDFType4567Shading* m_type4567ShadingPattern;
std::vector<QPointF> m_vertices;
std::vector<Triangle> m_triangles;
};
ShadingType PDFFreeFormGouradTriangleShading::getShadingType() const
{
return ShadingType::FreeFormGouradTriangle;
}
bool PDFFreeFormGouradTriangleShading::processTriangles(InitializeFunction initializeMeshFunction,
AddTriangleFunction addTriangle,
const QMatrix& userSpaceToDeviceSpaceMatrix,
bool convertColors) const
{
QMatrix patternSpaceToDeviceSpaceMatrix = getPatternSpaceToDeviceSpaceMatrix(userSpaceToDeviceSpaceMatrix);
size_t bitsPerVertex = m_bitsPerFlag + 2 * m_bitsPerCoordinate + m_colorComponentCount * m_bitsPerComponent;
size_t remainder = (8 - (bitsPerVertex % 8)) % 8;
bitsPerVertex += remainder;
size_t bytesPerVertex = bitsPerVertex / 8;
size_t vertexCount = m_data.size() / bytesPerVertex;
if (vertexCount < 3)
{
// No mesh produced
return true;
}
// We have 3 vertices for start triangle, then for each new vertex, we get
// a new triangle, or, based on flags, no triangle (if new triangle is processed)
size_t triangleCount = vertexCount - 2;
const PDFReal vertexScaleRatio = 1.0 / double((static_cast<uint64_t>(1) << m_bitsPerCoordinate) - 1);
const PDFReal xScaleRatio = (m_xmax - m_xmin) * vertexScaleRatio;
const PDFReal yScaleRatio = (m_ymax - m_ymin) * vertexScaleRatio;
const PDFReal colorScaleRatio = 1.0 / double((static_cast<uint64_t>(1) << m_bitsPerComponent) - 1);
std::vector<VertexData> vertices;
vertices.resize(vertexCount);
std::vector<QPointF> meshVertices;
meshVertices.resize(vertexCount);
auto readVertex = [this, &vertices, &patternSpaceToDeviceSpaceMatrix, &meshVertices, bytesPerVertex, xScaleRatio, yScaleRatio, colorScaleRatio, convertColors](size_t index)
{
PDFBitReader reader(&m_data, 8);
reader.seek(index * bytesPerVertex);
VertexData data;
data.index = static_cast<uint32_t>(index);
data.flags = reader.read(m_bitsPerFlag);
const PDFReal x = m_xmin + (reader.read(m_bitsPerCoordinate)) * xScaleRatio;
const PDFReal y = m_ymin + (reader.read(m_bitsPerCoordinate)) * yScaleRatio;
data.position = patternSpaceToDeviceSpaceMatrix.map(QPointF(x, y));
data.color.resize(m_colorComponentCount);
meshVertices[index] = data.position;
for (size_t i = 0; i < m_colorComponentCount; ++i)
{
const double cMin = m_limits[2 * i + 0];
const double cMax = m_limits[2 * i + 1];
data.color[i] = cMin + (reader.read(m_bitsPerComponent)) * (cMax - cMin) * colorScaleRatio;
}
if (convertColors)
{
data.color = getColor(data.color);
}
vertices[index] = qMove(data);
};
PDFIntegerRange indices(size_t(0), vertexCount);
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Content, indices.begin(), indices.end(), readVertex);
initializeMeshFunction(qMove(meshVertices), triangleCount);
vertices.front().flags = 0;
const VertexData* va = nullptr;
const VertexData* vb = nullptr;
const VertexData* vc = nullptr;
const VertexData* vd = nullptr;
for (size_t i = 0; i < vertexCount;)
{
vd = &vertices[i];
switch (vd->flags)
{
case 0:
{
if (i + 2 >= vertexCount)
{
return false;
}
va = vd;
vb = &vertices[i + 1];
vc = &vertices[i + 2];
i += 3;
addTriangle(va, vb, vc);
break;
}
case 1:
{
// Triangle vb, vc, vd
va = vb;
vb = vc;
vc = vd;
++i;
addTriangle(va, vb, vc);
break;
}
case 2:
{
// Triangle va, vc, vd
vb = vc;
vc = vd;
++i;
addTriangle(va, vb, vc);
break;
}
default:
return false;
}
}
return true;
}
PDFMesh PDFFreeFormGouradTriangleShading::createMesh(const PDFMeshQualitySettings& settings, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
PDFMesh mesh;
auto addTriangle = [this, &settings, &mesh, cms, intent, reporter](const VertexData* va, const VertexData* vb, const VertexData* vc)
{
const uint32_t via = va->index;
const uint32_t vib = vb->index;
const uint32_t vic = vc->index;
addSubdividedTriangles(settings, mesh, via, vib, vic, va->color, vb->color, vc->color, cms, intent, reporter);
};
auto initializeMeshFunction = [&mesh](std::vector<QPointF>&& vertices, size_t triangleCount)
{
mesh.reserve(0, triangleCount);
mesh.setVertices(qMove(vertices));
};
if (!processTriangles(initializeMeshFunction, addTriangle, settings.userSpaceToDeviceSpaceMatrix, true))
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Invalid free form gourad triangle data stream."));
}
if (m_backgroundColor.isValid())
{
QPainterPath path;
path.addRect(settings.deviceSpaceMeshingArea);
mesh.setBackgroundPath(path);
mesh.setBackgroundColor(m_backgroundColor);
}
return mesh;
}
PDFShadingSampler* PDFFreeFormGouradTriangleShading::createSampler(QMatrix userSpaceToDeviceSpaceMatrix) const
{
PDFTriangleShadingSampler* sampler = new PDFTriangleShadingSampler(this, userSpaceToDeviceSpaceMatrix);
auto addTriangle = [sampler](const VertexData* va, const VertexData* vb, const VertexData* vc)
{
const uint32_t via = va->index;
const uint32_t vib = vb->index;
const uint32_t vic = vc->index;
sampler->addTriangle({ via, vib, vic }, { va->color, vb->color, vc->color });
};
auto initializeMeshFunction = [sampler](std::vector<QPointF>&& vertices, size_t triangleCount)
{
sampler->setVertexArray(qMove(vertices));
sampler->reserveSpaceForTriangles(triangleCount);
};
if (!processTriangles(initializeMeshFunction, addTriangle, userSpaceToDeviceSpaceMatrix, false))
{
// Just delete the sampler, data are invalid
delete sampler;
sampler = nullptr;
}
return sampler;
}
ShadingType PDFLatticeFormGouradTriangleShading::getShadingType() const
{
return ShadingType::LatticeFormGouradTriangle;
}
bool PDFLatticeFormGouradTriangleShading::processTriangles(InitializeFunction initializeMeshFunction,
AddTriangleFunction addTriangle,
const QMatrix& userSpaceToDeviceSpaceMatrix,
bool convertColors) const
{
QMatrix patternSpaceToDeviceSpaceMatrix = getPatternSpaceToDeviceSpaceMatrix(userSpaceToDeviceSpaceMatrix);
size_t bitsPerVertex = 2 * m_bitsPerCoordinate + m_colorComponentCount * m_bitsPerComponent;
size_t remainder = (8 - (bitsPerVertex % 8)) % 8;
bitsPerVertex += remainder;
size_t bytesPerVertex = bitsPerVertex / 8;
size_t vertexCount = m_data.size() / bytesPerVertex;
size_t columnCount = static_cast<size_t>(m_verticesPerRow);
size_t rowCount = vertexCount / columnCount;
if (rowCount < 2)
{
// No mesh produced
return false;
}
// We have 2 triangles for each quad. We have (columnCount - 1) quads
// in single line and we have (rowCount - 1) lines.
size_t triangleCount = (rowCount - 1) * (columnCount - 1) * 2;
const PDFReal vertexScaleRatio = 1.0 / double((static_cast<uint64_t>(1) << m_bitsPerCoordinate) - 1);
const PDFReal xScaleRatio = (m_xmax - m_xmin) * vertexScaleRatio;
const PDFReal yScaleRatio = (m_ymax - m_ymin) * vertexScaleRatio;
const PDFReal colorScaleRatio = 1.0 / double((static_cast<uint64_t>(1) << m_bitsPerComponent) - 1);
std::vector<VertexData> vertices;
vertices.resize(vertexCount);
std::vector<QPointF> meshVertices;
meshVertices.resize(vertexCount);
auto readVertex = [this, &vertices, &patternSpaceToDeviceSpaceMatrix, &meshVertices, bytesPerVertex, xScaleRatio, yScaleRatio, colorScaleRatio, convertColors](size_t index)
{
PDFBitReader reader(&m_data, 8);
reader.seek(index * bytesPerVertex);
VertexData data;
data.index = static_cast<uint32_t>(index);
const PDFReal x = m_xmin + (reader.read(m_bitsPerCoordinate)) * xScaleRatio;
const PDFReal y = m_ymin + (reader.read(m_bitsPerCoordinate)) * yScaleRatio;
data.position = patternSpaceToDeviceSpaceMatrix.map(QPointF(x, y));
data.color.resize(m_colorComponentCount);
meshVertices[index] = data.position;
for (size_t i = 0; i < m_colorComponentCount; ++i)
{
const double cMin = m_limits[2 * i + 0];
const double cMax = m_limits[2 * i + 1];
data.color[i] = cMin + (reader.read(m_bitsPerComponent)) * (cMax - cMin) * colorScaleRatio;
}
if (convertColors)
{
data.color = getColor(data.color);
}
vertices[index] = qMove(data);
};
PDFIntegerRange indices(size_t(0), vertexCount);
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Content, indices.begin(), indices.end(), readVertex);
initializeMeshFunction(qMove(meshVertices), triangleCount);
auto getVertexIndex = [columnCount](size_t row, size_t column) -> size_t
{
return row * columnCount + column;
};
for (size_t row = 1; row < rowCount; ++row)
{
for (size_t column = 1; column < columnCount; ++column)
{
const size_t vTopLeft = getVertexIndex(row - 1, column - 1);
const size_t vTopRight = getVertexIndex(row - 1, column);
const size_t vBottomRight = getVertexIndex(row, column);
const size_t vBottomLeft = getVertexIndex(row, column - 1);
const VertexData& vertexTopLeft = vertices[vTopLeft];
const VertexData& vertexTopRight = vertices[vTopRight];
const VertexData& vertexBottomRight = vertices[vBottomRight];
const VertexData& vertexBottomLeft = vertices[vBottomLeft];
addTriangle(&vertexTopLeft, &vertexTopRight, &vertexBottomRight);
addTriangle(&vertexBottomRight, &vertexBottomLeft, &vertexTopLeft);
}
}
return true;
}
PDFMesh PDFLatticeFormGouradTriangleShading::createMesh(const PDFMeshQualitySettings& settings, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
PDFMesh mesh;
auto addTriangle = [this, &settings, &mesh, cms, intent, reporter](const VertexData* va, const VertexData* vb, const VertexData* vc)
{
const uint32_t via = va->index;
const uint32_t vib = vb->index;
const uint32_t vic = vc->index;
addSubdividedTriangles(settings, mesh, via, vib, vic, va->color, vb->color, vc->color, cms, intent, reporter);
};
auto initializeMeshFunction = [&mesh](std::vector<QPointF>&& vertices, size_t triangleCount)
{
mesh.reserve(0, triangleCount);
mesh.setVertices(qMove(vertices));
};
if (!processTriangles(initializeMeshFunction, addTriangle, settings.userSpaceToDeviceSpaceMatrix, true))
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Invalid lattice form gourad triangle data stream."));
}
if (m_backgroundColor.isValid())
{
QPainterPath path;
path.addRect(settings.deviceSpaceMeshingArea);
mesh.setBackgroundPath(path);
mesh.setBackgroundColor(m_backgroundColor);
}
return mesh;
}
PDFShadingSampler* PDFLatticeFormGouradTriangleShading::createSampler(QMatrix userSpaceToDeviceSpaceMatrix) const
{
PDFTriangleShadingSampler* sampler = new PDFTriangleShadingSampler(this, userSpaceToDeviceSpaceMatrix);
auto addTriangle = [sampler](const VertexData* va, const VertexData* vb, const VertexData* vc)
{
const uint32_t via = va->index;
const uint32_t vib = vb->index;
const uint32_t vic = vc->index;
sampler->addTriangle({ via, vib, vic }, { va->color, vb->color, vc->color });
};
auto initializeMeshFunction = [sampler](std::vector<QPointF>&& vertices, size_t triangleCount)
{
sampler->setVertexArray(qMove(vertices));
sampler->reserveSpaceForTriangles(triangleCount);
};
if (!processTriangles(initializeMeshFunction, addTriangle, userSpaceToDeviceSpaceMatrix, false))
{
// Just delete the sampler, data are invalid
delete sampler;
sampler = nullptr;
}
return sampler;
}
PDFColor PDFType4567Shading::getColor(PDFColor colorOrFunctionParameter) const
{
if (!m_functions.empty())
{
const PDFReal t = colorOrFunctionParameter[0];
Q_ASSERT(m_colorComponentCount == 1);
std::vector<PDFReal> colorBuffer(m_colorSpace->getColorComponentCount(), 0.0);
if (m_functions.size() == 1)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(&t, &t + 1, colorBuffer.data(), colorBuffer.data() + colorBuffer.size());
if (!result)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
}
}
else
{
for (size_t i = 0, count = colorBuffer.size(); i < count; ++i)
{
PDFFunction::FunctionResult result = m_functions[i]->apply(&t, &t + 1, colorBuffer.data() + i, colorBuffer.data() + i + 1);
if (!result)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
}
}
}
return PDFAbstractColorSpace::convertToColor(colorBuffer);
}
return colorOrFunctionParameter;
}
void PDFType4567Shading::addSubdividedTriangles(const PDFMeshQualitySettings& settings,
PDFMesh& mesh, uint32_t v1, uint32_t v2, uint32_t v3,
PDFColor c1, PDFColor c2, PDFColor c3,
const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
// First, verify, if we can subdivide the triangle
QLineF v12(mesh.getVertex(v1), mesh.getVertex(v2));
QLineF v13(mesh.getVertex(v1), mesh.getVertex(v3));
QLineF v23(mesh.getVertex(v2), mesh.getVertex(v3));
const qreal length12 = v12.length();
const qreal length13 = v13.length();
const qreal length23 = v23.length();
const qreal maxLength = qMax(length12, qMax(length13, length23));
const bool isColorEqual = PDFAbstractColorSpace::isColorEqual(c1, c2, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(c1, c3, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(c2, c3, settings.tolerance);
const bool canSubdivide = maxLength >= settings.minimalMeshResolution * 2.0; // If we subdivide, we will have length at least settings.minimalMeshResolution
if (!isColorEqual && canSubdivide)
{
if (length23 == maxLength)
{
// We split line (v2, v3), create two triangles, (v1, v2, vx) and (v1, v3, vx), where
// vx is centerpoint of line (v2, v3). We also interpolate colors.
QPointF x = v23.center();
PDFColor cx = PDFAbstractColorSpace::mixColors(c2, c3, 0.5);
const uint32_t vx = mesh.addVertex(x);
addSubdividedTriangles(settings, mesh, v1, v2, vx, c1, c2, cx, cms, intent, reporter);
addSubdividedTriangles(settings, mesh, v1, v3, vx, c1, c3, cx, cms, intent, reporter);
}
else if (length13 == maxLength)
{
// We split line (v1, v3), create two triangles, (v1, v2, vx) and (v2, v3, vx), where
// vx is centerpoint of line (v1, v3). We also interpolate colors.
QPointF x = v13.center();
PDFColor cx = PDFAbstractColorSpace::mixColors(c1, c3, 0.5);
const uint32_t vx = mesh.addVertex(x);
addSubdividedTriangles(settings, mesh, v1, v2, vx, c1, c2, cx, cms, intent, reporter);
addSubdividedTriangles(settings, mesh, v2, v3, vx, c2, c3, cx, cms, intent, reporter);
}
else
{
Q_ASSERT(length12 == maxLength);
// We split line (v1, v2), create two triangles, (v1, v3, vx) and (v2, v3, vx), where
// vx is centerpoint of line (v1, v2). We also interpolate colors.
QPointF x = v12.center();
PDFColor cx = PDFAbstractColorSpace::mixColors(c1, c2, 0.5);
const uint32_t vx = mesh.addVertex(x);
addSubdividedTriangles(settings, mesh, v1, v3, vx, c1, c3, cx, cms, intent, reporter);
addSubdividedTriangles(settings, mesh, v2, v3, vx, c2, c3, cx, cms, intent, reporter);
}
}
else
{
const size_t colorComponents = c1.size();
// Calculate color - interpolate 3 vertex colors
PDFColor color;
color.resize(colorComponents);
constexpr const PDFReal coefficient = 1.0 / 3.0;
for (size_t i = 0; i < colorComponents; ++i)
{
color[i] = (c1[i] + c2[i] + c3[i]) * coefficient;
}
Q_ASSERT(colorComponents == m_colorSpace->getColorComponentCount());
QColor transformedColor = m_colorSpace->getColor(color, cms, intent, reporter, true);
PDFMesh::Triangle triangle;
triangle.v1 = v1;
triangle.v2 = v2;
triangle.v3 = v3;
triangle.color = transformedColor.rgb();
mesh.addTriangle(triangle);
}
}
QPointF PDFTensorPatch::getValue(PDFReal u, PDFReal v) const
{
return getValue(u, v, 0, 0);
}
QPointF PDFTensorPatch::getValue(PDFReal u, PDFReal v, int derivativeOrderU, int derivativeOrderV) const
{
QPointF result(0.0, 0.0);
for (int i = 0; i < 4; ++i)
{
for (int j = 0; j < 4; ++j)
{
result += m_P[i][j] * B(i, u, derivativeOrderU) * B(j, v, derivativeOrderV);
}
}
return result;
}
bool PDFTensorPatch::getUV(PDFReal& u, PDFReal& v, PDFReal x, PDFReal y, PDFReal epsilon, int maximalNumberOfSteps) const
{
// First we will text, if point (x, y) is in bounding rectangle of the patch.
// If it isn't, then return false immediately, because point is not in tensor patch.
if (!m_boundingBox.contains(x, y))
{
return false;
}
int i = 0;
// Jakub Melka: We are finding root of function F(u, v) defined as:
//
// F(u, v) = getValue(u, v) - (x, y)
//
// And using Newton-Raphson method to find the root
// v_n+1 = v_n - J^-1(v_n) * F(v_n)
//
// Where J^-1 is inverse of Jacobi matrix of the function F(u, v), defined as:
// dF1/du dF1/dv
// dF2/du dF2/dv
QPointF v_n(u, v);
QPointF p_xy(x, y);
while (i++ < maximalNumberOfSteps)
{
// Evaluate function at pivot
QPointF value_F_v_n = getValue(v_n.x(), v_n.y(), 0, 0) - p_xy;
// Do we actually converge?
if (qAbs(value_F_v_n.x()) < epsilon && qAbs(value_F_v_n.y()) < epsilon)
{
u = v_n.x();
v = v_n.y();
const bool uValid = u >= 0.0 && u <= 1.0;
const bool vValid = v >= 0.0 && v <= 1.0;
return uValid && vValid;
}
// Evaluate Jacobi matrix
QPointF dfdu = getValue(v_n.x(), v_n.y(), 1, 0);
QPointF dfdv = getValue(v_n.x(), v_n.y(), 0, 1);
const PDFReal m11 = dfdu.x();
const PDFReal m12 = dfdv.x();
const PDFReal m21 = dfdu.y();
const PDFReal m22 = dfdv.y();
// Create inverse of Jacobi matrix
const PDFReal determinant = m11 * m22 - m12 * m21;
if (qFuzzyIsNull(determinant))
{
// We did not converge, unfortunately, we are probably,
// in a stationary point.
return false;
}
const PDFReal inverseDeterminant = 1.0 / determinant;
const PDFReal im11 = m22 * inverseDeterminant;
const PDFReal im12 = -m12 * inverseDeterminant;
const PDFReal im21 = -m21 * inverseDeterminant;
const PDFReal im22 = m11 * inverseDeterminant;
QPointF imFirstRow(im11, im12);
QPointF imSecondRow(im21, im22);
QPointF delta(QPointF::dotProduct(imFirstRow, value_F_v_n), QPointF::dotProduct(imSecondRow, value_F_v_n));
v_n = v_n - delta;
}
return false;
}
PDFReal PDFTensorPatch::getCurvature_u(PDFReal u, PDFReal v) const
{
QPointF dSdu = getDerivative_u(u, v);
QPointF dSduu = getDerivative_uu(u, v);
PDFReal squaredLengthOfdSdu = QPointF::dotProduct(dSdu, dSdu);
if (qFuzzyIsNull(squaredLengthOfdSdu))
{
// We assume, that curvature, due to zero length of the tangent vector, is also zero
return 0.0;
}
// Well known formula, how to compute curvature of curve f(x):
// K = ( df/dx * df/dyy - df/dxx * df/dy ) / ( (df/dx)^2 + (df/dy)^2 ) ^ (3/2)
PDFReal curvature = std::fabs(dSdu.x() * dSduu.y() - dSdu.y() * dSduu.x()) / std::pow(squaredLengthOfdSdu, 1.5);
return curvature;
}
PDFReal PDFTensorPatch::getCurvature_v(PDFReal u, PDFReal v) const
{
QPointF dSdv = getDerivative_v(u, v);
QPointF dSdvv = getDerivative_vv(u, v);
PDFReal squaredLengthOfdSdv = QPointF::dotProduct(dSdv, dSdv);
if (qFuzzyIsNull(squaredLengthOfdSdv))
{
// We assume, that curvature, due to zero length of the tangent vector, is also zero
return 0.0;
}
// Well known formula, how to compute curvature of curve f(x):
// K = ( df/dx * df/dyy - df/dxx * df/dy ) / ( (df/dx)^2 + (df/dy)^2 ) ^ (3/2)
PDFReal curvature = std::fabs(dSdv.x() * dSdvv.y() - dSdv.y() * dSdvv.x()) / std::pow(squaredLengthOfdSdv, 1.5);
return curvature;
}
constexpr PDFReal PDFTensorPatch::B(int index, PDFReal t, int derivativeOrder)
{
switch (index)
{
case 0:
return B0(t, derivativeOrder);
case 1:
return B1(t, derivativeOrder);
case 2:
return B2(t, derivativeOrder);
case 3:
return B3(t, derivativeOrder);
default:
break;
}
return std::numeric_limits<PDFReal>::signaling_NaN();
}
constexpr PDFReal PDFTensorPatch::B0(PDFReal t, int derivative)
{
switch (derivative)
{
case 0:
return pow3(1.0 - t);
case 1:
return -3.0 * pow2(1.0 - t);
case 2:
return 6.0 * (1.0 - t);
case 3:
return -6.0;
default:
break;
}
return std::numeric_limits<PDFReal>::signaling_NaN();
}
constexpr PDFReal PDFTensorPatch::B1(PDFReal t, int derivative)
{
switch (derivative)
{
case 0:
return 3.0 * t * pow2(1.0 - t);
case 1:
return 9.0 * pow2(t) - 12.0 * t + 3.0;
case 2:
return 18.0 * t - 12.0;
case 3:
return 18.0;
}
return std::numeric_limits<PDFReal>::signaling_NaN();
}
constexpr PDFReal PDFTensorPatch::B2(PDFReal t, int derivative)
{
switch (derivative)
{
case 0:
return 3.0 * pow2(t) * (1.0 - t);
case 1:
return -9.0 * pow2(t) + 6.0 * t;
case 2:
return -18.0 * t + 6.0;
case 3:
return -18.0;
}
return std::numeric_limits<PDFReal>::signaling_NaN();
}
constexpr PDFReal PDFTensorPatch::B3(PDFReal t, int derivative)
{
switch (derivative)
{
case 0:
return pow3(t);
case 1:
return 3.0 * pow2(t);
case 2:
return 6.0 * t;
case 3:
return 6.0;
}
return std::numeric_limits<PDFReal>::signaling_NaN();
}
void PDFTensorPatch::computeBoundingRectangle()
{
PDFReal xMin = std::numeric_limits<PDFReal>::infinity();
PDFReal xMax = -xMin;
PDFReal yMin = xMin;
PDFReal yMax = xMax;
for (const auto& row : m_P)
{
for (const auto& point : row)
{
xMin = qMin(xMin, point.x());
xMax = qMax(xMax, point.x());
yMin = qMin(yMin, point.y());
yMax = qMax(yMax, point.y());
}
}
m_boundingBox = QRectF(xMin, yMin, xMax - xMin, yMax - yMin);
}
ShadingType PDFTensorProductPatchShading::getShadingType() const
{
return ShadingType::TensorProductPatchMesh;
}
PDFTensorPatches PDFTensorProductPatchShading::createPatches(QMatrix userSpaceToDeviceSpaceMatrix, bool transformColor) const
{
QMatrix patternSpaceToDeviceSpaceMatrix = getPatternSpaceToDeviceSpaceMatrix(userSpaceToDeviceSpaceMatrix);
size_t bitsPerPatch = m_bitsPerFlag + 16 * 2 * m_bitsPerCoordinate + 4 * m_colorComponentCount * m_bitsPerComponent;
size_t remainder = (8 - (bitsPerPatch % 8)) % 8;
bitsPerPatch += remainder;
size_t bytesPerPatch = bitsPerPatch / 8;
size_t patchCountEstimate = m_data.size() / bytesPerPatch;
const PDFReal vertexScaleRatio = 1.0 / double((static_cast<uint64_t>(1) << m_bitsPerCoordinate) - 1);
const PDFReal xScaleRatio = (m_xmax - m_xmin) * vertexScaleRatio;
const PDFReal yScaleRatio = (m_ymax - m_ymin) * vertexScaleRatio;
const PDFReal colorScaleRatio = 1.0 / double((static_cast<uint64_t>(1) << m_bitsPerComponent) - 1);
PDFTensorPatches patches;
patches.reserve(patchCountEstimate);
PDFBitReader reader(&m_data, 8);
auto readFlags = [this, &reader]() -> uint8_t
{
return reader.read(m_bitsPerFlag);
};
auto readPoint = [this, &reader, &patternSpaceToDeviceSpaceMatrix, xScaleRatio, yScaleRatio]() -> QPointF
{
const PDFReal x = m_xmin + (reader.read(m_bitsPerCoordinate)) * xScaleRatio;
const PDFReal y = m_ymin + (reader.read(m_bitsPerCoordinate)) * yScaleRatio;
return patternSpaceToDeviceSpaceMatrix.map(QPointF(x, y));
};
auto readColor = [this, &reader, colorScaleRatio, transformColor]() -> PDFColor
{
PDFColor color;
color.resize(m_colorComponentCount);
for (size_t i = 0; i < m_colorComponentCount; ++i)
{
const double cMin = m_limits[2 * i + 0];
const double cMax = m_limits[2 * i + 1];
color[i] = cMin + (reader.read(m_bitsPerComponent)) * (cMax - cMin) * colorScaleRatio;
}
return transformColor ? getColor(color) : color;
};
while (!reader.isAtEnd())
{
const uint8_t flags = readFlags();
switch (flags)
{
case 0:
{
PDFTensorPatch::PointMatrix P = { };
PDFTensorPatch::Colors colors = { };
P[0][0] = readPoint();
P[0][1] = readPoint();
P[0][2] = readPoint();
P[0][3] = readPoint();
P[1][3] = readPoint();
P[2][3] = readPoint();
P[3][3] = readPoint();
P[3][2] = readPoint();
P[3][1] = readPoint();
P[3][0] = readPoint();
P[2][0] = readPoint();
P[1][0] = readPoint();
P[1][1] = readPoint();
P[1][2] = readPoint();
P[2][2] = readPoint();
P[2][1] = readPoint();
colors[PDFTensorPatch::C_00] = readColor();
colors[PDFTensorPatch::C_03] = readColor();
colors[PDFTensorPatch::C_33] = readColor();
colors[PDFTensorPatch::C_30] = readColor();
patches.emplace_back(P, colors);
break;
}
case 1:
{
if (patches.empty())
{
throw PDFException(PDFTranslationContext::tr("Nonzero flag for first patch (flags = %1).").arg(flags));
}
const PDFTensorPatch& previousPatch = patches.back();
const PDFTensorPatch::PointMatrix& PPrevious = previousPatch.getP();
const PDFTensorPatch::Colors& colorsPrevious = previousPatch.getColors();
PDFTensorPatch::PointMatrix P = { };
PDFTensorPatch::Colors colors = { };
P[1][3] = readPoint();
P[2][3] = readPoint();
P[3][3] = readPoint();
P[3][2] = readPoint();
P[3][1] = readPoint();
P[3][0] = readPoint();
P[2][0] = readPoint();
P[1][0] = readPoint();
P[1][1] = readPoint();
P[1][2] = readPoint();
P[2][2] = readPoint();
P[2][1] = readPoint();
colors[PDFTensorPatch::C_33] = readColor();
colors[PDFTensorPatch::C_30] = readColor();
// Copy data from previous patch according the PDF specification:
P[0][0] = PPrevious[0][3];
P[0][1] = PPrevious[1][3];
P[0][2] = PPrevious[2][3];
P[0][3] = PPrevious[3][3];
colors[PDFTensorPatch::C_00] = colorsPrevious[PDFTensorPatch::C_03];
colors[PDFTensorPatch::C_03] = colorsPrevious[PDFTensorPatch::C_33];
patches.emplace_back(P, colors);
break;
}
case 2:
{
if (patches.empty())
{
throw PDFException(PDFTranslationContext::tr("Nonzero flag for first patch (flags = %1).").arg(flags));
}
const PDFTensorPatch& previousPatch = patches.back();
const PDFTensorPatch::PointMatrix& PPrevious = previousPatch.getP();
const PDFTensorPatch::Colors& colorsPrevious = previousPatch.getColors();
PDFTensorPatch::PointMatrix P = { };
PDFTensorPatch::Colors colors = { };
P[1][3] = readPoint();
P[2][3] = readPoint();
P[3][3] = readPoint();
P[3][2] = readPoint();
P[3][1] = readPoint();
P[3][0] = readPoint();
P[2][0] = readPoint();
P[1][0] = readPoint();
P[1][1] = readPoint();
P[1][2] = readPoint();
P[2][2] = readPoint();
P[2][1] = readPoint();
colors[PDFTensorPatch::C_33] = readColor();
colors[PDFTensorPatch::C_30] = readColor();
// Copy data from previous patch according the PDF specification:
P[0][0] = PPrevious[3][3];
P[0][1] = PPrevious[3][2];
P[0][2] = PPrevious[3][1];
P[0][3] = PPrevious[3][0];
colors[PDFTensorPatch::C_00] = colorsPrevious[PDFTensorPatch::C_33];
colors[PDFTensorPatch::C_03] = colorsPrevious[PDFTensorPatch::C_30];
patches.emplace_back(P, colors);
break;
}
case 3:
{
if (patches.empty())
{
throw PDFException(PDFTranslationContext::tr("Nonzero flag for first patch (flags = %1).").arg(flags));
}
const PDFTensorPatch& previousPatch = patches.back();
const PDFTensorPatch::PointMatrix& PPrevious = previousPatch.getP();
const PDFTensorPatch::Colors& colorsPrevious = previousPatch.getColors();
PDFTensorPatch::PointMatrix P = { };
PDFTensorPatch::Colors colors = { };
P[1][3] = readPoint();
P[2][3] = readPoint();
P[3][3] = readPoint();
P[3][2] = readPoint();
P[3][1] = readPoint();
P[3][0] = readPoint();
P[2][0] = readPoint();
P[1][0] = readPoint();
P[1][1] = readPoint();
P[1][2] = readPoint();
P[2][2] = readPoint();
P[2][1] = readPoint();
colors[PDFTensorPatch::C_33] = readColor();
colors[PDFTensorPatch::C_30] = readColor();
// Copy data from previous patch according the PDF specification:
P[0][0] = PPrevious[3][0];
P[0][1] = PPrevious[2][0];
P[0][2] = PPrevious[1][0];
P[0][3] = PPrevious[0][0];
colors[PDFTensorPatch::C_00] = colorsPrevious[PDFTensorPatch::C_30];
colors[PDFTensorPatch::C_03] = colorsPrevious[PDFTensorPatch::C_00];
patches.emplace_back(P, colors);
break;
}
default:
patches.clear();
return patches;
}
}
return patches;
}
PDFMesh PDFTensorProductPatchShading::createMesh(const PDFMeshQualitySettings& settings, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
PDFMesh mesh;
PDFTensorPatches patches = createPatches(settings.userSpaceToDeviceSpaceMatrix, true);
if (patches.empty())
{
throw PDFException(PDFTranslationContext::tr("Invalid data in tensor product patch shading."));
}
fillMesh(mesh, getPatternSpaceToDeviceSpaceMatrix(settings.userSpaceToDeviceSpaceMatrix), settings, patches, cms, intent, reporter);
return mesh;
}
struct PDFTensorProductPatchShadingBase::Triangle
{
std::array<QPointF, 3> uvCoordinates;
std::array<QPointF, 3> devicePoints;
QPointF getCenter() const
{
constexpr PDFReal coefficient = 1.0 / 3.0;
return (uvCoordinates[0] + uvCoordinates[1] + uvCoordinates[2]) * coefficient;
}
PDFReal getCurvature(const PDFTensorPatch& patch) const
{
QPointF uv = getCenter();
return patch.getCurvature_u(uv.x(), uv.y()) + patch.getCurvature_v(uv.x(), uv.y());
}
void fillTriangleDevicePoints(const PDFTensorPatch& patch)
{
Q_ASSERT(uvCoordinates.size() == devicePoints.size());
for (size_t i = 0; i < uvCoordinates.size(); ++i)
{
devicePoints[i] = patch.getValue(uvCoordinates[i].x(), uvCoordinates[i].y());
}
}
PDFReal getArea() const
{
const PDFReal x1 = devicePoints[0].x();
const PDFReal y1 = devicePoints[0].y();
const PDFReal x2 = devicePoints[1].x();
const PDFReal y2 = devicePoints[1].y();
const PDFReal x3 = devicePoints[2].x();
const PDFReal y3 = devicePoints[2].y();
// Use shoelace formula to determine the triangle area, see
// https://en.wikipedia.org/wiki/Shoelace_formula
return std::fabs(0.5 * (x1 * y2 + x2 * y3 + x3 * y1 - x2 * y1 - x3 * y2 - x1 * y3));
}
};
class PDFTensorPatchesSample : public PDFShadingSampler
{
public:
PDFTensorPatchesSample(const PDFTensorProductPatchShadingBase* shadingPattern, QMatrix userSpaceToDeviceSpaceMatrix) :
PDFShadingSampler(shadingPattern),
m_tensorProductShadingPattern(shadingPattern)
{
m_patches = shadingPattern->createPatches(userSpaceToDeviceSpaceMatrix, false);
std::reverse(m_patches.begin(), m_patches.end());
}
virtual bool sample(const QPointF& devicePoint, PDFColorBuffer outputBuffer, int limit) const override
{
constexpr PDFReal epsilon = 0.001;
std::array initialSamples = { QPointF(0.5, 0.5), // Middle of the patch
QPointF(0.0, 0.0), QPointF(1.0, 0.0), QPointF(0.0, 1.0), QPointF(1.0, 1.0), // Four corners
QPointF(0.5, 0.0), QPointF(0.5, 1.0), QPointF(0.0, 0.5), QPointF(1.0, 0.5) }; // Middle point of edges
for (const PDFTensorPatch& patch : m_patches)
{
PDFReal u = -1.0;
PDFReal v = -1.0;
for (const QPointF& initialSample : initialSamples)
{
PDFReal uSample = initialSample.x();
PDFReal vSample = initialSample.y();
if (patch.getUV(uSample, vSample, devicePoint.x(), devicePoint.y(), epsilon, limit))
{
// We have successfully retrieved u,v source for the target x,y point. But is it actually
// better than previous sample?
if (vSample > v || (qAbs(vSample - v) < epsilon && uSample > u))
{
u = uSample;
v = vSample;
}
}
}
if (u >= 0.0 && v >= 0.0)
{
const PDFTensorPatch::Colors& colors = patch.getColors();
const PDFColor& topLeft = colors[PDFTensorPatch::C_00];
const PDFColor& topRight = colors[PDFTensorPatch::C_30];
const PDFColor& bottomLeft = colors[PDFTensorPatch::C_03];
const PDFColor& bottomRight = colors[PDFTensorPatch::C_33];
PDFColor color;
color.resize(topLeft.size());
const size_t colorComponentCount = color.size();
for (size_t i = 0; i < colorComponentCount; ++i)
{
color[i] = topLeft[i] * (1.0 - u) * (1.0 - v) +
topRight[i] * u * (1.0 - v) +
bottomLeft[i] * (1.0 - u) * v +
bottomRight[i] * u * v;
}
PDFColor finalColor = m_tensorProductShadingPattern->getColor(color);
if (finalColor.size() != outputBuffer.size())
{
return false;
}
for (size_t i = 0; i < finalColor.size(); ++i)
{
outputBuffer[i] = finalColor[i];
}
return true;
}
}
return false;
}
private:
const PDFTensorProductPatchShadingBase* m_tensorProductShadingPattern;
PDFTensorPatches m_patches;
};
PDFShadingSampler* PDFTensorProductPatchShadingBase::createSampler(QMatrix userSpaceToDeviceSpaceMatrix) const
{
PDFTensorPatches patches = createPatches(userSpaceToDeviceSpaceMatrix, false);
if (patches.empty())
{
return nullptr;
}
return new PDFTensorPatchesSample(this, userSpaceToDeviceSpaceMatrix);
}
void PDFTensorProductPatchShadingBase::fillMesh(PDFMesh& mesh,
const PDFMeshQualitySettings& settings,
const PDFTensorPatch& patch,
const PDFCMS* cms,
RenderingIntent intent,
PDFRenderErrorReporter* reporter,
bool fastAlgorithm) const
{
// We implement algorithm similar to Ruppert's algorithm (see https://en.wikipedia.org/wiki/Ruppert%27s_algorithm), but
// we do not need a mesh for FEM calculation, so we do not care about quality of the triangles (we can have triangles with
// very small angles). We just need to meet these conditions:
//
// 1) Mesh is dense enough (to satisfy at least preferred mesh resolution)
// 2) Mesh is more dense, where it is deformed (high surface curvature)
// 3) Mesh will also correctly consider color interpolation
//
// We will determine maximum surface curvature of the surface (by evaluating test points - this is not reliable, but
// it will suffice), then start meshing. We must also handle case, when surface maximal curvature is almost zero - then it is
// probably a rectangle (or something like that). We cannot assume, that directions u,v are principal directions of the surface.
// So, we will use the sum of curvatures in two perpendicular directions - u,v and we will hope, that it will be OK and will be
// around mean surface curvature.
std::atomic<PDFReal> maximalCurvature(0.0);
if (!fastAlgorithm)
{
Q_ASSERT(settings.patchTestPoints > 2);
const PDFReal testPointScale = 1.0 / (settings.patchTestPoints - 1.0);
PDFIntegerRange<PDFInteger> range(0, settings.patchTestPoints * settings.patchTestPoints);
auto updateCurvature = [&](PDFInteger i)
{
PDFInteger row = i / settings.patchTestPoints;
PDFInteger column = i % settings.patchTestPoints;
const PDFReal u = column * testPointScale;
const PDFReal v = row * testPointScale;
const PDFReal curvature = patch.getCurvature_u(u, v) + patch.getCurvature_v(u, v);
// Atomically update the maximum curvature
PDFReal previousCurvature = maximalCurvature;
while (previousCurvature < curvature && !maximalCurvature.compare_exchange_weak(previousCurvature, curvature)) { }
};
std::for_each(range.begin(), range.end(), updateCurvature);
}
else
{
maximalCurvature = std::numeric_limits<PDFReal>::infinity();
}
auto getColorForUV = [&](PDFReal u, PDFReal v)
{
// Perform bilinear interpolation of colors, u is column, v is row
const PDFTensorPatch::Colors& colors = patch.getColors();
const PDFColor& topLeft = colors[PDFTensorPatch::C_00];
const PDFColor& topRight = colors[PDFTensorPatch::C_30];
const PDFColor& bottomLeft = colors[PDFTensorPatch::C_03];
const PDFColor& bottomRight = colors[PDFTensorPatch::C_33];
PDFColor top = PDFAbstractColorSpace::mixColors(topLeft, topRight, u);
PDFColor bottom = PDFAbstractColorSpace::mixColors(bottomLeft, bottomRight, u);
PDFColor interpolated = PDFAbstractColorSpace::mixColors(top, bottom, v);
return interpolated;
};
Triangle workStartA;
workStartA.uvCoordinates = { QPointF(0.0, 0.0), QPointF(1.0, 0.0), QPointF(0.0, 1.0) };
workStartA.fillTriangleDevicePoints(patch);
Triangle workStartB;
workStartB.uvCoordinates = { QPointF(1.0, 0.0), QPointF(1.0, 1.0), QPointF(0.0, 1.0) };
workStartB.fillTriangleDevicePoints(patch);
std::vector<Triangle> unfinishedTriangles = { workStartA, workStartB };
std::vector<Triangle> finishedTriangles;
while (!unfinishedTriangles.empty())
{
Triangle triangle = unfinishedTriangles.back();
unfinishedTriangles.pop_back();
// Should we divide the triangle? These conditions should be verified:
// 1) Largest edge of triangle in device space exceeds preferred size of mesh
// 2) Curvature of the triangle is too high (and largest edge doesn't exceed minimal size of mesh)
// 3) Color difference is too high (and largest edge doesn't exceed minimal size of mesh)
// First, verify, if we can subdivide the triangle
QLineF deviceLine01(triangle.devicePoints[0], triangle.devicePoints[1]);
QLineF deviceLine02(triangle.devicePoints[0], triangle.devicePoints[2]);
QLineF deviceLine12(triangle.devicePoints[1], triangle.devicePoints[2]);
const qreal length01 = deviceLine01.length();
const qreal length02 = deviceLine02.length();
const qreal length12 = deviceLine12.length();
const qreal maxLength = qMax(length01, qMax(length02, length12));
const PDFReal curvature = triangle.getCurvature(patch);
const PDFReal curvatureRatio = curvature / maximalCurvature;
// Calculate target length
PDFReal targetLength = settings.preferredMeshResolution;
if (curvatureRatio <= settings.patchResolutionMappingRatioLow)
{
Q_ASSERT(targetLength == settings.preferredMeshResolution);
}
else if (curvatureRatio >= settings.patchResolutionMappingRatioHigh)
{
targetLength = settings.minimalMeshResolution;
}
else
{
targetLength = interpolate(curvatureRatio, settings.patchResolutionMappingRatioLow, settings.patchResolutionMappingRatioHigh, settings.preferredMeshResolution, settings.minimalMeshResolution);
}
const PDFColor c0 = getColorForUV(triangle.uvCoordinates[0].x(), triangle.uvCoordinates[0].y());
const PDFColor c1 = getColorForUV(triangle.uvCoordinates[1].x(), triangle.uvCoordinates[1].y());
const PDFColor c2 = getColorForUV(triangle.uvCoordinates[2].x(), triangle.uvCoordinates[2].y());
const bool isColorEqual = PDFAbstractColorSpace::isColorEqual(c0, c1, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(c0, c2, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(c1, c2, settings.tolerance);
const bool canSubdivide = maxLength >= settings.minimalMeshResolution * 2.0; // If we subdivide, we will have length at least settings.minimalMeshResolution
const bool shouldSubdivide = maxLength >= targetLength;
if ((!isColorEqual || shouldSubdivide) && canSubdivide)
{
QPointF v0 = triangle.uvCoordinates[0];
QPointF v1 = triangle.uvCoordinates[1];
QPointF v2 = triangle.uvCoordinates[2];
QLineF v12uv(v1, v2);
QLineF v02uv(v0, v2);
QLineF v01uv(v0, v1);
QPointF v12 = v12uv.center();
QPointF v02 = v02uv.center();
QPointF v01 = v01uv.center();
addTriangle(unfinishedTriangles, patch, { v0, v01, v02 });
addTriangle(unfinishedTriangles, patch, { v1, v01, v12 });
addTriangle(unfinishedTriangles, patch, { v2, v02, v12 });
addTriangle(unfinishedTriangles, patch, { v01, v02, v12 });
}
else
{
finishedTriangles.emplace_back(qMove(triangle));
}
}
Q_ASSERT(unfinishedTriangles.empty());
// Sort the triangles according the standard (first is v direction, then u direction)
auto comparator = [](const Triangle& left, const Triangle& right)
{
QPointF leftCenter = left.getCenter();
QPointF rightCenter = right.getCenter();
return std::pair(leftCenter.y(), leftCenter.x()) < std::pair(rightCenter.y(), rightCenter.x());
};
PDFExecutionPolicy::sort(PDFExecutionPolicy::Scope::Content, finishedTriangles.begin(), finishedTriangles.end(), comparator);
std::vector<QPointF> vertices;
std::vector<PDFMesh::Triangle> triangles;
vertices.reserve(finishedTriangles.size() * 3);
triangles.reserve(finishedTriangles.size());
size_t vertexIndex = 0;
for (const Triangle& triangle : finishedTriangles)
{
vertices.push_back(triangle.devicePoints[0]);
vertices.push_back(triangle.devicePoints[1]);
vertices.push_back(triangle.devicePoints[2]);
QPointF center = triangle.getCenter();
PDFColor color = getColorForUV(center.x(), center.y());
QRgb rgbColor = m_colorSpace->getColor(color, cms, intent, reporter, true).rgb();
PDFMesh::Triangle meshTriangle;
meshTriangle.v1 = static_cast<uint32_t>(vertexIndex++);
meshTriangle.v2 = static_cast<uint32_t>(vertexIndex++);
meshTriangle.v3 = static_cast<uint32_t>(vertexIndex++);
meshTriangle.color = rgbColor;
triangles.push_back(meshTriangle);
}
mesh.addMesh(qMove(vertices), qMove(triangles));
}
void PDFTensorProductPatchShadingBase::fillMesh(PDFMesh& mesh,
const QMatrix& patternSpaceToDeviceSpaceMatrix,
const PDFMeshQualitySettings& settings,
const PDFTensorPatches& patches,
const PDFCMS* cms,
RenderingIntent intent,
PDFRenderErrorReporter* reporter) const
{
const bool fastAlgorithm = patches.size() > 16;
for (const auto& patch : patches)
{
fillMesh(mesh, settings, patch, cms, intent, reporter, fastAlgorithm);
}
// Create bounding path
if (m_boundingBox.isValid())
{
QPainterPath boundingPath;
boundingPath.addPolygon(patternSpaceToDeviceSpaceMatrix.map(m_boundingBox));
mesh.setBoundingPath(boundingPath);
}
if (m_backgroundColor.isValid())
{
QPainterPath path;
path.addRect(settings.deviceSpaceMeshingArea);
mesh.setBackgroundPath(path);
mesh.setBackgroundColor(m_backgroundColor);
}
}
void PDFTensorProductPatchShadingBase::addTriangle(std::vector<Triangle>& triangles, const PDFTensorPatch& patch, std::array<QPointF, 3> uvCoordinates)
{
Q_ASSERT(uvCoordinates[0] != uvCoordinates[1] && uvCoordinates[1] != uvCoordinates[2]);
Triangle triangle;
triangle.uvCoordinates = uvCoordinates;
triangle.fillTriangleDevicePoints(patch);
triangles.push_back(triangle);
}
ShadingType PDFCoonsPatchShading::getShadingType() const
{
return ShadingType::CoonsPatchMesh;
}
PDFTensorPatches PDFCoonsPatchShading::createPatches(QMatrix userSpaceToDeviceSpaceMatrix, bool transformColor) const
{
QMatrix patternSpaceToDeviceSpaceMatrix = getPatternSpaceToDeviceSpaceMatrix(userSpaceToDeviceSpaceMatrix);
size_t bitsPerPatch = m_bitsPerFlag + 16 * 2 * m_bitsPerCoordinate + 4 * m_colorComponentCount * m_bitsPerComponent;
size_t remainder = (8 - (bitsPerPatch % 8)) % 8;
bitsPerPatch += remainder;
size_t bytesPerPatch = bitsPerPatch / 8;
size_t patchCountEstimate = m_data.size() / bytesPerPatch;
const PDFReal vertexScaleRatio = 1.0 / double((static_cast<uint64_t>(1) << m_bitsPerCoordinate) - 1);
const PDFReal xScaleRatio = (m_xmax - m_xmin) * vertexScaleRatio;
const PDFReal yScaleRatio = (m_ymax - m_ymin) * vertexScaleRatio;
const PDFReal colorScaleRatio = 1.0 / double((static_cast<uint64_t>(1) << m_bitsPerComponent) - 1);
PDFTensorPatches patches;
patches.reserve(patchCountEstimate);
PDFBitReader reader(&m_data, 8);
auto readFlags = [this, &reader]() -> uint8_t
{
return reader.read(m_bitsPerFlag);
};
auto readPoint = [this, &reader, &patternSpaceToDeviceSpaceMatrix, xScaleRatio, yScaleRatio]() -> QPointF
{
const PDFReal x = m_xmin + (reader.read(m_bitsPerCoordinate)) * xScaleRatio;
const PDFReal y = m_ymin + (reader.read(m_bitsPerCoordinate)) * yScaleRatio;
return patternSpaceToDeviceSpaceMatrix.map(QPointF(x, y));
};
auto readColor = [this, &reader, colorScaleRatio, transformColor]() -> PDFColor
{
PDFColor color;
color.resize(m_colorComponentCount);
for (size_t i = 0; i < m_colorComponentCount; ++i)
{
const double cMin = m_limits[2 * i + 0];
const double cMax = m_limits[2 * i + 1];
color[i] = cMin + (reader.read(m_bitsPerComponent)) * (cMax - cMin) * colorScaleRatio;
}
return transformColor ? getColor(color) : color;
};
std::array<QPointF, 12> vertices;
std::array<PDFColor, 4> colors;
auto createTensorPatch = [&]
{
// Jakub Melka: please see following pictures, in PDF 1.7 specification, figures 4.22 and 4.24.
// We copy the control points to the tensor patch in the appropriate order.
//
// P_13 P_23 V_5 V_6
// / \ / \
// P_03/ \ P_33 V_4/ \ V_7
// |-----------------------------| |-----------------------------|
// / | |\ / | C_2 C_3 |\
// / | | \ / | | \
// P_02 | | P_32 V_3 | | V_8
// | P_12 P_22 | | |
// | | | |
// | | | |
// | | | |
// | P_11 P_21 | | |
// | | | |
// P_01 | | P_31 V_2 | | V_9
// \ | | / \ | | /
// \ | |/ \ | C_1 C_4 |/
// |-----------------------------| |-----------------------------|
// P_00 \ / P_30 V_1 \ / V_10
// \ / \ /
// P_10 P_20 V_12 V_11
PDFTensorPatch::PointMatrix P;
PDFTensorPatch::Colors tensorColors;
P[0][0] = vertices[0];
P[0][1] = vertices[1];
P[0][2] = vertices[2];
P[0][3] = vertices[3];
P[1][3] = vertices[4];
P[2][3] = vertices[5];
P[3][3] = vertices[6];
P[3][2] = vertices[7];
P[3][1] = vertices[8];
P[3][0] = vertices[9];
P[2][0] = vertices[10];
P[1][0] = vertices[11];
auto computeTensorInterior = [](QPointF p1, QPointF p2, QPointF p3, QPointF p4, QPointF p5, QPointF p6, QPointF p7, QPointF p8)
{
return (-4.0 * p1 + 6.0 * (p2 + p3) - 2.0 * (p4 + p5) + 3.0 * (p6 + p7) - p8) / 9.0;
};
P[1][1] = computeTensorInterior(P[0][0], P[0][1], P[1][0], P[0][3], P[3][0], P[3][1], P[1][3], P[3][3]);
P[1][2] = computeTensorInterior(P[0][3], P[0][2], P[1][3], P[0][0], P[3][3], P[3][2], P[1][0], P[3][0]);
P[2][1] = computeTensorInterior(P[3][0], P[3][1], P[2][0], P[3][3], P[3][0], P[0][1], P[2][3], P[0][3]);
P[2][2] = computeTensorInterior(P[3][3], P[3][2], P[2][3], P[3][0], P[0][3], P[0][2], P[2][0], P[0][0]);
tensorColors[PDFTensorPatch::C_00] = colors[0];
tensorColors[PDFTensorPatch::C_03] = colors[1];
tensorColors[PDFTensorPatch::C_33] = colors[2];
tensorColors[PDFTensorPatch::C_30] = colors[3];
patches.emplace_back(P, tensorColors);
};
auto readPatchesFlag123 = [&]
{
for (size_t i = 4; i < vertices.size(); ++i)
{
vertices[i] = readPoint();
}
colors[2] = readColor();
colors[3] = readColor();
};
while (!reader.isAtEnd())
{
const uint8_t flags = readFlags();
switch (flags)
{
case 0:
{
// New Coons patch
for (size_t i = 0; i < vertices.size(); ++i)
{
vertices[i] = readPoint();
}
for (size_t i = 0; i < colors.size(); ++i)
{
colors[i] = readColor();
}
createTensorPatch();
break;
}
case 1:
{
vertices[0] = vertices[3];
vertices[1] = vertices[4];
vertices[2] = vertices[5];
vertices[3] = vertices[6];
colors[0] = colors[1];
colors[1] = colors[2];
readPatchesFlag123();
createTensorPatch();
break;
}
case 2:
{
vertices[0] = vertices[6];
vertices[1] = vertices[7];
vertices[2] = vertices[8];
vertices[3] = vertices[9];
colors[0] = colors[2];
colors[1] = colors[3];
readPatchesFlag123();
createTensorPatch();
break;
}
case 3:
{
vertices[3] = vertices[0];
vertices[0] = vertices[9];
vertices[1] = vertices[10];
vertices[2] = vertices[11];
colors[1] = colors[0];
colors[0] = colors[3];
readPatchesFlag123();
createTensorPatch();
break;
}
default:
// This is error, clear patches and return
patches.clear();
return patches;
}
}
return patches;
}
PDFMesh PDFCoonsPatchShading::createMesh(const PDFMeshQualitySettings& settings, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
PDFMesh mesh;
PDFTensorPatches patches = createPatches(settings.userSpaceToDeviceSpaceMatrix, true);
if (patches.empty())
{
throw PDFException(PDFTranslationContext::tr("Invalid data in coons patch shading."));
}
fillMesh(mesh, getPatternSpaceToDeviceSpaceMatrix(settings), settings, patches, cms, intent, reporter);
return mesh;
}
bool PDFShadingSampler::fillBackgroundColor(PDFColorBuffer outputBuffer) const
{
const auto& originalBackgroundColor = m_pattern->getOriginalBackgroundColor();
if (originalBackgroundColor.size() == outputBuffer.size())
{
for (size_t i = 0; i < outputBuffer.size(); ++i)
{
outputBuffer[i] = originalBackgroundColor[i];
}
return true;
}
return false;
}
} // namespace pdf