PDF4QT/PdfForQtLib/sources/pdfpattern.cpp

475 lines
18 KiB
C++
Raw Normal View History

2019-08-25 18:16:37 +02:00
// Copyright (C) 2019 Jakub Melka
//
// This file is part of PdfForQt.
//
// PdfForQt is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// PdfForQt is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with PDFForQt. If not, see <https://www.gnu.org/licenses/>.
#include "pdfpattern.h"
#include "pdfdocument.h"
#include "pdfexception.h"
2019-08-31 14:37:18 +02:00
#include "pdfutils.h"
#include "pdfcolorspaces.h"
#include <QPainter>
2019-08-25 18:16:37 +02:00
namespace pdf
{
PatternType PDFShadingPattern::getType() const
{
return PatternType::Shading;
}
ShadingType PDFAxialShading::getShadingType() const
{
return ShadingType::Axial;
}
PDFPatternPtr PDFPattern::createPattern(const PDFDictionary* colorSpaceDictionary, const PDFDocument* document, const PDFObject& object)
{
const PDFObject& dereferencedObject = document->getObject(object);
if (dereferencedObject.isDictionary())
{
PDFPatternPtr result;
const PDFDictionary* patternDictionary = dereferencedObject.getDictionary();
PDFDocumentDataLoaderDecorator loader(document);
if (loader.readNameFromDictionary(patternDictionary, "Type") != "Pattern")
{
throw PDFParserException(PDFTranslationContext::tr("Invalid pattern."));
}
const PatternType patternType = static_cast<PatternType>(loader.readIntegerFromDictionary(patternDictionary, "PatternType", static_cast<PDFInteger>(PatternType::Invalid)));
switch (patternType)
{
case PatternType::Tiling:
{
// TODO: Implement tiling pattern
throw PDFParserException(PDFTranslationContext::tr("Tiling pattern not implemented."));
break;
}
case PatternType::Shading:
{
PDFObject patternGraphicState = document->getObject(patternDictionary->get("ExtGState"));
QMatrix matrix = loader.readMatrixFromDictionary(patternDictionary, "Matrix", QMatrix());
return createShadingPattern(colorSpaceDictionary, document, patternDictionary->get("Shading"), matrix, patternGraphicState, false);
}
default:
throw PDFParserException(PDFTranslationContext::tr("Invalid pattern."));
}
return result;
}
throw PDFParserException(PDFTranslationContext::tr("Invalid pattern."));
return PDFPatternPtr();
}
PDFPatternPtr PDFPattern::createShadingPattern(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const PDFObject& shadingObject,
const QMatrix& matrix,
const PDFObject& patternGraphicState,
bool ignoreBackgroundColor)
{
const PDFObject& dereferencedShadingObject = document->getObject(shadingObject);
if (!dereferencedShadingObject.isDictionary())
{
throw PDFParserException(PDFTranslationContext::tr("Invalid shading."));
}
PDFDocumentDataLoaderDecorator loader(document);
const PDFDictionary* shadingDictionary = dereferencedShadingObject.getDictionary();
// Parse common data for all shadings
PDFColorSpacePointer colorSpace = PDFAbstractColorSpace::createColorSpace(colorSpaceDictionary, document, shadingDictionary->get("ColorSpace"));
QColor backgroundColor;
if (!ignoreBackgroundColor)
{
std::vector<PDFReal> backgroundColorValues = loader.readNumberArrayFromDictionary(shadingDictionary, "Background");
if (!backgroundColorValues.empty())
{
backgroundColor = colorSpace->getCheckedColor(PDFAbstractColorSpace::convertToColor(backgroundColorValues));
}
}
QRectF boundingBox = loader.readRectangle(shadingDictionary->get("BBox"), QRectF());
bool antialias = loader.readBooleanFromDictionary(shadingDictionary, "AntiAlias", false);
const PDFObject& extendObject = document->getObject(shadingDictionary->get("Extend"));
bool extendStart = false;
bool extendEnd = false;
if (extendObject.isArray())
{
const PDFArray* array = extendObject.getArray();
if (array->getCount() != 2)
{
throw PDFParserException(PDFTranslationContext::tr("Invalid shading pattern extends. Expected 2, but %1 provided.").arg(array->getCount()));
}
extendStart = loader.readBoolean(array->getItem(0), false);
extendEnd = loader.readBoolean(array->getItem(1), false);
}
std::vector<PDFFunctionPtr> functions;
const PDFObject& functionsObject = document->getObject(shadingDictionary->get("Function"));
if (functionsObject.isArray())
{
const PDFArray* functionsArray = functionsObject.getArray();
functions.reserve(functionsArray->getCount());
for (size_t i = 0, functionCount = functionsArray->getCount(); i < functionCount; ++i)
{
functions.push_back(PDFFunction::createFunction(document, functionsArray->getItem(i)));
}
}
else if (!functionsObject.isNull())
{
functions.push_back(PDFFunction::createFunction(document, functionsObject));
}
const ShadingType shadingType = static_cast<ShadingType>(loader.readIntegerFromDictionary(shadingDictionary, "ShadingType", static_cast<PDFInteger>(ShadingType::Invalid)));
switch (shadingType)
{
case ShadingType::Axial:
{
PDFAxialShading* axialShading = new PDFAxialShading();
PDFPatternPtr result(axialShading);
std::vector<PDFReal> coordinates = loader.readNumberArrayFromDictionary(shadingDictionary, "Coords");
if (coordinates.size() != 4)
{
throw PDFParserException(PDFTranslationContext::tr("Invalid axial shading pattern coordinates. Expected 4, but %1 provided.").arg(coordinates.size()));
}
std::vector<PDFReal> domain = loader.readNumberArrayFromDictionary(shadingDictionary, "Domain");
if (domain.empty())
{
domain = { 0.0, 1.0 };
}
if (domain.size() != 2)
{
throw PDFParserException(PDFTranslationContext::tr("Invalid axial shading pattern domain. Expected 2, but %1 provided.").arg(domain.size()));
}
// Load items for axial shading
axialShading->m_antiAlias = antialias;
axialShading->m_backgroundColor = backgroundColor;
axialShading->m_colorSpace = colorSpace;
axialShading->m_boundingBox = boundingBox;
axialShading->m_domainStart = domain[0];
axialShading->m_domainEnd = domain[1];
axialShading->m_startPoint = QPointF(coordinates[0], coordinates[1]);
axialShading->m_endPoint = QPointF(coordinates[2], coordinates[3]);
axialShading->m_extendStart = extendStart;
axialShading->m_extendEnd = extendEnd;
axialShading->m_functions = qMove(functions);
axialShading->m_matrix = matrix;
axialShading->m_patternGraphicState = patternGraphicState;
return result;
}
default:
{
throw PDFParserException(PDFTranslationContext::tr("Invalid shading pattern type (%1).").arg(static_cast<PDFInteger>(shadingType)));
}
}
throw PDFParserException(PDFTranslationContext::tr("Invalid shading."));
return PDFPatternPtr();
}
2019-08-31 14:37:18 +02:00
PDFMesh PDFAxialShading::createMesh(const PDFMeshQualitySettings& settings) const
{
PDFMesh mesh;
QPointF p1 = settings.userSpaceToDeviceSpaceMatrix.map(m_startPoint);
QPointF p2 = settings.userSpaceToDeviceSpaceMatrix.map(m_endPoint);
// Strategy: for simplification, we rotate the line clockwise so we will
// get the shading axis equal to the x-axis. Then we will determine the shading
// area and create mesh according the settings.
QLineF line(p1, p2);
const double angle = line.angleTo(QLineF(0, 0, 1, 0));
// Matrix p1p2LCS is local coordinate system of line p1-p2. It transforms
// points on the line to the global coordinate system. So, point (0, 0) will
// map onto p1 and point (length(p1-p2), 0) will map onto p2.
QMatrix p1p2LCS;
p1p2LCS.translate(p1.x(), p1.y());
p1p2LCS.rotate(angle);
QMatrix p1p2GCS = p1p2LCS.inverted();
QPointF p1m = p1p2GCS.map(p1);
QPointF p2m = p1p2GCS.map(p2);
Q_ASSERT(isZero(p1m.y()));
Q_ASSERT(isZero(p2m.y()));
Q_ASSERT(p1m.x() <= p2m.x());
QPainterPath meshingArea;
meshingArea.addPolygon(p1p2GCS.map(settings.deviceSpaceMeshingArea));
meshingArea.addRect(p1m.x(), p1m.y() - settings.preferredMeshResolution * 0.5, p2m.x() - p1m.x(), settings.preferredMeshResolution);
QRectF meshingRectangle = meshingArea.boundingRect();
PDFReal xl = meshingRectangle.left();
PDFReal xr = meshingRectangle.right();
PDFReal yt = meshingRectangle.top();
PDFReal yb = meshingRectangle.bottom();
// Create coordinate array filled with stops, where we will determine the color
std::vector<PDFReal> xCoords;
xCoords.reserve((xr - xl) / settings.minimalMeshResolution + 3);
xCoords.push_back(xl);
for (PDFReal x = p1m.x(); x <= p2m.x(); x += settings.minimalMeshResolution)
{
if (!qFuzzyCompare(xCoords.back(), x))
{
xCoords.push_back(x);
}
}
if (xCoords.back() + PDF_EPSILON < p2m.x())
{
xCoords.push_back(p2m.x());
}
2019-08-31 14:37:18 +02:00
if (!qFuzzyCompare(xCoords.back(), xr))
{
xCoords.push_back(xr);
}
const PDFReal tAtStart = m_domainStart;
const PDFReal tAtEnd = m_domainEnd;
const PDFReal tMin = qMin(tAtStart, tAtEnd);
const PDFReal tMax = qMax(tAtStart, tAtEnd);
const bool isSingleFunction = m_functions.size() == 1;
std::vector<PDFReal> colorBuffer(m_colorSpace->getColorComponentCount(), 0.0);
auto getColor = [this, isSingleFunction, &colorBuffer](PDFReal t) -> PDFColor
{
if (isSingleFunction)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(&t, &t + 1, colorBuffer.data(), colorBuffer.data() + colorBuffer.size());
if (!result)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
}
}
else
{
for (size_t i = 0, count = colorBuffer.size(); i < count; ++i)
{
PDFFunction::FunctionResult result = m_functions.front()->apply(&t, &t + 1, colorBuffer.data() + i, colorBuffer.data() + i + 1);
if (!result)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
}
}
}
return PDFAbstractColorSpace::convertToColor(colorBuffer);
};
// Determine color of each coordinate
std::vector<std::pair<PDFReal, PDFColor>> coloredCoordinates;
coloredCoordinates.reserve(xCoords.size());
for (PDFReal x : xCoords)
{
if (x < p1m.x() - PDF_EPSILON && !m_extendStart)
{
// Move to the next coordinate, this is skipped
continue;
}
if (x > p2m.x() + PDF_EPSILON && !m_extendEnd)
{
// We are finished no more triangles will occur
break;
}
// Determine current parameter t
const PDFReal t = interpolate(x, p1m.x(), p2m.x(), tAtStart, tAtEnd);
const PDFReal tBounded = qBound(tMin, t, tMax);
const PDFColor color = getColor(tBounded);
coloredCoordinates.emplace_back(x, color);
}
// Filter coordinates according the meshing criteria
std::vector<std::pair<PDFReal, PDFColor>> filteredCoordinates;
filteredCoordinates.reserve(coloredCoordinates.size());
for (auto it = coloredCoordinates.cbegin(); it != coloredCoordinates.cend(); ++it)
{
// We will skip this coordinate, if both of meshing criteria have been met:
// 1) Color difference is small (lesser than tolerance)
// 2) Distance from previous and next point is less than preffered meshing resolution OR colors are equal
if (it != coloredCoordinates.cbegin() && std::next(it) != coloredCoordinates.cend())
{
auto itNext = std::next(it);
const std::pair<PDFReal, PDFColor>& prevItem = filteredCoordinates.back();
const std::pair<PDFReal, PDFColor>& currentItem = *it;
const std::pair<PDFReal, PDFColor>& nextItem = *itNext;
if (currentItem.first != p1m.x() && currentItem.first != p2m.x())
2019-08-31 14:37:18 +02:00
{
if (prevItem.second == currentItem.second && currentItem.second == nextItem.second)
{
// Colors are same, skip the test
continue;
}
2019-08-31 14:37:18 +02:00
if (PDFAbstractColorSpace::isColorEqual(prevItem.second, currentItem.second, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(currentItem.second, nextItem.second, settings.tolerance) &&
PDFAbstractColorSpace::isColorEqual(prevItem.second, nextItem.second, settings.tolerance) &&
(nextItem.first - prevItem.first < settings.preferredMeshResolution))
{
continue;
}
2019-08-31 14:37:18 +02:00
}
}
filteredCoordinates.push_back(*it);
}
if (!filteredCoordinates.empty())
{
size_t vertexCount = filteredCoordinates.size() * 2;
size_t triangleCount = filteredCoordinates.size() * 2 - 2;
if (m_backgroundColor.isValid())
{
vertexCount += 8;
triangleCount += 4;
}
mesh.reserve(vertexCount, triangleCount);
PDFColor previousColor = filteredCoordinates.front().second;
uint32_t topLeft = mesh.addVertex(QPointF(filteredCoordinates.front().first, yt));
uint32_t bottomLeft = mesh.addVertex(QPointF(filteredCoordinates.front().first, yb));
for (auto it = std::next(filteredCoordinates.cbegin()); it != filteredCoordinates.cend(); ++it)
{
const std::pair<PDFReal, PDFColor>& item = *it;
uint32_t topRight = mesh.addVertex(QPointF(item.first, yt));
uint32_t bottomRight = mesh.addVertex(QPointF(item.first, yb));
PDFColor mixedColor = PDFAbstractColorSpace::mixColors(previousColor, item.second, 0.5);
QColor color = m_colorSpace->getColor(mixedColor);
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, color.rgb());
topLeft = topRight;
bottomLeft = bottomRight;
previousColor = item.second;
}
}
// Create background color triangles
if (m_backgroundColor.isValid() && (!m_extendStart || !m_extendEnd))
{
if (!m_extendStart && xl + PDF_EPSILON < p1m.x())
{
uint32_t topLeft = mesh.addVertex(QPointF(xl, yt));
uint32_t topRight = mesh.addVertex(QPointF(p1m.x(), yt));
uint32_t bottomLeft = mesh.addVertex(QPointF(xl, yb));
uint32_t bottomRight = mesh.addVertex(QPointF(p1m.x(), yb));
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, m_backgroundColor.rgb());
}
if (!m_extendEnd && p2m.x() + PDF_EPSILON < xr)
{
uint32_t topRight = mesh.addVertex(QPointF(xr, yt));
uint32_t topLeft = mesh.addVertex(QPointF(p2m.x(), yt));
uint32_t bottomRight = mesh.addVertex(QPointF(xr, yb));
uint32_t bottomLeft = mesh.addVertex(QPointF(p2m.x(), yb));
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, m_backgroundColor.rgb());
}
}
2019-08-31 14:37:18 +02:00
// Transform mesh to the device space coordinates
mesh.transform(p1p2LCS);
// Create bounding path
if (m_boundingBox.isValid())
{
QPainterPath boundingPath;
2019-08-31 15:55:59 +02:00
boundingPath.addPolygon(settings.userSpaceToDeviceSpaceMatrix.map(m_boundingBox));
2019-08-31 14:37:18 +02:00
mesh.setBoundingPath(boundingPath);
}
return mesh;
}
void PDFMesh::paint(QPainter* painter) const
{
if (m_triangles.empty())
{
return;
}
painter->save();
painter->setPen(Qt::NoPen);
painter->setRenderHint(QPainter::Antialiasing, true);
// Set the clipping area, if we have it
if (!m_boundingPath.isEmpty())
{
painter->setClipPath(m_boundingPath, Qt::IntersectClip);
}
QColor color;
// Draw all triangles
for (const Triangle& triangle : m_triangles)
{
if (color != triangle.color)
{
painter->setPen(QColor(triangle.color));
painter->setBrush(QBrush(triangle.color, Qt::SolidPattern));
color = triangle.color;
}
std::array<QPointF, 3> triangleCorners = { m_vertices[triangle.v1], m_vertices[triangle.v2], m_vertices[triangle.v3] };
painter->drawConvexPolygon(triangleCorners.data(), static_cast<int>(triangleCorners.size()));
}
painter->restore();
}
void PDFMesh::transform(const QMatrix& matrix)
{
for (QPointF& vertex : m_vertices)
{
vertex = matrix.map(vertex);
}
m_boundingPath = matrix.map(m_boundingPath);
}
void PDFMeshQualitySettings::initDefaultResolution()
{
// We will take 0.5% percent of device space meshing area as minimal resolution (it is ~1.5 mm for
// A4 page) and default resolution 4x number of that.
Q_ASSERT(deviceSpaceMeshingArea.isValid());
PDFReal size = qMax(deviceSpaceMeshingArea.width(), deviceSpaceMeshingArea.height());
minimalMeshResolution = size * 0.005;
preferredMeshResolution = minimalMeshResolution * 4;
}
2019-08-25 18:16:37 +02:00
} // namespace pdf