Function type shading - finish

This commit is contained in:
Jakub Melka
2019-09-08 18:11:09 +02:00
parent 06d08df83e
commit f36882cfc8
2 changed files with 259 additions and 160 deletions

View File

@ -99,6 +99,12 @@ PDFPatternPtr PDFPattern::createShadingPattern(const PDFDictionary* colorSpaceDi
// Parse common data for all shadings
PDFColorSpacePointer colorSpace = PDFAbstractColorSpace::createColorSpace(colorSpaceDictionary, document, shadingDictionary->get("ColorSpace"));
if (colorSpace->getPattern())
{
throw PDFParserException(PDFTranslationContext::tr("Pattern color space is not valid for shading patterns."));
}
QColor backgroundColor;
if (!ignoreBackgroundColor)
{
@ -255,162 +261,100 @@ PDFMesh PDFFunctionShading::createMesh(const PDFMeshQualitySettings& settings) c
QLineF leftLineDS = domainToDeviceSpaceMatrix.map(leftLine);
const size_t colorComponents = m_colorSpace->getColorComponentCount();
const PDFReal resolution = settings.preferredMeshResolution;
auto resolutions = { settings.preferredMeshResolution,
interpolate(0.25, 0.0, 1.0, settings.preferredMeshResolution, settings.minimalMeshResolution),
interpolate(0.50, 0.0, 1.0, settings.preferredMeshResolution, settings.minimalMeshResolution),
interpolate(0.75, 0.0, 1.0, settings.preferredMeshResolution, settings.minimalMeshResolution),
settings.minimalMeshResolution
};
const PDFReal xSteps = qMax(std::floor(topLineDS.length() / resolution), 2.0);
const PDFReal ySteps = qMax(std::floor(leftLineDS.length() / resolution), 2.0);
const PDFReal xStep = 1.0 / xSteps;
const PDFReal yStep = 1.0 / ySteps;
// Prepare x/y ordinates array for given resolution
std::vector<PDFReal> xOrdinates;
std::vector<PDFReal> yOrdinates;
xOrdinates.reserve(xSteps + 1);
yOrdinates.reserve(ySteps + 1);
for (PDFReal x = 0.0; x <= 1.0; x += xStep)
for (PDFReal resolution : resolutions)
{
xOrdinates.push_back(x);
}
if (xOrdinates.back() + PDF_EPSILON >= 1.0)
{
xOrdinates.pop_back();
}
xOrdinates.push_back(1.0);
const PDFReal xSteps = qMax(std::floor(topLineDS.length() / resolution), 2.0);
const PDFReal ySteps = qMax(std::floor(leftLineDS.length() / resolution), 2.0);
const PDFReal xStep = 1.0 / xSteps;
const PDFReal yStep = 1.0 / ySteps;
for (PDFReal y = 0.0; y <= 1.0; y += yStep)
{
yOrdinates.push_back(y);
}
if (yOrdinates.back() + PDF_EPSILON >= 1.0)
{
yOrdinates.pop_back();
}
yOrdinates.push_back(1.0);
// Prepare x/y ordinates array for given resolution
std::vector<PDFReal> xOrdinates;
std::vector<PDFReal> yOrdinates;
xOrdinates.reserve(xSteps + 1);
yOrdinates.reserve(ySteps + 1);
// We have determined x/y ordinates. Now we must create result array with colors,
// which for each x/y ordinate tells us, what color in the given position is.
const size_t rowCount = yOrdinates.size();
const size_t columnCount = xOrdinates.size();
const size_t nodesCount = rowCount * columnCount;
const size_t stride = columnCount * colorComponents;
std::vector<size_t> indices;
indices.resize(nodesCount, 0);
std::iota(indices.begin(), indices.end(), 0);
auto indexToRowColumn = [columnCount](size_t index) -> std::pair<size_t, size_t>
{
return std::make_pair(index / columnCount, index % columnCount);
};
auto rowColumnToIndex = [columnCount](size_t row, size_t column) -> size_t
{
return row * columnCount + column;
};
auto rowColumnToFirstColorComponent = [stride, colorComponents](size_t row, size_t column) -> size_t
{
return row * stride + column * colorComponents;
};
const bool isSingleFunction = m_functions.size() == 1;
std::vector<PDFReal> sourceColorBuffer;
sourceColorBuffer.resize(indices.size() * colorComponents, 0.0);
std::vector<QPointF> gridPoints;
gridPoints.resize(nodesCount);
QMutex functionErrorMutex;
PDFFunction::FunctionResult functionError(true);
auto setColor = [&](size_t index)
{
auto [row, column] = indexToRowColumn(index);
QPointF nodeDS = topLineDS.pointAt(xOrdinates[column]) + leftLineDS.pointAt(yOrdinates[row]) - topLineDS.p1();
QPointF node = deviceSpaceToDomainMatrix.map(nodeDS);
const size_t colorComponentIndex = rowColumnToFirstColorComponent(row, column);
Q_ASSERT(colorComponentIndex <= sourceColorBuffer.size());
gridPoints[index] = nodeDS;
PDFReal* sourceColorBegin = sourceColorBuffer.data() + colorComponentIndex;
PDFReal* sourceColorEnd = sourceColorBegin + colorComponents;
std::array<PDFReal, 2> uv = { node.x(), node.y() };
if (isSingleFunction)
for (PDFReal x = 0.0; x <= 1.0; x += xStep)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(uv.data(), uv.data() + uv.size(), sourceColorBegin, sourceColorEnd);
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
if (!functionError)
{
functionError = result;
}
}
xOrdinates.push_back(x);
}
else
if (xOrdinates.back() + PDF_EPSILON >= 1.0)
{
for (size_t i = 0, count = colorComponents; i < count; ++i)
{
PDFFunction::FunctionResult result = m_functions[i]->apply(uv.data(), uv.data() + uv.size(), sourceColorBegin + i, sourceColorBegin + i + 1);
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
if (!functionError)
{
functionError = result;
}
}
}
xOrdinates.pop_back();
}
};
xOrdinates.push_back(1.0);
std::for_each(std::execution::parallel_policy(), indices.cbegin(), indices.cend(), setColor);
if (!functionError)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh generation of shading: %1").arg(functionError.errorMessage));
}
std::vector<QRgb> colors;
colors.resize(rowCount * columnCount, QRgb());
mesh.setVertices(qMove(gridPoints));
std::vector<PDFMesh::Triangle> triangles;
triangles.resize((rowCount - 1) * (columnCount - 1) * 2);
auto generateTriangle = [&](size_t index)
{
auto [row, column] = indexToRowColumn(index);
if (row == 0 || column == 0)
for (PDFReal y = 0.0; y <= 1.0; y += yStep)
{
return;
yOrdinates.push_back(y);
}
Q_ASSERT(index == rowColumnToIndex(row, column));
const size_t triangleIndex1 = ((row - 1) * (columnCount - 1) + column - 1) * 2;
const size_t triangleIndex2 = triangleIndex1 + 1;
const size_t v1 = rowColumnToIndex(row - 1, column - 1);
const size_t v2 = rowColumnToIndex(row - 1, column);
const size_t v3 = index;
const size_t v4 = rowColumnToIndex(row, column - 1);
std::vector<PDFReal> colorBuffer;
colorBuffer.resize(colorComponents, 0.0);
auto calculateColor = [&](const PDFMesh::Triangle& triangle)
if (yOrdinates.back() + PDF_EPSILON >= 1.0)
{
QPointF centerDS = mesh.getTriangleCenter(triangle);
QPointF center = deviceSpaceToDomainMatrix.map(centerDS);
yOrdinates.pop_back();
}
yOrdinates.push_back(1.0);
std::array<PDFReal, 2> uv = { center.x(), center.y() };
// We have determined x/y ordinates. Now we must create result array with colors,
// which for each x/y ordinate tells us, what color in the given position is.
const size_t rowCount = yOrdinates.size();
const size_t columnCount = xOrdinates.size();
const size_t nodesCount = rowCount * columnCount;
const size_t stride = columnCount * colorComponents;
std::vector<size_t> indices;
indices.resize(nodesCount, 0);
std::iota(indices.begin(), indices.end(), 0);
auto indexToRowColumn = [columnCount](size_t index) -> std::pair<size_t, size_t>
{
return std::make_pair(index / columnCount, index % columnCount);
};
auto rowColumnToIndex = [columnCount](size_t row, size_t column) -> size_t
{
return row * columnCount + column;
};
auto rowColumnToFirstColorComponent = [stride, colorComponents](size_t row, size_t column) -> size_t
{
return row * stride + column * colorComponents;
};
const bool isSingleFunction = m_functions.size() == 1;
std::vector<PDFReal> sourceColorBuffer;
sourceColorBuffer.resize(indices.size() * colorComponents, 0.0);
std::vector<QPointF> gridPoints;
gridPoints.resize(nodesCount);
QMutex functionErrorMutex;
PDFFunction::FunctionResult functionError(true);
auto setColor = [&](size_t index)
{
auto [row, column] = indexToRowColumn(index);
QPointF nodeDS = topLineDS.pointAt(xOrdinates[column]) + leftLineDS.pointAt(yOrdinates[row]) - topLineDS.p1();
QPointF node = deviceSpaceToDomainMatrix.map(nodeDS);
const size_t colorComponentIndex = rowColumnToFirstColorComponent(row, column);
Q_ASSERT(colorComponentIndex <= sourceColorBuffer.size());
gridPoints[index] = nodeDS;
PDFReal* sourceColorBegin = sourceColorBuffer.data() + colorComponentIndex;
PDFReal* sourceColorEnd = sourceColorBegin + colorComponents;
std::array<PDFReal, 2> uv = { node.x(), node.y() };
if (isSingleFunction)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(uv.data(), uv.data() + uv.size(), colorBuffer.data(), colorBuffer.data() + colorBuffer.size());
PDFFunction::FunctionResult result = m_functions.front()->apply(uv.data(), uv.data() + uv.size(), sourceColorBegin, sourceColorEnd);
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
@ -424,7 +368,7 @@ PDFMesh PDFFunctionShading::createMesh(const PDFMeshQualitySettings& settings) c
{
for (size_t i = 0, count = colorComponents; i < count; ++i)
{
PDFFunction::FunctionResult result = m_functions[i]->apply(uv.data(), uv.data() + uv.size(), colorBuffer.data() + i, colorBuffer.data() + i + 1);
PDFFunction::FunctionResult result = m_functions[i]->apply(uv.data(), uv.data() + uv.size(), sourceColorBegin + i, sourceColorBegin + i + 1);
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
@ -435,31 +379,162 @@ PDFMesh PDFFunctionShading::createMesh(const PDFMeshQualitySettings& settings) c
}
}
}
return m_colorSpace->getColor(PDFAbstractColorSpace::convertToColor(colorBuffer));
};
PDFMesh::Triangle triangle1;
triangle1.v1 = static_cast<uint32_t>(v1);
triangle1.v2 = static_cast<uint32_t>(v2);
triangle1.v3 = static_cast<uint32_t>(v3);
triangle1.color = calculateColor(triangle1).rgb();
std::for_each(std::execution::parallel_policy(), indices.cbegin(), indices.cend(), setColor);
PDFMesh::Triangle triangle2;
triangle2.v1 = static_cast<uint32_t>(v3);
triangle2.v2 = static_cast<uint32_t>(v4);
triangle2.v3 = static_cast<uint32_t>(v1);
triangle2.color = calculateColor(triangle2).rgb();
if (!functionError)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh generation of shading: %1").arg(functionError.errorMessage));
}
triangles[triangleIndex1] = triangle1;
triangles[triangleIndex2] = triangle2;
};
std::for_each(std::execution::parallel_policy(), indices.cbegin(), indices.cend(), generateTriangle);
mesh.setTriangles(qMove(triangles));
// Check the colors, if mesh is bad, then refine it
std::atomic_bool isMeshOK = true;
auto validateMesh = [&](size_t index)
{
if (!isMeshOK.load(std::memory_order_relaxed))
{
return;
}
if (!functionError)
auto [row, column] = indexToRowColumn(index);
const size_t colorComponentIndex = rowColumnToFirstColorComponent(row, column);
// Check, if color left doesn't differ too much
if (column > 0)
{
const size_t colorOtherComponentIndex = rowColumnToFirstColorComponent(row, column - 1);
for (size_t i = 0; i < colorComponents; ++i)
{
if (std::fabs(sourceColorBuffer[colorComponentIndex + i] - sourceColorBuffer[colorOtherComponentIndex + i]) > settings.tolerance)
{
isMeshOK.store(std::memory_order_relaxed);
return;
}
}
}
if (row > 0)
{
const size_t colorOtherComponentIndex = rowColumnToFirstColorComponent(row - 1, column);
for (size_t i = 0; i < colorComponents; ++i)
{
if (std::fabs(sourceColorBuffer[colorComponentIndex + i] - sourceColorBuffer[colorOtherComponentIndex + i]) > settings.tolerance)
{
isMeshOK.store(std::memory_order_relaxed);
return;
}
}
}
};
std::for_each(std::execution::parallel_policy(), indices.cbegin(), indices.cend(), validateMesh);
if (!isMeshOK && resolution != settings.minimalMeshResolution)
{
continue;
}
// Now, we are ready to generate the mesh
std::vector<QRgb> colors;
colors.resize(rowCount * columnCount, QRgb());
mesh.setVertices(qMove(gridPoints));
std::vector<PDFMesh::Triangle> triangles;
triangles.resize((rowCount - 1) * (columnCount - 1) * 2);
auto generateTriangle = [&](size_t index)
{
auto [row, column] = indexToRowColumn(index);
if (row == 0 || column == 0)
{
return;
}
Q_ASSERT(index == rowColumnToIndex(row, column));
const size_t triangleIndex1 = ((row - 1) * (columnCount - 1) + column - 1) * 2;
const size_t triangleIndex2 = triangleIndex1 + 1;
const size_t v1 = rowColumnToIndex(row - 1, column - 1);
const size_t v2 = rowColumnToIndex(row - 1, column);
const size_t v3 = index;
const size_t v4 = rowColumnToIndex(row, column - 1);
std::vector<PDFReal> colorBuffer;
colorBuffer.resize(colorComponents, 0.0);
auto calculateColor = [&](const PDFMesh::Triangle& triangle)
{
QPointF centerDS = mesh.getTriangleCenter(triangle);
QPointF center = deviceSpaceToDomainMatrix.map(centerDS);
std::array<PDFReal, 2> uv = { center.x(), center.y() };
if (isSingleFunction)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(uv.data(), uv.data() + uv.size(), colorBuffer.data(), colorBuffer.data() + colorBuffer.size());
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
if (!functionError)
{
functionError = result;
}
}
}
else
{
for (size_t i = 0, count = colorComponents; i < count; ++i)
{
PDFFunction::FunctionResult result = m_functions[i]->apply(uv.data(), uv.data() + uv.size(), colorBuffer.data() + i, colorBuffer.data() + i + 1);
if (!result)
{
QMutexLocker lock(&functionErrorMutex);
if (!functionError)
{
functionError = result;
}
}
}
}
return m_colorSpace->getColor(PDFAbstractColorSpace::convertToColor(colorBuffer));
};
PDFMesh::Triangle triangle1;
triangle1.v1 = static_cast<uint32_t>(v1);
triangle1.v2 = static_cast<uint32_t>(v2);
triangle1.v3 = static_cast<uint32_t>(v3);
triangle1.color = calculateColor(triangle1).rgb();
PDFMesh::Triangle triangle2;
triangle2.v1 = static_cast<uint32_t>(v3);
triangle2.v2 = static_cast<uint32_t>(v4);
triangle2.v3 = static_cast<uint32_t>(v1);
triangle2.color = calculateColor(triangle2).rgb();
triangles[triangleIndex1] = triangle1;
triangles[triangleIndex2] = triangle2;
};
std::for_each(std::execution::parallel_policy(), indices.cbegin(), indices.cend(), generateTriangle);
mesh.setTriangles(qMove(triangles));
if (!functionError)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh generation of shading: %1").arg(functionError.errorMessage));
}
break;
}
if (m_backgroundColor.isValid())
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh generation of shading: %1").arg(functionError.errorMessage));
QPainterPath backgroundPath;
backgroundPath.addRect(settings.deviceSpaceMeshingArea);
QPainterPath paintedPath;
paintedPath.addPolygon(domainToDeviceSpaceMatrix.map(m_domain));
backgroundPath = backgroundPath.subtracted(paintedPath);
mesh.setBackgroundPath(backgroundPath);
mesh.setBackgroundColor(m_backgroundColor);
}
// Create bounding path
@ -714,6 +789,12 @@ void PDFMesh::paint(QPainter* painter) const
painter->setClipPath(m_boundingPath, Qt::IntersectClip);
}
if (!m_backgroundPath.isEmpty() && m_backgroundColor.isValid())
{
painter->setBrush(QBrush(m_backgroundColor, Qt::SolidPattern));
painter->drawPath(m_backgroundPath);
}
QColor color;
// Draw all triangles
@ -741,6 +822,7 @@ void PDFMesh::transform(const QMatrix& matrix)
}
m_boundingPath = matrix.map(m_boundingPath);
m_backgroundPath = matrix.map(m_backgroundPath);
}
QPointF PDFMesh::getTriangleCenter(const PDFMesh::Triangle& triangle) const

View File

@ -127,7 +127,12 @@ public:
const QPainterPath& getBoundingPath() const { return m_boundingPath; }
void setBoundingPath(const QPainterPath& path) { m_boundingPath = path; }
/// Sets the vertex array to the mesh
/// \param vertices New vertex array
void setVertices(std::vector<QPointF>&& vertices) { m_vertices = qMove(vertices); }
/// Sets the triangle array to the mesh
/// \param triangles New triangle array
void setTriangles(std::vector<Triangle>&& triangles) { m_triangles = qMove(triangles); }
/// Returns vertex at given index
@ -138,10 +143,22 @@ public:
/// \param triangle Triangle
QPointF getTriangleCenter(const Triangle& triangle) const;
/// Sets the background path. In order to draw background properly, the background
/// color must be set to a valid color.
/// \param path Background path
void setBackgroundPath(QPainterPath path) { m_backgroundPath = qMove(path); }
/// Sets the background color (background path is then painted with this color, if it is not
/// empty), if color is invalid, it turns off background painting.
/// \param backgroundColor Background color
void setBackgroundColor(QColor backgroundColor) { m_backgroundColor = backgroundColor; }
private:
std::vector<QPointF> m_vertices;
std::vector<Triangle> m_triangles;
QPainterPath m_boundingPath;
QPainterPath m_backgroundPath;
QColor m_backgroundColor;
};
/// Represents tiling/shading pattern