mirror of
				https://bitbucket.org/chromiumembedded/cef
				synced 2025-06-05 21:39:12 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			169 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2014 Marshall A. Greenblatt. All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //    * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //    * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //    * Neither the name of Google Inc. nor the name Chromium Embedded
 | |
| // Framework nor the names of its contributors may be used to endorse
 | |
| // or promote products derived from this software without specific prior
 | |
| // written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| #ifndef CEF_INCLUDE_INTERNAL_CEF_PTR_H_
 | |
| #define CEF_INCLUDE_INTERNAL_CEF_PTR_H_
 | |
| #pragma once
 | |
| 
 | |
| #include <memory>
 | |
| 
 | |
| #include "include/base/cef_build.h"
 | |
| #include "include/base/cef_ref_counted.h"
 | |
| 
 | |
| ///
 | |
| // Smart pointer implementation that is an alias of scoped_refptr from
 | |
| // include/base/cef_ref_counted.h.
 | |
| // <p>
 | |
| // A smart pointer class for reference counted objects.  Use this class instead
 | |
| // of calling AddRef and Release manually on a reference counted object to
 | |
| // avoid common memory leaks caused by forgetting to Release an object
 | |
| // reference.  Sample usage:
 | |
| // <pre>
 | |
| //   class MyFoo : public CefBaseRefCounted {
 | |
| //    ...
 | |
| //   };
 | |
| //
 | |
| //   void some_function() {
 | |
| //     // The MyFoo object that |foo| represents starts with a single
 | |
| //     // reference.
 | |
| //     CefRefPtr<MyFoo> foo = new MyFoo();
 | |
| //     foo->Method(param);
 | |
| //     // |foo| is released when this function returns
 | |
| //   }
 | |
| //
 | |
| //   void some_other_function() {
 | |
| //     CefRefPtr<MyFoo> foo = new MyFoo();
 | |
| //     ...
 | |
| //     foo = NULL;  // explicitly releases |foo|
 | |
| //     ...
 | |
| //     if (foo)
 | |
| //       foo->Method(param);
 | |
| //   }
 | |
| // </pre>
 | |
| // The above examples show how CefRefPtr<T> acts like a pointer to T.
 | |
| // Given two CefRefPtr<T> classes, it is also possible to exchange
 | |
| // references between the two objects, like so:
 | |
| // <pre>
 | |
| //   {
 | |
| //     CefRefPtr<MyFoo> a = new MyFoo();
 | |
| //     CefRefPtr<MyFoo> b;
 | |
| //
 | |
| //     b.swap(a);
 | |
| //     // now, |b| references the MyFoo object, and |a| references NULL.
 | |
| //   }
 | |
| // </pre>
 | |
| // To make both |a| and |b| in the above example reference the same MyFoo
 | |
| // object, simply use the assignment operator:
 | |
| // <pre>
 | |
| //   {
 | |
| //     CefRefPtr<MyFoo> a = new MyFoo();
 | |
| //     CefRefPtr<MyFoo> b;
 | |
| //
 | |
| //     b = a;
 | |
| //     // now, |a| and |b| each own a reference to the same MyFoo object.
 | |
| //     // the reference count of the underlying MyFoo object will be 2.
 | |
| //   }
 | |
| // </pre>
 | |
| // Reference counted objects can also be passed as function parameters and
 | |
| // used as function return values:
 | |
| // <pre>
 | |
| //   void some_func_with_param(CefRefPtr<MyFoo> param) {
 | |
| //     // A reference is added to the MyFoo object that |param| represents
 | |
| //     // during the scope of some_func_with_param() and released when
 | |
| //     // some_func_with_param() goes out of scope.
 | |
| //   }
 | |
| //
 | |
| //   CefRefPtr<MyFoo> some_func_with_retval() {
 | |
| //     // The MyFoo object that |foox| represents starts with a single
 | |
| //     // reference.
 | |
| //     CefRefPtr<MyFoo> foox = new MyFoo();
 | |
| //
 | |
| //     // Creating the return value adds an additional reference.
 | |
| //     return foox;
 | |
| //
 | |
| //     // When some_func_with_retval() goes out of scope the original |foox|
 | |
| //     // reference is released.
 | |
| //   }
 | |
| //
 | |
| //   void and_another_function() {
 | |
| //     CefRefPtr<MyFoo> foo = new MyFoo();
 | |
| //
 | |
| //     // pass |foo| as a parameter.
 | |
| //     some_function(foo);
 | |
| //
 | |
| //     CefRefPtr<MyFoo> foo2 = some_func_with_retval();
 | |
| //     // Now, since we kept a reference to the some_func_with_retval() return
 | |
| //     // value, |foo2| is the only class pointing to the MyFoo object created
 | |
| //     in some_func_with_retval(), and it has a reference count of 1.
 | |
| //
 | |
| //     some_func_with_retval();
 | |
| //     // Now, since we didn't keep a reference to the some_func_with_retval()
 | |
| //     // return value, the MyFoo object created in some_func_with_retval()
 | |
| //     // will automatically be released.
 | |
| //   }
 | |
| // </pre>
 | |
| // And in standard containers:
 | |
| // <pre>
 | |
| //   {
 | |
| //      // Create a vector that holds MyFoo objects.
 | |
| //      std::vector<CefRefPtr<MyFoo> > MyFooVec;
 | |
| //
 | |
| //     // The MyFoo object that |foo| represents starts with a single
 | |
| //     // reference.
 | |
| //     CefRefPtr<MyFoo> foo = new MyFoo();
 | |
| //
 | |
| //     // When the MyFoo object is added to |MyFooVec| the reference count
 | |
| //     // is increased to 2.
 | |
| //     MyFooVec.push_back(foo);
 | |
| //   }
 | |
| // </pre>
 | |
| // </p>
 | |
| ///
 | |
| template <class T>
 | |
| using CefRefPtr = scoped_refptr<T>;
 | |
| 
 | |
| ///
 | |
| // A CefOwnPtr<T> is like a T*, except that the destructor of CefOwnPtr<T>
 | |
| // automatically deletes the pointer it holds (if any). That is, CefOwnPtr<T>
 | |
| // owns the T object that it points to. Like a T*, a CefOwnPtr<T> may hold
 | |
| // either NULL or a pointer to a T object. Also like T*, CefOwnPtr<T> is
 | |
| // thread-compatible, and once you dereference it, you get the thread safety
 | |
| // guarantees of T.
 | |
| ///
 | |
| template <class T, class D = std::default_delete<T>>
 | |
| using CefOwnPtr = std::unique_ptr<T, D>;
 | |
| 
 | |
| ///
 | |
| // A CefRawPtr<T> is the same as T*
 | |
| ///
 | |
| template <class T>
 | |
| using CefRawPtr = T*;
 | |
| 
 | |
| #endif  // CEF_INCLUDE_INTERNAL_CEF_PTR_H_
 |