mirror of
https://bitbucket.org/chromiumembedded/cef
synced 2025-03-15 11:30:11 +01:00
Update include/base headers for C++11/14 (see issue #3140)
See the issue for update guidelines.
This commit is contained in:
parent
6d80ec69d7
commit
43f9baa23a
@ -5,23 +5,26 @@
|
||||
{
|
||||
'variables': {
|
||||
'includes_common': [
|
||||
'include/base/cef_atomic_flag.h',
|
||||
'include/base/cef_atomic_ref_count.h',
|
||||
'include/base/cef_atomicops.h',
|
||||
'include/base/cef_auto_reset.h',
|
||||
'include/base/cef_basictypes.h',
|
||||
'include/base/cef_bind.h',
|
||||
'include/base/cef_bind_helpers.h',
|
||||
'include/base/cef_build.h',
|
||||
'include/base/cef_callback.h',
|
||||
'include/base/cef_callback_forward.h',
|
||||
'include/base/cef_callback_helpers.h',
|
||||
'include/base/cef_callback_list.h',
|
||||
'include/base/cef_cancelable_callback.h',
|
||||
'include/base/cef_compiler_specific.h',
|
||||
'include/base/cef_cxx17_backports.h',
|
||||
'include/base/cef_lock.h',
|
||||
'include/base/cef_logging.h',
|
||||
'include/base/cef_macros.h',
|
||||
'include/base/cef_move.h',
|
||||
'include/base/cef_platform_thread.h',
|
||||
'include/base/cef_ptr_util.h',
|
||||
'include/base/cef_ref_counted.h',
|
||||
'include/base/cef_scoped_ptr.h',
|
||||
'include/base/cef_scoped_refptr.h',
|
||||
'include/base/cef_template_util.h',
|
||||
'include/base/cef_thread_checker.h',
|
||||
'include/base/cef_trace_event.h',
|
||||
@ -31,6 +34,7 @@
|
||||
'include/base/internal/cef_callback_internal.h',
|
||||
'include/base/internal/cef_lock_impl.h',
|
||||
'include/base/internal/cef_raw_scoped_refptr_mismatch_checker.h',
|
||||
'include/base/internal/cef_scoped_policy.h',
|
||||
'include/base/internal/cef_thread_checker_impl.h',
|
||||
'include/cef_api_hash.h',
|
||||
'include/cef_base.h',
|
||||
@ -71,9 +75,6 @@
|
||||
'include/wrapper/cef_library_loader.h',
|
||||
],
|
||||
'includes_win': [
|
||||
'include/base/internal/cef_atomicops_arm64_msvc.h',
|
||||
'include/base/internal/cef_atomicops_x86_msvc.h',
|
||||
'include/base/internal/cef_bind_internal_win.h',
|
||||
'include/cef_sandbox_win.h',
|
||||
'include/internal/cef_win.h',
|
||||
],
|
||||
@ -81,8 +82,8 @@
|
||||
'include/internal/cef_types_win.h',
|
||||
],
|
||||
'includes_mac': [
|
||||
'include/base/internal/cef_atomicops_atomicword_compat.h',
|
||||
'include/base/internal/cef_atomicops_mac.h',
|
||||
'include/base/cef_scoped_typeref_mac.h',
|
||||
'include/base/internal/cef_scoped_block_mac.h',
|
||||
'include/cef_application_mac.h',
|
||||
'include/cef_sandbox_mac.h',
|
||||
'include/internal/cef_mac.h',
|
||||
@ -91,10 +92,6 @@
|
||||
'include/internal/cef_types_mac.h',
|
||||
],
|
||||
'includes_linux': [
|
||||
'include/base/internal/cef_atomicops_atomicword_compat.h',
|
||||
'include/base/internal/cef_atomicops_arm_gcc.h',
|
||||
'include/base/internal/cef_atomicops_arm64_gcc.h',
|
||||
'include/base/internal/cef_atomicops_x86_gcc.h',
|
||||
'include/internal/cef_linux.h',
|
||||
],
|
||||
'includes_linux_capi': [
|
||||
@ -120,8 +117,8 @@
|
||||
'libcef_dll/wrapper_types.h',
|
||||
],
|
||||
'libcef_dll_wrapper_sources_base': [
|
||||
'libcef_dll/base/cef_atomicops_x86_gcc.cc',
|
||||
'libcef_dll/base/cef_bind_helpers.cc',
|
||||
'libcef_dll/base/cef_atomic_flag.cc',
|
||||
'libcef_dll/base/cef_callback_helpers.cc',
|
||||
'libcef_dll/base/cef_callback_internal.cc',
|
||||
'libcef_dll/base/cef_lock.cc',
|
||||
'libcef_dll/base/cef_lock_impl.cc',
|
||||
|
87
include/base/cef_atomic_flag.h
Normal file
87
include/base/cef_atomic_flag.h
Normal file
@ -0,0 +1,87 @@
|
||||
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2011
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_ATOMIC_FLAG_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_ATOMIC_FLAG_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/synchronization/atomic_flag.h"
|
||||
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/base/cef_thread_checker.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
// A flag that can safely be set from one thread and read from other threads.
|
||||
//
|
||||
// This class IS NOT intended for synchronization between threads.
|
||||
class AtomicFlag {
|
||||
public:
|
||||
AtomicFlag();
|
||||
~AtomicFlag();
|
||||
|
||||
// Set the flag. Must always be called from the same thread.
|
||||
void Set();
|
||||
|
||||
// Returns true iff the flag was set. If this returns true, the current thread
|
||||
// is guaranteed to be synchronized with all memory operations on the thread
|
||||
// which invoked Set() up until at least the first call to Set() on it.
|
||||
bool IsSet() const {
|
||||
// Inline here: this has a measurable performance impact on base::WeakPtr.
|
||||
return flag_.load(std::memory_order_acquire) != 0;
|
||||
}
|
||||
|
||||
// Resets the flag. Be careful when using this: callers might not expect
|
||||
// IsSet() to return false after returning true once.
|
||||
void UnsafeResetForTesting();
|
||||
|
||||
private:
|
||||
std::atomic<uint_fast8_t> flag_{0};
|
||||
base::ThreadChecker set_thread_checker_;
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(AtomicFlag);
|
||||
};
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_ATOMIC_FLAG_H_
|
@ -43,120 +43,66 @@
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/atomic_ref_count.h"
|
||||
|
||||
// Used when declaring a base::AtomicRefCount value. This is an object type with
|
||||
// Chromium headers.
|
||||
#define ATOMIC_DECLARATION (0)
|
||||
|
||||
// Maintaining compatibility with AtompicRefCount* functions that were removed
|
||||
// from Chromium in http://crrev.com/ee96d561.
|
||||
namespace base {
|
||||
|
||||
// Increment a reference count by 1.
|
||||
inline void AtomicRefCountInc(volatile AtomicRefCount* ptr) {
|
||||
const_cast<AtomicRefCount*>(ptr)->Increment();
|
||||
}
|
||||
|
||||
// Decrement a reference count by 1 and return whether the result is non-zero.
|
||||
// Insert barriers to ensure that state written before the reference count
|
||||
// became zero will be visible to a thread that has just made the count zero.
|
||||
inline bool AtomicRefCountDec(volatile AtomicRefCount* ptr) {
|
||||
return const_cast<AtomicRefCount*>(ptr)->Decrement();
|
||||
}
|
||||
|
||||
// Return whether the reference count is one. If the reference count is used
|
||||
// in the conventional way, a refrerence count of 1 implies that the current
|
||||
// thread owns the reference and no other thread shares it. This call performs
|
||||
// the test for a reference count of one, and performs the memory barrier
|
||||
// needed for the owning thread to act on the object, knowing that it has
|
||||
// exclusive access to the object.
|
||||
inline bool AtomicRefCountIsOne(volatile AtomicRefCount* ptr) {
|
||||
return const_cast<AtomicRefCount*>(ptr)->IsOne();
|
||||
}
|
||||
|
||||
// Return whether the reference count is zero. With conventional object
|
||||
// referencing counting, the object will be destroyed, so the reference count
|
||||
// should never be zero. Hence this is generally used for a debug check.
|
||||
inline bool AtomicRefCountIsZero(volatile AtomicRefCount* ptr) {
|
||||
return const_cast<AtomicRefCount*>(ptr)->IsZero();
|
||||
}
|
||||
|
||||
} // namespace base
|
||||
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include "include/base/cef_atomicops.h"
|
||||
|
||||
// Annotations are not currently supported.
|
||||
#define ANNOTATE_HAPPENS_BEFORE(obj) /* empty */
|
||||
#define ANNOTATE_HAPPENS_AFTER(obj) /* empty */
|
||||
|
||||
// Used when declaring a base::AtomicRefCount value. This is an integer/ptr type
|
||||
// with CEF headers.
|
||||
#define ATOMIC_DECLARATION = 0
|
||||
#include <atomic>
|
||||
|
||||
namespace base {
|
||||
|
||||
typedef subtle::Atomic32 AtomicRefCount;
|
||||
class AtomicRefCount {
|
||||
public:
|
||||
constexpr AtomicRefCount() : ref_count_(0) {}
|
||||
explicit constexpr AtomicRefCount(int initial_value)
|
||||
: ref_count_(initial_value) {}
|
||||
|
||||
// Increment a reference count by "increment", which must exceed 0.
|
||||
inline void AtomicRefCountIncN(volatile AtomicRefCount* ptr,
|
||||
AtomicRefCount increment) {
|
||||
subtle::NoBarrier_AtomicIncrement(ptr, increment);
|
||||
}
|
||||
// Increment a reference count.
|
||||
// Returns the previous value of the count.
|
||||
int Increment() { return Increment(1); }
|
||||
|
||||
// Decrement a reference count by "decrement", which must exceed 0,
|
||||
// and return whether the result is non-zero.
|
||||
// Insert barriers to ensure that state written before the reference count
|
||||
// became zero will be visible to a thread that has just made the count zero.
|
||||
inline bool AtomicRefCountDecN(volatile AtomicRefCount* ptr,
|
||||
AtomicRefCount decrement) {
|
||||
ANNOTATE_HAPPENS_BEFORE(ptr);
|
||||
bool res = (subtle::Barrier_AtomicIncrement(ptr, -decrement) != 0);
|
||||
if (!res) {
|
||||
ANNOTATE_HAPPENS_AFTER(ptr);
|
||||
// Increment a reference count by "increment", which must exceed 0.
|
||||
// Returns the previous value of the count.
|
||||
int Increment(int increment) {
|
||||
return ref_count_.fetch_add(increment, std::memory_order_relaxed);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
// Increment a reference count by 1.
|
||||
inline void AtomicRefCountInc(volatile AtomicRefCount* ptr) {
|
||||
base::AtomicRefCountIncN(ptr, 1);
|
||||
}
|
||||
|
||||
// Decrement a reference count by 1 and return whether the result is non-zero.
|
||||
// Insert barriers to ensure that state written before the reference count
|
||||
// became zero will be visible to a thread that has just made the count zero.
|
||||
inline bool AtomicRefCountDec(volatile AtomicRefCount* ptr) {
|
||||
return base::AtomicRefCountDecN(ptr, 1);
|
||||
}
|
||||
|
||||
// Return whether the reference count is one. If the reference count is used
|
||||
// in the conventional way, a refrerence count of 1 implies that the current
|
||||
// thread owns the reference and no other thread shares it. This call performs
|
||||
// the test for a reference count of one, and performs the memory barrier
|
||||
// needed for the owning thread to act on the object, knowing that it has
|
||||
// exclusive access to the object.
|
||||
inline bool AtomicRefCountIsOne(volatile AtomicRefCount* ptr) {
|
||||
bool res = (subtle::Acquire_Load(ptr) == 1);
|
||||
if (res) {
|
||||
ANNOTATE_HAPPENS_AFTER(ptr);
|
||||
// Decrement a reference count, and return whether the result is non-zero.
|
||||
// Insert barriers to ensure that state written before the reference count
|
||||
// became zero will be visible to a thread that has just made the count zero.
|
||||
bool Decrement() {
|
||||
// TODO(jbroman): Technically this doesn't need to be an acquire operation
|
||||
// unless the result is 1 (i.e., the ref count did indeed reach zero).
|
||||
// However, there are toolchain issues that make that not work as well at
|
||||
// present (notably TSAN doesn't like it).
|
||||
return ref_count_.fetch_sub(1, std::memory_order_acq_rel) != 1;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
// Return whether the reference count is zero. With conventional object
|
||||
// referencing counting, the object will be destroyed, so the reference count
|
||||
// should never be zero. Hence this is generally used for a debug check.
|
||||
inline bool AtomicRefCountIsZero(volatile AtomicRefCount* ptr) {
|
||||
bool res = (subtle::Acquire_Load(ptr) == 0);
|
||||
if (res) {
|
||||
ANNOTATE_HAPPENS_AFTER(ptr);
|
||||
// Return whether the reference count is one. If the reference count is used
|
||||
// in the conventional way, a refrerence count of 1 implies that the current
|
||||
// thread owns the reference and no other thread shares it. This call
|
||||
// performs the test for a reference count of one, and performs the memory
|
||||
// barrier needed for the owning thread to act on the object, knowing that it
|
||||
// has exclusive access to the object.
|
||||
bool IsOne() const { return ref_count_.load(std::memory_order_acquire) == 1; }
|
||||
|
||||
// Return whether the reference count is zero. With conventional object
|
||||
// referencing counting, the object will be destroyed, so the reference count
|
||||
// should never be zero. Hence this is generally used for a debug check.
|
||||
bool IsZero() const {
|
||||
return ref_count_.load(std::memory_order_acquire) == 0;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
// Returns the current reference count (with no barriers). This is subtle, and
|
||||
// should be used only for debugging.
|
||||
int SubtleRefCountForDebug() const {
|
||||
return ref_count_.load(std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
private:
|
||||
std::atomic_int ref_count_;
|
||||
};
|
||||
|
||||
} // namespace base
|
||||
|
||||
|
@ -1,203 +0,0 @@
|
||||
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2012
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// For atomic operations on reference counts, see cef_atomic_ref_count.h.
|
||||
|
||||
// The routines exported by this module are subtle. If you use them, even if
|
||||
// you get the code right, it will depend on careful reasoning about atomicity
|
||||
// and memory ordering; it will be less readable, and harder to maintain. If
|
||||
// you plan to use these routines, you should have a good reason, such as solid
|
||||
// evidence that performance would otherwise suffer, or there being no
|
||||
// alternative. You should assume only properties explicitly guaranteed by the
|
||||
// specifications in this file. You are almost certainly _not_ writing code
|
||||
// just for the x86; if you assume x86 semantics, x86 hardware bugs and
|
||||
// implementations on other archtectures will cause your code to break. If you
|
||||
// do not know what you are doing, avoid these routines, and use a Mutex.
|
||||
//
|
||||
// It is incorrect to make direct assignments to/from an atomic variable.
|
||||
// You should use one of the Load or Store routines. The NoBarrier
|
||||
// versions are provided when no barriers are needed:
|
||||
// NoBarrier_Store()
|
||||
// NoBarrier_Load()
|
||||
// Although there are currently no compiler enforcement, you are encouraged
|
||||
// to use these.
|
||||
//
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_ATOMICOPS_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_ATOMICOPS_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_ATOMICOPS_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/atomicops.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "include/base/cef_build.h"
|
||||
|
||||
#if defined(OS_WIN) && defined(ARCH_CPU_64_BITS)
|
||||
// windows.h #defines this (only on x64). This causes problems because the
|
||||
// public API also uses MemoryBarrier at the public name for this fence. So, on
|
||||
// X64, undef it, and call its documented
|
||||
// (http://msdn.microsoft.com/en-us/library/windows/desktop/ms684208.aspx)
|
||||
// implementation directly.
|
||||
#undef MemoryBarrier
|
||||
#endif
|
||||
|
||||
namespace base {
|
||||
namespace subtle {
|
||||
|
||||
typedef int32_t Atomic32;
|
||||
#ifdef ARCH_CPU_64_BITS
|
||||
// We need to be able to go between Atomic64 and AtomicWord implicitly. This
|
||||
// means Atomic64 and AtomicWord should be the same type on 64-bit.
|
||||
#if defined(__ILP32__) || defined(OS_NACL)
|
||||
// NaCl's intptr_t is not actually 64-bits on 64-bit!
|
||||
// http://code.google.com/p/nativeclient/issues/detail?id=1162
|
||||
typedef int64_t Atomic64;
|
||||
#else
|
||||
typedef intptr_t Atomic64;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Use AtomicWord for a machine-sized pointer. It will use the Atomic32 or
|
||||
// Atomic64 routines below, depending on your architecture.
|
||||
typedef intptr_t AtomicWord;
|
||||
|
||||
// Atomically execute:
|
||||
// result = *ptr;
|
||||
// if (*ptr == old_value)
|
||||
// *ptr = new_value;
|
||||
// return result;
|
||||
//
|
||||
// I.e., replace "*ptr" with "new_value" if "*ptr" used to be "old_value".
|
||||
// Always return the old value of "*ptr"
|
||||
//
|
||||
// This routine implies no memory barriers.
|
||||
Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value);
|
||||
|
||||
// Atomically store new_value into *ptr, returning the previous value held in
|
||||
// *ptr. This routine implies no memory barriers.
|
||||
Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, Atomic32 new_value);
|
||||
|
||||
// Atomically increment *ptr by "increment". Returns the new value of
|
||||
// *ptr with the increment applied. This routine implies no memory barriers.
|
||||
Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment);
|
||||
|
||||
Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment);
|
||||
|
||||
// These following lower-level operations are typically useful only to people
|
||||
// implementing higher-level synchronization operations like spinlocks,
|
||||
// mutexes, and condition-variables. They combine CompareAndSwap(), a load, or
|
||||
// a store with appropriate memory-ordering instructions. "Acquire" operations
|
||||
// ensure that no later memory access can be reordered ahead of the operation.
|
||||
// "Release" operations ensure that no previous memory access can be reordered
|
||||
// after the operation. "Barrier" operations have both "Acquire" and "Release"
|
||||
// semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory
|
||||
// access.
|
||||
Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value);
|
||||
Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value);
|
||||
|
||||
void MemoryBarrier();
|
||||
void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value);
|
||||
void Acquire_Store(volatile Atomic32* ptr, Atomic32 value);
|
||||
void Release_Store(volatile Atomic32* ptr, Atomic32 value);
|
||||
|
||||
Atomic32 NoBarrier_Load(volatile const Atomic32* ptr);
|
||||
Atomic32 Acquire_Load(volatile const Atomic32* ptr);
|
||||
Atomic32 Release_Load(volatile const Atomic32* ptr);
|
||||
|
||||
// 64-bit atomic operations (only available on 64-bit processors).
|
||||
#ifdef ARCH_CPU_64_BITS
|
||||
Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value);
|
||||
Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, Atomic64 new_value);
|
||||
Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment);
|
||||
Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment);
|
||||
|
||||
Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value);
|
||||
Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value);
|
||||
void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value);
|
||||
void Acquire_Store(volatile Atomic64* ptr, Atomic64 value);
|
||||
void Release_Store(volatile Atomic64* ptr, Atomic64 value);
|
||||
Atomic64 NoBarrier_Load(volatile const Atomic64* ptr);
|
||||
Atomic64 Acquire_Load(volatile const Atomic64* ptr);
|
||||
Atomic64 Release_Load(volatile const Atomic64* ptr);
|
||||
#endif // ARCH_CPU_64_BITS
|
||||
|
||||
} // namespace subtle
|
||||
} // namespace base
|
||||
|
||||
// Include our platform specific implementation.
|
||||
#if defined(OS_WIN) && defined(COMPILER_MSVC) && defined(ARCH_CPU_X86_FAMILY)
|
||||
#include "include/base/internal/cef_atomicops_x86_msvc.h"
|
||||
#elif defined(OS_WIN) && (defined(__ARM_ARCH_ISA_A64) || defined(_M_ARM64))
|
||||
#include "include/base/internal/cef_atomicops_arm64_msvc.h"
|
||||
#elif defined(OS_MAC)
|
||||
#include "include/base/internal/cef_atomicops_mac.h"
|
||||
#elif defined(COMPILER_GCC) && defined(ARCH_CPU_X86_FAMILY)
|
||||
#include "include/base/internal/cef_atomicops_x86_gcc.h"
|
||||
#elif defined(COMPILER_GCC) && defined(__ARM_ARCH_ISA_A64)
|
||||
#include "include/base/internal/cef_atomicops_arm64_gcc.h"
|
||||
#elif defined(COMPILER_GCC) && defined(__ARM_ARCH)
|
||||
#include "include/base/internal/cef_atomicops_arm_gcc.h"
|
||||
#else
|
||||
#error "Atomic operations are not supported on your platform"
|
||||
#endif
|
||||
|
||||
// On some platforms we need additional declarations to make
|
||||
// AtomicWord compatible with our other Atomic* types.
|
||||
#if defined(OS_MAC) || defined(OS_OPENBSD)
|
||||
#include "include/base/internal/cef_atomicops_atomicword_compat.h"
|
||||
#endif
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_ATOMICOPS_H_
|
89
include/base/cef_auto_reset.h
Normal file
89
include/base/cef_auto_reset.h
Normal file
@ -0,0 +1,89 @@
|
||||
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2011
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// base::AutoReset<> is useful for setting a variable to a new value only within
|
||||
// a particular scope. An base::AutoReset<> object resets a variable to its
|
||||
// original value upon destruction, making it an alternative to writing
|
||||
// "var = false;" or "var = old_val;" at all of a block's exit points.
|
||||
//
|
||||
// This should be obvious, but note that an base::AutoReset<> instance should
|
||||
// have a shorter lifetime than its scoped_variable, to prevent invalid memory
|
||||
// writes when the base::AutoReset<> object is destroyed.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_AUTO_RESET_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_AUTO_RESET_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/auto_reset.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <utility>
|
||||
|
||||
namespace base {
|
||||
|
||||
template <typename T>
|
||||
class AutoReset {
|
||||
public:
|
||||
template <typename U>
|
||||
AutoReset(T* scoped_variable, U&& new_value)
|
||||
: scoped_variable_(scoped_variable),
|
||||
original_value_(
|
||||
std::exchange(*scoped_variable_, std::forward<U>(new_value))) {}
|
||||
|
||||
AutoReset(AutoReset&& other)
|
||||
: scoped_variable_(std::exchange(other.scoped_variable_, nullptr)),
|
||||
original_value_(std::move(other.original_value_)) {}
|
||||
|
||||
AutoReset& operator=(AutoReset&& rhs) {
|
||||
scoped_variable_ = std::exchange(rhs.scoped_variable_, nullptr);
|
||||
original_value_ = std::move(rhs.original_value_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
~AutoReset() {
|
||||
if (scoped_variable_)
|
||||
*scoped_variable_ = std::move(original_value_);
|
||||
}
|
||||
|
||||
private:
|
||||
T* scoped_variable_;
|
||||
T original_value_;
|
||||
};
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_AUTO_RESET_H_
|
@ -28,16 +28,50 @@
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Usage documentation
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Overview:
|
||||
// base::BindOnce() and base::BindRepeating() are helpers for creating
|
||||
// base::OnceCallback and base::RepeatingCallback objects respectively.
|
||||
//
|
||||
// For a runnable object of n-arity, the base::Bind*() family allows partial
|
||||
// application of the first m arguments. The remaining n - m arguments must be
|
||||
// passed when invoking the callback with Run().
|
||||
//
|
||||
// // The first argument is bound at callback creation; the remaining
|
||||
// // two must be passed when calling Run() on the callback object.
|
||||
// base::OnceCallback<long(int, long)> cb = base::BindOnce(
|
||||
// [](short x, int y, long z) { return x * y * z; }, 42);
|
||||
//
|
||||
// When binding to a method, the receiver object must also be specified at
|
||||
// callback creation time. When Run() is invoked, the method will be invoked on
|
||||
// the specified receiver object.
|
||||
//
|
||||
// class C : public base::RefCounted<C> { void F(); };
|
||||
// auto instance = base::MakeRefCounted<C>();
|
||||
// auto cb = base::BindOnce(&C::F, instance);
|
||||
// std::move(cb).Run(); // Identical to instance->F()
|
||||
//
|
||||
// base::Bind is currently a type alias for base::BindRepeating(). In the
|
||||
// future, we expect to flip this to default to base::BindOnce().
|
||||
//
|
||||
// See //docs/callback.md for the full documentation.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// Implementation notes
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// If you're reading the implementation, before proceeding further, you should
|
||||
// read the top comment of base/internal/cef_bind_internal.h for a definition of
|
||||
// common terms and concepts.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_BIND_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_BIND_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_BIND_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/bind.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
@ -45,529 +79,292 @@
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include "include/base/internal/cef_bind_internal.h"
|
||||
#include "include/base/internal/cef_callback_internal.h"
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Usage documentation
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// See base/cef_callback.h for documentation.
|
||||
//
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// Implementation notes
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// If you're reading the implementation, before proceeding further, you should
|
||||
// read the top comment of base/bind_internal.h for a definition of common
|
||||
// terms and concepts.
|
||||
//
|
||||
// RETURN TYPES
|
||||
//
|
||||
// Though Bind()'s result is meant to be stored in a Callback<> type, it
|
||||
// cannot actually return the exact type without requiring a large amount
|
||||
// of extra template specializations. The problem is that in order to
|
||||
// discern the correct specialization of Callback<>, Bind would need to
|
||||
// unwrap the function signature to determine the signature's arity, and
|
||||
// whether or not it is a method.
|
||||
//
|
||||
// Each unique combination of (arity, function_type, num_prebound) where
|
||||
// function_type is one of {function, method, const_method} would require
|
||||
// one specialization. We eventually have to do a similar number of
|
||||
// specializations anyways in the implementation (see the Invoker<>,
|
||||
// classes). However, it is avoidable in Bind if we return the result
|
||||
// via an indirection like we do below.
|
||||
//
|
||||
// TODO(ajwong): We might be able to avoid this now, but need to test.
|
||||
//
|
||||
// It is possible to move most of the COMPILE_ASSERT asserts into BindState<>,
|
||||
// but it feels a little nicer to have the asserts here so people do not
|
||||
// need to crack open bind_internal.h. On the other hand, it makes Bind()
|
||||
// harder to read.
|
||||
#include "include/base/cef_build.h"
|
||||
#include "include/base/cef_compiler_specific.h"
|
||||
#include "include/base/cef_template_util.h"
|
||||
#include "include/base/internal/cef_bind_internal.h"
|
||||
|
||||
#if defined(OS_APPLE) && !HAS_FEATURE(objc_arc)
|
||||
#include "include/base/internal/cef_scoped_block_mac.h"
|
||||
#endif
|
||||
|
||||
namespace base {
|
||||
|
||||
template <typename Functor>
|
||||
base::Callback<typename cef_internal::BindState<
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType,
|
||||
typename cef_internal::FunctorTraits<Functor>::RunType,
|
||||
void()>::UnboundRunType>
|
||||
Bind(Functor functor) {
|
||||
// Typedefs for how to store and run the functor.
|
||||
typedef
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType RunnableType;
|
||||
typedef typename cef_internal::FunctorTraits<Functor>::RunType RunType;
|
||||
// Bind as OnceCallback.
|
||||
template <typename Functor, typename... Args>
|
||||
inline OnceCallback<internal::MakeUnboundRunType<Functor, Args...>> BindOnce(
|
||||
Functor&& functor,
|
||||
Args&&... args) {
|
||||
static_assert(!internal::IsOnceCallback<std::decay_t<Functor>>() ||
|
||||
(std::is_rvalue_reference<Functor&&>() &&
|
||||
!std::is_const<std::remove_reference_t<Functor>>()),
|
||||
"BindOnce requires non-const rvalue for OnceCallback binding."
|
||||
" I.e.: base::BindOnce(std::move(callback)).");
|
||||
static_assert(
|
||||
conjunction<
|
||||
internal::AssertBindArgIsNotBasePassed<std::decay_t<Args>>...>::value,
|
||||
"Use std::move() instead of base::Passed() with base::BindOnce()");
|
||||
|
||||
typedef cef_internal::BindState<RunnableType, RunType, void()> BindState;
|
||||
|
||||
return Callback<typename BindState::UnboundRunType>(
|
||||
new BindState(cef_internal::MakeRunnable(functor)));
|
||||
return internal::BindImpl<OnceCallback>(std::forward<Functor>(functor),
|
||||
std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <typename Functor, typename P1>
|
||||
base::Callback<typename cef_internal::BindState<
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType,
|
||||
typename cef_internal::FunctorTraits<Functor>::RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType)>::
|
||||
UnboundRunType>
|
||||
Bind(Functor functor, const P1& p1) {
|
||||
// Typedefs for how to store and run the functor.
|
||||
typedef
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType RunnableType;
|
||||
typedef typename cef_internal::FunctorTraits<Functor>::RunType RunType;
|
||||
// Bind as RepeatingCallback.
|
||||
template <typename Functor, typename... Args>
|
||||
inline RepeatingCallback<internal::MakeUnboundRunType<Functor, Args...>>
|
||||
BindRepeating(Functor&& functor, Args&&... args) {
|
||||
static_assert(
|
||||
!internal::IsOnceCallback<std::decay_t<Functor>>(),
|
||||
"BindRepeating cannot bind OnceCallback. Use BindOnce with std::move().");
|
||||
|
||||
// Use RunnableType::RunType instead of RunType above because our
|
||||
// checks should below for bound references need to know what the actual
|
||||
// functor is going to interpret the argument as.
|
||||
typedef cef_internal::FunctionTraits<typename RunnableType::RunType>
|
||||
BoundFunctorTraits;
|
||||
|
||||
// Do not allow binding a non-const reference parameter. Non-const reference
|
||||
// parameters are disallowed by the Google style guide. Also, binding a
|
||||
// non-const reference parameter can make for subtle bugs because the
|
||||
// invoked function will receive a reference to the stored copy of the
|
||||
// argument and not the original.
|
||||
COMPILE_ASSERT(
|
||||
!(is_non_const_reference<typename BoundFunctorTraits::A1Type>::value),
|
||||
do_not_bind_functions_with_nonconst_ref);
|
||||
|
||||
// For methods, we need to be careful for parameter 1. We do not require
|
||||
// a scoped_refptr because BindState<> itself takes care of AddRef() for
|
||||
// methods. We also disallow binding of an array as the method's target
|
||||
// object.
|
||||
COMPILE_ASSERT(cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!cef_internal::NeedsScopedRefptrButGetsRawPtr<P1>::value,
|
||||
p1_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!is_array<P1>::value,
|
||||
first_bound_argument_to_method_cannot_be_array);
|
||||
typedef cef_internal::BindState<
|
||||
RunnableType, RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType)>
|
||||
BindState;
|
||||
|
||||
return Callback<typename BindState::UnboundRunType>(
|
||||
new BindState(cef_internal::MakeRunnable(functor), p1));
|
||||
return internal::BindImpl<RepeatingCallback>(std::forward<Functor>(functor),
|
||||
std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <typename Functor, typename P1, typename P2>
|
||||
base::Callback<typename cef_internal::BindState<
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType,
|
||||
typename cef_internal::FunctorTraits<Functor>::RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType)>::
|
||||
UnboundRunType>
|
||||
Bind(Functor functor, const P1& p1, const P2& p2) {
|
||||
// Typedefs for how to store and run the functor.
|
||||
typedef
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType RunnableType;
|
||||
typedef typename cef_internal::FunctorTraits<Functor>::RunType RunType;
|
||||
|
||||
// Use RunnableType::RunType instead of RunType above because our
|
||||
// checks should below for bound references need to know what the actual
|
||||
// functor is going to interpret the argument as.
|
||||
typedef cef_internal::FunctionTraits<typename RunnableType::RunType>
|
||||
BoundFunctorTraits;
|
||||
|
||||
// Do not allow binding a non-const reference parameter. Non-const reference
|
||||
// parameters are disallowed by the Google style guide. Also, binding a
|
||||
// non-const reference parameter can make for subtle bugs because the
|
||||
// invoked function will receive a reference to the stored copy of the
|
||||
// argument and not the original.
|
||||
COMPILE_ASSERT(
|
||||
!(is_non_const_reference<typename BoundFunctorTraits::A1Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A2Type>::value),
|
||||
do_not_bind_functions_with_nonconst_ref);
|
||||
|
||||
// For methods, we need to be careful for parameter 1. We do not require
|
||||
// a scoped_refptr because BindState<> itself takes care of AddRef() for
|
||||
// methods. We also disallow binding of an array as the method's target
|
||||
// object.
|
||||
COMPILE_ASSERT(cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!cef_internal::NeedsScopedRefptrButGetsRawPtr<P1>::value,
|
||||
p1_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!is_array<P1>::value,
|
||||
first_bound_argument_to_method_cannot_be_array);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P2>::value,
|
||||
p2_is_refcounted_type_and_needs_scoped_refptr);
|
||||
typedef cef_internal::BindState<
|
||||
RunnableType, RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType)>
|
||||
BindState;
|
||||
|
||||
return Callback<typename BindState::UnboundRunType>(
|
||||
new BindState(cef_internal::MakeRunnable(functor), p1, p2));
|
||||
// Unannotated Bind.
|
||||
// TODO(tzik): Deprecate this and migrate to OnceCallback and
|
||||
// RepeatingCallback, once they get ready.
|
||||
template <typename Functor, typename... Args>
|
||||
inline Callback<internal::MakeUnboundRunType<Functor, Args...>> Bind(
|
||||
Functor&& functor,
|
||||
Args&&... args) {
|
||||
return base::BindRepeating(std::forward<Functor>(functor),
|
||||
std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <typename Functor, typename P1, typename P2, typename P3>
|
||||
base::Callback<typename cef_internal::BindState<
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType,
|
||||
typename cef_internal::FunctorTraits<Functor>::RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType)>::
|
||||
UnboundRunType>
|
||||
Bind(Functor functor, const P1& p1, const P2& p2, const P3& p3) {
|
||||
// Typedefs for how to store and run the functor.
|
||||
typedef
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType RunnableType;
|
||||
typedef typename cef_internal::FunctorTraits<Functor>::RunType RunType;
|
||||
|
||||
// Use RunnableType::RunType instead of RunType above because our
|
||||
// checks should below for bound references need to know what the actual
|
||||
// functor is going to interpret the argument as.
|
||||
typedef cef_internal::FunctionTraits<typename RunnableType::RunType>
|
||||
BoundFunctorTraits;
|
||||
|
||||
// Do not allow binding a non-const reference parameter. Non-const reference
|
||||
// parameters are disallowed by the Google style guide. Also, binding a
|
||||
// non-const reference parameter can make for subtle bugs because the
|
||||
// invoked function will receive a reference to the stored copy of the
|
||||
// argument and not the original.
|
||||
COMPILE_ASSERT(
|
||||
!(is_non_const_reference<typename BoundFunctorTraits::A1Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A2Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A3Type>::value),
|
||||
do_not_bind_functions_with_nonconst_ref);
|
||||
|
||||
// For methods, we need to be careful for parameter 1. We do not require
|
||||
// a scoped_refptr because BindState<> itself takes care of AddRef() for
|
||||
// methods. We also disallow binding of an array as the method's target
|
||||
// object.
|
||||
COMPILE_ASSERT(cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!cef_internal::NeedsScopedRefptrButGetsRawPtr<P1>::value,
|
||||
p1_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!is_array<P1>::value,
|
||||
first_bound_argument_to_method_cannot_be_array);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P2>::value,
|
||||
p2_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P3>::value,
|
||||
p3_is_refcounted_type_and_needs_scoped_refptr);
|
||||
typedef cef_internal::BindState<
|
||||
RunnableType, RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType)>
|
||||
BindState;
|
||||
|
||||
return Callback<typename BindState::UnboundRunType>(
|
||||
new BindState(cef_internal::MakeRunnable(functor), p1, p2, p3));
|
||||
// Special cases for binding to a base::Callback without extra bound arguments.
|
||||
// We CHECK() the validity of callback to guard against null pointers
|
||||
// accidentally ending up in posted tasks, causing hard-to-debug crashes.
|
||||
template <typename Signature>
|
||||
OnceCallback<Signature> BindOnce(OnceCallback<Signature> callback) {
|
||||
CHECK(callback);
|
||||
return callback;
|
||||
}
|
||||
|
||||
template <typename Functor, typename P1, typename P2, typename P3, typename P4>
|
||||
base::Callback<typename cef_internal::BindState<
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType,
|
||||
typename cef_internal::FunctorTraits<Functor>::RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P4>::StorageType)>::
|
||||
UnboundRunType>
|
||||
Bind(Functor functor, const P1& p1, const P2& p2, const P3& p3, const P4& p4) {
|
||||
// Typedefs for how to store and run the functor.
|
||||
typedef
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType RunnableType;
|
||||
typedef typename cef_internal::FunctorTraits<Functor>::RunType RunType;
|
||||
|
||||
// Use RunnableType::RunType instead of RunType above because our
|
||||
// checks should below for bound references need to know what the actual
|
||||
// functor is going to interpret the argument as.
|
||||
typedef cef_internal::FunctionTraits<typename RunnableType::RunType>
|
||||
BoundFunctorTraits;
|
||||
|
||||
// Do not allow binding a non-const reference parameter. Non-const reference
|
||||
// parameters are disallowed by the Google style guide. Also, binding a
|
||||
// non-const reference parameter can make for subtle bugs because the
|
||||
// invoked function will receive a reference to the stored copy of the
|
||||
// argument and not the original.
|
||||
COMPILE_ASSERT(
|
||||
!(is_non_const_reference<typename BoundFunctorTraits::A1Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A2Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A3Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A4Type>::value),
|
||||
do_not_bind_functions_with_nonconst_ref);
|
||||
|
||||
// For methods, we need to be careful for parameter 1. We do not require
|
||||
// a scoped_refptr because BindState<> itself takes care of AddRef() for
|
||||
// methods. We also disallow binding of an array as the method's target
|
||||
// object.
|
||||
COMPILE_ASSERT(cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!cef_internal::NeedsScopedRefptrButGetsRawPtr<P1>::value,
|
||||
p1_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!is_array<P1>::value,
|
||||
first_bound_argument_to_method_cannot_be_array);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P2>::value,
|
||||
p2_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P3>::value,
|
||||
p3_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P4>::value,
|
||||
p4_is_refcounted_type_and_needs_scoped_refptr);
|
||||
typedef cef_internal::BindState<
|
||||
RunnableType, RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P4>::StorageType)>
|
||||
BindState;
|
||||
|
||||
return Callback<typename BindState::UnboundRunType>(
|
||||
new BindState(cef_internal::MakeRunnable(functor), p1, p2, p3, p4));
|
||||
template <typename Signature>
|
||||
OnceCallback<Signature> BindOnce(RepeatingCallback<Signature> callback) {
|
||||
CHECK(callback);
|
||||
return callback;
|
||||
}
|
||||
|
||||
template <typename Functor,
|
||||
typename P1,
|
||||
typename P2,
|
||||
typename P3,
|
||||
typename P4,
|
||||
typename P5>
|
||||
base::Callback<typename cef_internal::BindState<
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType,
|
||||
typename cef_internal::FunctorTraits<Functor>::RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P4>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P5>::StorageType)>::
|
||||
UnboundRunType>
|
||||
Bind(Functor functor,
|
||||
const P1& p1,
|
||||
const P2& p2,
|
||||
const P3& p3,
|
||||
const P4& p4,
|
||||
const P5& p5) {
|
||||
// Typedefs for how to store and run the functor.
|
||||
typedef
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType RunnableType;
|
||||
typedef typename cef_internal::FunctorTraits<Functor>::RunType RunType;
|
||||
|
||||
// Use RunnableType::RunType instead of RunType above because our
|
||||
// checks should below for bound references need to know what the actual
|
||||
// functor is going to interpret the argument as.
|
||||
typedef cef_internal::FunctionTraits<typename RunnableType::RunType>
|
||||
BoundFunctorTraits;
|
||||
|
||||
// Do not allow binding a non-const reference parameter. Non-const reference
|
||||
// parameters are disallowed by the Google style guide. Also, binding a
|
||||
// non-const reference parameter can make for subtle bugs because the
|
||||
// invoked function will receive a reference to the stored copy of the
|
||||
// argument and not the original.
|
||||
COMPILE_ASSERT(
|
||||
!(is_non_const_reference<typename BoundFunctorTraits::A1Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A2Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A3Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A4Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A5Type>::value),
|
||||
do_not_bind_functions_with_nonconst_ref);
|
||||
|
||||
// For methods, we need to be careful for parameter 1. We do not require
|
||||
// a scoped_refptr because BindState<> itself takes care of AddRef() for
|
||||
// methods. We also disallow binding of an array as the method's target
|
||||
// object.
|
||||
COMPILE_ASSERT(cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!cef_internal::NeedsScopedRefptrButGetsRawPtr<P1>::value,
|
||||
p1_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!is_array<P1>::value,
|
||||
first_bound_argument_to_method_cannot_be_array);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P2>::value,
|
||||
p2_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P3>::value,
|
||||
p3_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P4>::value,
|
||||
p4_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P5>::value,
|
||||
p5_is_refcounted_type_and_needs_scoped_refptr);
|
||||
typedef cef_internal::BindState<
|
||||
RunnableType, RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P4>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P5>::StorageType)>
|
||||
BindState;
|
||||
|
||||
return Callback<typename BindState::UnboundRunType>(
|
||||
new BindState(cef_internal::MakeRunnable(functor), p1, p2, p3, p4, p5));
|
||||
template <typename Signature>
|
||||
RepeatingCallback<Signature> BindRepeating(
|
||||
RepeatingCallback<Signature> callback) {
|
||||
CHECK(callback);
|
||||
return callback;
|
||||
}
|
||||
|
||||
template <typename Functor,
|
||||
typename P1,
|
||||
typename P2,
|
||||
typename P3,
|
||||
typename P4,
|
||||
typename P5,
|
||||
typename P6>
|
||||
base::Callback<typename cef_internal::BindState<
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType,
|
||||
typename cef_internal::FunctorTraits<Functor>::RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P4>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P5>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P6>::StorageType)>::
|
||||
UnboundRunType>
|
||||
Bind(Functor functor,
|
||||
const P1& p1,
|
||||
const P2& p2,
|
||||
const P3& p3,
|
||||
const P4& p4,
|
||||
const P5& p5,
|
||||
const P6& p6) {
|
||||
// Typedefs for how to store and run the functor.
|
||||
typedef
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType RunnableType;
|
||||
typedef typename cef_internal::FunctorTraits<Functor>::RunType RunType;
|
||||
|
||||
// Use RunnableType::RunType instead of RunType above because our
|
||||
// checks should below for bound references need to know what the actual
|
||||
// functor is going to interpret the argument as.
|
||||
typedef cef_internal::FunctionTraits<typename RunnableType::RunType>
|
||||
BoundFunctorTraits;
|
||||
|
||||
// Do not allow binding a non-const reference parameter. Non-const reference
|
||||
// parameters are disallowed by the Google style guide. Also, binding a
|
||||
// non-const reference parameter can make for subtle bugs because the
|
||||
// invoked function will receive a reference to the stored copy of the
|
||||
// argument and not the original.
|
||||
COMPILE_ASSERT(
|
||||
!(is_non_const_reference<typename BoundFunctorTraits::A1Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A2Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A3Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A4Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A5Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A6Type>::value),
|
||||
do_not_bind_functions_with_nonconst_ref);
|
||||
|
||||
// For methods, we need to be careful for parameter 1. We do not require
|
||||
// a scoped_refptr because BindState<> itself takes care of AddRef() for
|
||||
// methods. We also disallow binding of an array as the method's target
|
||||
// object.
|
||||
COMPILE_ASSERT(cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!cef_internal::NeedsScopedRefptrButGetsRawPtr<P1>::value,
|
||||
p1_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!is_array<P1>::value,
|
||||
first_bound_argument_to_method_cannot_be_array);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P2>::value,
|
||||
p2_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P3>::value,
|
||||
p3_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P4>::value,
|
||||
p4_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P5>::value,
|
||||
p5_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P6>::value,
|
||||
p6_is_refcounted_type_and_needs_scoped_refptr);
|
||||
typedef cef_internal::BindState<
|
||||
RunnableType, RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P4>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P5>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P6>::StorageType)>
|
||||
BindState;
|
||||
|
||||
return Callback<typename BindState::UnboundRunType>(new BindState(
|
||||
cef_internal::MakeRunnable(functor), p1, p2, p3, p4, p5, p6));
|
||||
template <typename Signature>
|
||||
Callback<Signature> Bind(Callback<Signature> callback) {
|
||||
CHECK(callback);
|
||||
return callback;
|
||||
}
|
||||
|
||||
template <typename Functor,
|
||||
typename P1,
|
||||
typename P2,
|
||||
typename P3,
|
||||
typename P4,
|
||||
typename P5,
|
||||
typename P6,
|
||||
typename P7>
|
||||
base::Callback<typename cef_internal::BindState<
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType,
|
||||
typename cef_internal::FunctorTraits<Functor>::RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P4>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P5>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P6>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P7>::StorageType)>::
|
||||
UnboundRunType>
|
||||
Bind(Functor functor,
|
||||
const P1& p1,
|
||||
const P2& p2,
|
||||
const P3& p3,
|
||||
const P4& p4,
|
||||
const P5& p5,
|
||||
const P6& p6,
|
||||
const P7& p7) {
|
||||
// Typedefs for how to store and run the functor.
|
||||
typedef
|
||||
typename cef_internal::FunctorTraits<Functor>::RunnableType RunnableType;
|
||||
typedef typename cef_internal::FunctorTraits<Functor>::RunType RunType;
|
||||
|
||||
// Use RunnableType::RunType instead of RunType above because our
|
||||
// checks should below for bound references need to know what the actual
|
||||
// functor is going to interpret the argument as.
|
||||
typedef cef_internal::FunctionTraits<typename RunnableType::RunType>
|
||||
BoundFunctorTraits;
|
||||
|
||||
// Do not allow binding a non-const reference parameter. Non-const reference
|
||||
// parameters are disallowed by the Google style guide. Also, binding a
|
||||
// non-const reference parameter can make for subtle bugs because the
|
||||
// invoked function will receive a reference to the stored copy of the
|
||||
// argument and not the original.
|
||||
COMPILE_ASSERT(
|
||||
!(is_non_const_reference<typename BoundFunctorTraits::A1Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A2Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A3Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A4Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A5Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A6Type>::value ||
|
||||
is_non_const_reference<typename BoundFunctorTraits::A7Type>::value),
|
||||
do_not_bind_functions_with_nonconst_ref);
|
||||
|
||||
// For methods, we need to be careful for parameter 1. We do not require
|
||||
// a scoped_refptr because BindState<> itself takes care of AddRef() for
|
||||
// methods. We also disallow binding of an array as the method's target
|
||||
// object.
|
||||
COMPILE_ASSERT(cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!cef_internal::NeedsScopedRefptrButGetsRawPtr<P1>::value,
|
||||
p1_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::HasIsMethodTag<RunnableType>::value ||
|
||||
!is_array<P1>::value,
|
||||
first_bound_argument_to_method_cannot_be_array);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P2>::value,
|
||||
p2_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P3>::value,
|
||||
p3_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P4>::value,
|
||||
p4_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P5>::value,
|
||||
p5_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P6>::value,
|
||||
p6_is_refcounted_type_and_needs_scoped_refptr);
|
||||
COMPILE_ASSERT(!cef_internal::NeedsScopedRefptrButGetsRawPtr<P7>::value,
|
||||
p7_is_refcounted_type_and_needs_scoped_refptr);
|
||||
typedef cef_internal::BindState<
|
||||
RunnableType, RunType,
|
||||
void(typename cef_internal::CallbackParamTraits<P1>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P2>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P3>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P4>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P5>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P6>::StorageType,
|
||||
typename cef_internal::CallbackParamTraits<P7>::StorageType)>
|
||||
BindState;
|
||||
|
||||
return Callback<typename BindState::UnboundRunType>(new BindState(
|
||||
cef_internal::MakeRunnable(functor), p1, p2, p3, p4, p5, p6, p7));
|
||||
// Unretained() allows binding a non-refcounted class, and to disable
|
||||
// refcounting on arguments that are refcounted objects.
|
||||
//
|
||||
// EXAMPLE OF Unretained():
|
||||
//
|
||||
// class Foo {
|
||||
// public:
|
||||
// void func() { cout << "Foo:f" << endl; }
|
||||
// };
|
||||
//
|
||||
// // In some function somewhere.
|
||||
// Foo foo;
|
||||
// OnceClosure foo_callback =
|
||||
// BindOnce(&Foo::func, Unretained(&foo));
|
||||
// std::move(foo_callback).Run(); // Prints "Foo:f".
|
||||
//
|
||||
// Without the Unretained() wrapper on |&foo|, the above call would fail
|
||||
// to compile because Foo does not support the AddRef() and Release() methods.
|
||||
template <typename T>
|
||||
inline internal::UnretainedWrapper<T> Unretained(T* o) {
|
||||
return internal::UnretainedWrapper<T>(o);
|
||||
}
|
||||
|
||||
// RetainedRef() accepts a ref counted object and retains a reference to it.
|
||||
// When the callback is called, the object is passed as a raw pointer.
|
||||
//
|
||||
// EXAMPLE OF RetainedRef():
|
||||
//
|
||||
// void foo(RefCountedBytes* bytes) {}
|
||||
//
|
||||
// scoped_refptr<RefCountedBytes> bytes = ...;
|
||||
// OnceClosure callback = BindOnce(&foo, base::RetainedRef(bytes));
|
||||
// std::move(callback).Run();
|
||||
//
|
||||
// Without RetainedRef, the scoped_refptr would try to implicitly convert to
|
||||
// a raw pointer and fail compilation:
|
||||
//
|
||||
// OnceClosure callback = BindOnce(&foo, bytes); // ERROR!
|
||||
template <typename T>
|
||||
inline internal::RetainedRefWrapper<T> RetainedRef(T* o) {
|
||||
return internal::RetainedRefWrapper<T>(o);
|
||||
}
|
||||
template <typename T>
|
||||
inline internal::RetainedRefWrapper<T> RetainedRef(scoped_refptr<T> o) {
|
||||
return internal::RetainedRefWrapper<T>(std::move(o));
|
||||
}
|
||||
|
||||
// Owned() transfers ownership of an object to the callback resulting from
|
||||
// bind; the object will be deleted when the callback is deleted.
|
||||
//
|
||||
// EXAMPLE OF Owned():
|
||||
//
|
||||
// void foo(int* arg) { cout << *arg << endl }
|
||||
//
|
||||
// int* pn = new int(1);
|
||||
// RepeatingClosure foo_callback = BindRepeating(&foo, Owned(pn));
|
||||
//
|
||||
// foo_callback.Run(); // Prints "1"
|
||||
// foo_callback.Run(); // Prints "1"
|
||||
// *pn = 2;
|
||||
// foo_callback.Run(); // Prints "2"
|
||||
//
|
||||
// foo_callback.Reset(); // |pn| is deleted. Also will happen when
|
||||
// // |foo_callback| goes out of scope.
|
||||
//
|
||||
// Without Owned(), someone would have to know to delete |pn| when the last
|
||||
// reference to the callback is deleted.
|
||||
template <typename T>
|
||||
inline internal::OwnedWrapper<T> Owned(T* o) {
|
||||
return internal::OwnedWrapper<T>(o);
|
||||
}
|
||||
|
||||
template <typename T, typename Deleter>
|
||||
inline internal::OwnedWrapper<T, Deleter> Owned(
|
||||
std::unique_ptr<T, Deleter>&& ptr) {
|
||||
return internal::OwnedWrapper<T, Deleter>(std::move(ptr));
|
||||
}
|
||||
|
||||
// OwnedRef() stores an object in the callback resulting from
|
||||
// bind and passes a reference to the object to the bound function.
|
||||
//
|
||||
// EXAMPLE OF OwnedRef():
|
||||
//
|
||||
// void foo(int& arg) { cout << ++arg << endl }
|
||||
//
|
||||
// int counter = 0;
|
||||
// RepeatingClosure foo_callback = BindRepeating(&foo, OwnedRef(counter));
|
||||
//
|
||||
// foo_callback.Run(); // Prints "1"
|
||||
// foo_callback.Run(); // Prints "2"
|
||||
// foo_callback.Run(); // Prints "3"
|
||||
//
|
||||
// cout << counter; // Prints "0", OwnedRef creates a copy of counter.
|
||||
//
|
||||
// Supports OnceCallbacks as well, useful to pass placeholder arguments:
|
||||
//
|
||||
// void bar(int& ignore, const std::string& s) { cout << s << endl }
|
||||
//
|
||||
// OnceClosure bar_callback = BindOnce(&bar, OwnedRef(0), "Hello");
|
||||
//
|
||||
// std::move(bar_callback).Run(); // Prints "Hello"
|
||||
//
|
||||
// Without OwnedRef() it would not be possible to pass a mutable reference to an
|
||||
// object owned by the callback.
|
||||
template <typename T>
|
||||
internal::OwnedRefWrapper<std::decay_t<T>> OwnedRef(T&& t) {
|
||||
return internal::OwnedRefWrapper<std::decay_t<T>>(std::forward<T>(t));
|
||||
}
|
||||
|
||||
// Passed() is for transferring movable-but-not-copyable types (eg. unique_ptr)
|
||||
// through a RepeatingCallback. Logically, this signifies a destructive transfer
|
||||
// of the state of the argument into the target function. Invoking
|
||||
// RepeatingCallback::Run() twice on a callback that was created with a Passed()
|
||||
// argument will CHECK() because the first invocation would have already
|
||||
// transferred ownership to the target function.
|
||||
//
|
||||
// Note that Passed() is not necessary with BindOnce(), as std::move() does the
|
||||
// same thing. Avoid Passed() in favor of std::move() with BindOnce().
|
||||
//
|
||||
// EXAMPLE OF Passed():
|
||||
//
|
||||
// void TakesOwnership(std::unique_ptr<Foo> arg) { }
|
||||
// std::unique_ptr<Foo> CreateFoo() { return std::make_unique<Foo>();
|
||||
// }
|
||||
//
|
||||
// auto f = std::make_unique<Foo>();
|
||||
//
|
||||
// // |cb| is given ownership of Foo(). |f| is now NULL.
|
||||
// // You can use std::move(f) in place of &f, but it's more verbose.
|
||||
// RepeatingClosure cb = BindRepeating(&TakesOwnership, Passed(&f));
|
||||
//
|
||||
// // Run was never called so |cb| still owns Foo() and deletes
|
||||
// // it on Reset().
|
||||
// cb.Reset();
|
||||
//
|
||||
// // |cb| is given a new Foo created by CreateFoo().
|
||||
// cb = BindRepeating(&TakesOwnership, Passed(CreateFoo()));
|
||||
//
|
||||
// // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
|
||||
// // no longer owns Foo() and, if reset, would not delete Foo().
|
||||
// cb.Run(); // Foo() is now transferred to |arg| and deleted.
|
||||
// cb.Run(); // This CHECK()s since Foo() already been used once.
|
||||
//
|
||||
// We offer 2 syntaxes for calling Passed(). The first takes an rvalue and is
|
||||
// best suited for use with the return value of a function or other temporary
|
||||
// rvalues. The second takes a pointer to the scoper and is just syntactic sugar
|
||||
// to avoid having to write Passed(std::move(scoper)).
|
||||
//
|
||||
// Both versions of Passed() prevent T from being an lvalue reference. The first
|
||||
// via use of enable_if, and the second takes a T* which will not bind to T&.
|
||||
template <typename T,
|
||||
std::enable_if_t<!std::is_lvalue_reference<T>::value>* = nullptr>
|
||||
inline internal::PassedWrapper<T> Passed(T&& scoper) {
|
||||
return internal::PassedWrapper<T>(std::move(scoper));
|
||||
}
|
||||
template <typename T>
|
||||
inline internal::PassedWrapper<T> Passed(T* scoper) {
|
||||
return internal::PassedWrapper<T>(std::move(*scoper));
|
||||
}
|
||||
|
||||
// IgnoreResult() is used to adapt a function or callback with a return type to
|
||||
// one with a void return. This is most useful if you have a function with,
|
||||
// say, a pesky ignorable bool return that you want to use with PostTask or
|
||||
// something else that expect a callback with a void return.
|
||||
//
|
||||
// EXAMPLE OF IgnoreResult():
|
||||
//
|
||||
// int DoSomething(int arg) { cout << arg << endl; }
|
||||
//
|
||||
// // Assign to a callback with a void return type.
|
||||
// OnceCallback<void(int)> cb = BindOnce(IgnoreResult(&DoSomething));
|
||||
// std::move(cb).Run(1); // Prints "1".
|
||||
//
|
||||
// // Prints "2" on |ml|.
|
||||
// ml->PostTask(FROM_HERE, BindOnce(IgnoreResult(&DoSomething), 2);
|
||||
template <typename T>
|
||||
inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
|
||||
return internal::IgnoreResultHelper<T>(std::move(data));
|
||||
}
|
||||
|
||||
#if defined(OS_APPLE) && !HAS_FEATURE(objc_arc)
|
||||
|
||||
// RetainBlock() is used to adapt an Objective-C block when Automated Reference
|
||||
// Counting (ARC) is disabled. This is unnecessary when ARC is enabled, as the
|
||||
// BindOnce and BindRepeating already support blocks then.
|
||||
//
|
||||
// EXAMPLE OF RetainBlock():
|
||||
//
|
||||
// // Wrap the block and bind it to a callback.
|
||||
// OnceCallback<void(int)> cb =
|
||||
// BindOnce(RetainBlock(^(int n) { NSLog(@"%d", n); }));
|
||||
// std::move(cb).Run(1); // Logs "1".
|
||||
template <typename R, typename... Args>
|
||||
base::mac::ScopedBlock<R (^)(Args...)> RetainBlock(R (^block)(Args...)) {
|
||||
return base::mac::ScopedBlock<R (^)(Args...)>(block,
|
||||
base::scoped_policy::RETAIN);
|
||||
}
|
||||
|
||||
#endif // defined(OS_APPLE) && !HAS_FEATURE(objc_arc)
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
@ -1,579 +0,0 @@
|
||||
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2011
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// This defines a set of argument wrappers and related factory methods that
|
||||
// can be used specify the refcounting and reference semantics of arguments
|
||||
// that are bound by the Bind() function in base/bind.h.
|
||||
//
|
||||
// It also defines a set of simple functions and utilities that people want
|
||||
// when using Callback<> and Bind().
|
||||
//
|
||||
//
|
||||
// ARGUMENT BINDING WRAPPERS
|
||||
//
|
||||
// The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
|
||||
// base::ConstRef(), and base::IgnoreResult().
|
||||
//
|
||||
// Unretained() allows Bind() to bind a non-refcounted class, and to disable
|
||||
// refcounting on arguments that are refcounted objects.
|
||||
//
|
||||
// Owned() transfers ownership of an object to the Callback resulting from
|
||||
// bind; the object will be deleted when the Callback is deleted.
|
||||
//
|
||||
// Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
|
||||
// through a Callback. Logically, this signifies a destructive transfer of
|
||||
// the state of the argument into the target function. Invoking
|
||||
// Callback::Run() twice on a Callback that was created with a Passed()
|
||||
// argument will CHECK() because the first invocation would have already
|
||||
// transferred ownership to the target function.
|
||||
//
|
||||
// ConstRef() allows binding a constant reference to an argument rather
|
||||
// than a copy.
|
||||
//
|
||||
// IgnoreResult() is used to adapt a function or Callback with a return type to
|
||||
// one with a void return. This is most useful if you have a function with,
|
||||
// say, a pesky ignorable bool return that you want to use with PostTask or
|
||||
// something else that expect a Callback with a void return.
|
||||
//
|
||||
// EXAMPLE OF Unretained():
|
||||
//
|
||||
// class Foo {
|
||||
// public:
|
||||
// void func() { cout << "Foo:f" << endl; }
|
||||
// };
|
||||
//
|
||||
// // In some function somewhere.
|
||||
// Foo foo;
|
||||
// Closure foo_callback =
|
||||
// Bind(&Foo::func, Unretained(&foo));
|
||||
// foo_callback.Run(); // Prints "Foo:f".
|
||||
//
|
||||
// Without the Unretained() wrapper on |&foo|, the above call would fail
|
||||
// to compile because Foo does not support the AddRef() and Release() methods.
|
||||
//
|
||||
//
|
||||
// EXAMPLE OF Owned():
|
||||
//
|
||||
// void foo(int* arg) { cout << *arg << endl }
|
||||
//
|
||||
// int* pn = new int(1);
|
||||
// Closure foo_callback = Bind(&foo, Owned(pn));
|
||||
//
|
||||
// foo_callback.Run(); // Prints "1"
|
||||
// foo_callback.Run(); // Prints "1"
|
||||
// *n = 2;
|
||||
// foo_callback.Run(); // Prints "2"
|
||||
//
|
||||
// foo_callback.Reset(); // |pn| is deleted. Also will happen when
|
||||
// // |foo_callback| goes out of scope.
|
||||
//
|
||||
// Without Owned(), someone would have to know to delete |pn| when the last
|
||||
// reference to the Callback is deleted.
|
||||
//
|
||||
//
|
||||
// EXAMPLE OF ConstRef():
|
||||
//
|
||||
// void foo(int arg) { cout << arg << endl }
|
||||
//
|
||||
// int n = 1;
|
||||
// Closure no_ref = Bind(&foo, n);
|
||||
// Closure has_ref = Bind(&foo, ConstRef(n));
|
||||
//
|
||||
// no_ref.Run(); // Prints "1"
|
||||
// has_ref.Run(); // Prints "1"
|
||||
//
|
||||
// n = 2;
|
||||
// no_ref.Run(); // Prints "1"
|
||||
// has_ref.Run(); // Prints "2"
|
||||
//
|
||||
// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
|
||||
// its bound callbacks.
|
||||
//
|
||||
//
|
||||
// EXAMPLE OF IgnoreResult():
|
||||
//
|
||||
// int DoSomething(int arg) { cout << arg << endl; }
|
||||
//
|
||||
// // Assign to a Callback with a void return type.
|
||||
// Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
|
||||
// cb->Run(1); // Prints "1".
|
||||
//
|
||||
// // Prints "1" on |ml|.
|
||||
// ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
|
||||
//
|
||||
//
|
||||
// EXAMPLE OF Passed():
|
||||
//
|
||||
// void TakesOwnership(scoped_ptr<Foo> arg) { }
|
||||
// scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
|
||||
//
|
||||
// scoped_ptr<Foo> f(new Foo());
|
||||
//
|
||||
// // |cb| is given ownership of Foo(). |f| is now NULL.
|
||||
// // You can use f.Pass() in place of &f, but it's more verbose.
|
||||
// Closure cb = Bind(&TakesOwnership, Passed(&f));
|
||||
//
|
||||
// // Run was never called so |cb| still owns Foo() and deletes
|
||||
// // it on Reset().
|
||||
// cb.Reset();
|
||||
//
|
||||
// // |cb| is given a new Foo created by CreateFoo().
|
||||
// cb = Bind(&TakesOwnership, Passed(CreateFoo()));
|
||||
//
|
||||
// // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
|
||||
// // no longer owns Foo() and, if reset, would not delete Foo().
|
||||
// cb.Run(); // Foo() is now transferred to |arg| and deleted.
|
||||
// cb.Run(); // This CHECK()s since Foo() already been used once.
|
||||
//
|
||||
// Passed() is particularly useful with PostTask() when you are transferring
|
||||
// ownership of an argument into a task, but don't necessarily know if the
|
||||
// task will always be executed. This can happen if the task is cancellable
|
||||
// or if it is posted to a MessageLoopProxy.
|
||||
//
|
||||
//
|
||||
// SIMPLE FUNCTIONS AND UTILITIES.
|
||||
//
|
||||
// DoNothing() - Useful for creating a Closure that does nothing when called.
|
||||
// DeletePointer<T>() - Useful for creating a Closure that will delete a
|
||||
// pointer when invoked. Only use this when necessary.
|
||||
// In most cases MessageLoop::DeleteSoon() is a better
|
||||
// fit.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_BIND_HELPERS_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_BIND_HELPERS_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_BIND_HELPERS_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/bind_helpers.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include "include/base/cef_basictypes.h"
|
||||
#include "include/base/cef_callback.h"
|
||||
#include "include/base/cef_template_util.h"
|
||||
#include "include/base/cef_weak_ptr.h"
|
||||
|
||||
namespace base {
|
||||
namespace cef_internal {
|
||||
|
||||
// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
|
||||
// for the existence of AddRef() and Release() functions of the correct
|
||||
// signature.
|
||||
//
|
||||
// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
|
||||
// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
|
||||
// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
|
||||
// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
|
||||
//
|
||||
// The last link in particular show the method used below.
|
||||
//
|
||||
// For SFINAE to work with inherited methods, we need to pull some extra tricks
|
||||
// with multiple inheritance. In the more standard formulation, the overloads
|
||||
// of Check would be:
|
||||
//
|
||||
// template <typename C>
|
||||
// Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
|
||||
//
|
||||
// template <typename C>
|
||||
// No NotTheCheckWeWant(...);
|
||||
//
|
||||
// static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
|
||||
//
|
||||
// The problem here is that template resolution will not match
|
||||
// C::TargetFunc if TargetFunc does not exist directly in C. That is, if
|
||||
// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
|
||||
// |value| will be false. This formulation only checks for whether or
|
||||
// not TargetFunc exist directly in the class being introspected.
|
||||
//
|
||||
// To get around this, we play a dirty trick with multiple inheritance.
|
||||
// First, We create a class BaseMixin that declares each function that we
|
||||
// want to probe for. Then we create a class Base that inherits from both T
|
||||
// (the class we wish to probe) and BaseMixin. Note that the function
|
||||
// signature in BaseMixin does not need to match the signature of the function
|
||||
// we are probing for; thus it's easiest to just use void(void).
|
||||
//
|
||||
// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
|
||||
// ambiguous resolution between BaseMixin and T. This lets us write the
|
||||
// following:
|
||||
//
|
||||
// template <typename C>
|
||||
// No GoodCheck(Helper<&C::TargetFunc>*);
|
||||
//
|
||||
// template <typename C>
|
||||
// Yes GoodCheck(...);
|
||||
//
|
||||
// static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
|
||||
//
|
||||
// Notice here that the variadic version of GoodCheck() returns Yes here
|
||||
// instead of No like the previous one. Also notice that we calculate |value|
|
||||
// by specializing GoodCheck() on Base instead of T.
|
||||
//
|
||||
// We've reversed the roles of the variadic, and Helper overloads.
|
||||
// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
|
||||
// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
|
||||
// to the variadic version if T has TargetFunc. If T::TargetFunc does not
|
||||
// exist, then &C::TargetFunc is not ambiguous, and the overload resolution
|
||||
// will prefer GoodCheck(Helper<&C::TargetFunc>*).
|
||||
//
|
||||
// This method of SFINAE will correctly probe for inherited names, but it cannot
|
||||
// typecheck those names. It's still a good enough sanity check though.
|
||||
//
|
||||
// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
|
||||
//
|
||||
// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
|
||||
// this works well.
|
||||
//
|
||||
// TODO(ajwong): Make this check for Release() as well.
|
||||
// See http://crbug.com/82038.
|
||||
template <typename T>
|
||||
class SupportsAddRefAndRelease {
|
||||
typedef char Yes[1];
|
||||
typedef char No[2];
|
||||
|
||||
struct BaseMixin {
|
||||
void AddRef();
|
||||
};
|
||||
|
||||
// MSVC warns when you try to use Base if T has a private destructor, the
|
||||
// common pattern for refcounted types. It does this even though no attempt to
|
||||
// instantiate Base is made. We disable the warning for this definition.
|
||||
#if defined(OS_WIN)
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable : 4624)
|
||||
#endif
|
||||
struct Base : public T, public BaseMixin {};
|
||||
#if defined(OS_WIN)
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
|
||||
template <void (BaseMixin::*)(void)>
|
||||
struct Helper {};
|
||||
|
||||
template <typename C>
|
||||
static No& Check(Helper<&C::AddRef>*);
|
||||
|
||||
template <typename>
|
||||
static Yes& Check(...);
|
||||
|
||||
public:
|
||||
static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes);
|
||||
};
|
||||
|
||||
// Helpers to assert that arguments of a recounted type are bound with a
|
||||
// scoped_refptr.
|
||||
template <bool IsClasstype, typename T>
|
||||
struct UnsafeBindtoRefCountedArgHelper : false_type {};
|
||||
|
||||
template <typename T>
|
||||
struct UnsafeBindtoRefCountedArgHelper<true, T>
|
||||
: integral_constant<bool, SupportsAddRefAndRelease<T>::value> {};
|
||||
|
||||
template <typename T>
|
||||
struct UnsafeBindtoRefCountedArg : false_type {};
|
||||
|
||||
template <typename T>
|
||||
struct UnsafeBindtoRefCountedArg<T*>
|
||||
: UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {};
|
||||
|
||||
template <typename T>
|
||||
class HasIsMethodTag {
|
||||
typedef char Yes[1];
|
||||
typedef char No[2];
|
||||
|
||||
template <typename U>
|
||||
static Yes& Check(typename U::IsMethod*);
|
||||
|
||||
template <typename U>
|
||||
static No& Check(...);
|
||||
|
||||
public:
|
||||
static const bool value = sizeof(Check<T>(0)) == sizeof(Yes);
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class UnretainedWrapper {
|
||||
public:
|
||||
explicit UnretainedWrapper(T* o) : ptr_(o) {}
|
||||
T* get() const { return ptr_; }
|
||||
|
||||
private:
|
||||
T* ptr_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class ConstRefWrapper {
|
||||
public:
|
||||
explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
|
||||
const T& get() const { return *ptr_; }
|
||||
|
||||
private:
|
||||
const T* ptr_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct IgnoreResultHelper {
|
||||
explicit IgnoreResultHelper(T functor) : functor_(functor) {}
|
||||
|
||||
T functor_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct IgnoreResultHelper<Callback<T>> {
|
||||
explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
|
||||
|
||||
const Callback<T>& functor_;
|
||||
};
|
||||
|
||||
// An alternate implementation is to avoid the destructive copy, and instead
|
||||
// specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
|
||||
// a class that is essentially a scoped_ptr<>.
|
||||
//
|
||||
// The current implementation has the benefit though of leaving ParamTraits<>
|
||||
// fully in callback_internal.h as well as avoiding type conversions during
|
||||
// storage.
|
||||
template <typename T>
|
||||
class OwnedWrapper {
|
||||
public:
|
||||
explicit OwnedWrapper(T* o) : ptr_(o) {}
|
||||
~OwnedWrapper() { delete ptr_; }
|
||||
T* get() const { return ptr_; }
|
||||
OwnedWrapper(const OwnedWrapper& other) {
|
||||
ptr_ = other.ptr_;
|
||||
other.ptr_ = NULL;
|
||||
}
|
||||
|
||||
private:
|
||||
mutable T* ptr_;
|
||||
};
|
||||
|
||||
// PassedWrapper is a copyable adapter for a scoper that ignores const.
|
||||
//
|
||||
// It is needed to get around the fact that Bind() takes a const reference to
|
||||
// all its arguments. Because Bind() takes a const reference to avoid
|
||||
// unnecessary copies, it is incompatible with movable-but-not-copyable
|
||||
// types; doing a destructive "move" of the type into Bind() would violate
|
||||
// the const correctness.
|
||||
//
|
||||
// This conundrum cannot be solved without either C++11 rvalue references or
|
||||
// a O(2^n) blowup of Bind() templates to handle each combination of regular
|
||||
// types and movable-but-not-copyable types. Thus we introduce a wrapper type
|
||||
// that is copyable to transmit the correct type information down into
|
||||
// BindState<>. Ignoring const in this type makes sense because it is only
|
||||
// created when we are explicitly trying to do a destructive move.
|
||||
//
|
||||
// Two notes:
|
||||
// 1) PassedWrapper supports any type that has a "Pass()" function.
|
||||
// This is intentional. The whitelisting of which specific types we
|
||||
// support is maintained by CallbackParamTraits<>.
|
||||
// 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
|
||||
// scoper to a Callback and allow the Callback to execute once.
|
||||
template <typename T>
|
||||
class PassedWrapper {
|
||||
public:
|
||||
explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
|
||||
PassedWrapper(const PassedWrapper& other)
|
||||
: is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {}
|
||||
T Pass() const {
|
||||
CHECK(is_valid_);
|
||||
is_valid_ = false;
|
||||
return scoper_.Pass();
|
||||
}
|
||||
|
||||
private:
|
||||
mutable bool is_valid_;
|
||||
mutable T scoper_;
|
||||
};
|
||||
|
||||
// Unwrap the stored parameters for the wrappers above.
|
||||
template <typename T>
|
||||
struct UnwrapTraits {
|
||||
typedef const T& ForwardType;
|
||||
static ForwardType Unwrap(const T& o) { return o; }
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct UnwrapTraits<UnretainedWrapper<T>> {
|
||||
typedef T* ForwardType;
|
||||
static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
|
||||
return unretained.get();
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct UnwrapTraits<ConstRefWrapper<T>> {
|
||||
typedef const T& ForwardType;
|
||||
static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
|
||||
return const_ref.get();
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct UnwrapTraits<scoped_refptr<T>> {
|
||||
typedef T* ForwardType;
|
||||
static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct UnwrapTraits<WeakPtr<T>> {
|
||||
typedef const WeakPtr<T>& ForwardType;
|
||||
static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct UnwrapTraits<OwnedWrapper<T>> {
|
||||
typedef T* ForwardType;
|
||||
static ForwardType Unwrap(const OwnedWrapper<T>& o) { return o.get(); }
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct UnwrapTraits<PassedWrapper<T>> {
|
||||
typedef T ForwardType;
|
||||
static T Unwrap(PassedWrapper<T>& o) { return o.Pass(); }
|
||||
};
|
||||
|
||||
// Utility for handling different refcounting semantics in the Bind()
|
||||
// function.
|
||||
template <bool is_method, typename T>
|
||||
struct MaybeRefcount;
|
||||
|
||||
template <typename T>
|
||||
struct MaybeRefcount<false, T> {
|
||||
static void AddRef(const T&) {}
|
||||
static void Release(const T&) {}
|
||||
};
|
||||
|
||||
template <typename T, size_t n>
|
||||
struct MaybeRefcount<false, T[n]> {
|
||||
static void AddRef(const T*) {}
|
||||
static void Release(const T*) {}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct MaybeRefcount<true, T> {
|
||||
static void AddRef(const T&) {}
|
||||
static void Release(const T&) {}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct MaybeRefcount<true, T*> {
|
||||
static void AddRef(T* o) { o->AddRef(); }
|
||||
static void Release(T* o) { o->Release(); }
|
||||
};
|
||||
|
||||
// No need to additionally AddRef() and Release() since we are storing a
|
||||
// scoped_refptr<> inside the storage object already.
|
||||
template <typename T>
|
||||
struct MaybeRefcount<true, scoped_refptr<T>> {
|
||||
static void AddRef(const scoped_refptr<T>& o) {}
|
||||
static void Release(const scoped_refptr<T>& o) {}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct MaybeRefcount<true, const T*> {
|
||||
static void AddRef(const T* o) { o->AddRef(); }
|
||||
static void Release(const T* o) { o->Release(); }
|
||||
};
|
||||
|
||||
// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
|
||||
// method. It is used internally by Bind() to select the correct
|
||||
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
|
||||
// the target object is invalidated.
|
||||
//
|
||||
// P1 should be the type of the object that will be received of the method.
|
||||
template <bool IsMethod, typename P1>
|
||||
struct IsWeakMethod : public false_type {};
|
||||
|
||||
template <typename T>
|
||||
struct IsWeakMethod<true, WeakPtr<T>> : public true_type {};
|
||||
|
||||
template <typename T>
|
||||
struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>> : public true_type {};
|
||||
|
||||
} // namespace cef_internal
|
||||
|
||||
template <typename T>
|
||||
static inline cef_internal::UnretainedWrapper<T> Unretained(T* o) {
|
||||
return cef_internal::UnretainedWrapper<T>(o);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline cef_internal::ConstRefWrapper<T> ConstRef(const T& o) {
|
||||
return cef_internal::ConstRefWrapper<T>(o);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline cef_internal::OwnedWrapper<T> Owned(T* o) {
|
||||
return cef_internal::OwnedWrapper<T>(o);
|
||||
}
|
||||
|
||||
// We offer 2 syntaxes for calling Passed(). The first takes a temporary and
|
||||
// is best suited for use with the return value of a function. The second
|
||||
// takes a pointer to the scoper and is just syntactic sugar to avoid having
|
||||
// to write Passed(scoper.Pass()).
|
||||
template <typename T>
|
||||
static inline cef_internal::PassedWrapper<T> Passed(T scoper) {
|
||||
return cef_internal::PassedWrapper<T>(scoper.Pass());
|
||||
}
|
||||
template <typename T>
|
||||
static inline cef_internal::PassedWrapper<T> Passed(T* scoper) {
|
||||
return cef_internal::PassedWrapper<T>(scoper->Pass());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline cef_internal::IgnoreResultHelper<T> IgnoreResult(T data) {
|
||||
return cef_internal::IgnoreResultHelper<T>(data);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline cef_internal::IgnoreResultHelper<Callback<T>> IgnoreResult(
|
||||
const Callback<T>& data) {
|
||||
return cef_internal::IgnoreResultHelper<Callback<T>>(data);
|
||||
}
|
||||
|
||||
void DoNothing();
|
||||
|
||||
template <typename T>
|
||||
void DeletePointer(T* obj) {
|
||||
delete obj;
|
||||
}
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_BIND_HELPERS_H_
|
@ -27,61 +27,128 @@
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// This file adds defines about the platform we're currently building on.
|
||||
//
|
||||
// Operating System:
|
||||
// OS_AIX / OS_ANDROID / OS_ASMJS / OS_FREEBSD / OS_FUCHSIA / OS_IOS /
|
||||
// OS_LINUX / OS_MAC / OS_NACL (SFI or NONSFI) / OS_NETBSD / OS_OPENBSD /
|
||||
// OS_QNX / OS_SOLARIS / OS_WIN
|
||||
// Operating System family:
|
||||
// OS_APPLE: IOS or MAC
|
||||
// OS_BSD: FREEBSD or NETBSD or OPENBSD
|
||||
// OS_POSIX: AIX or ANDROID or ASMJS or CHROMEOS or FREEBSD or IOS or LINUX
|
||||
// or MAC or NACL or NETBSD or OPENBSD or QNX or SOLARIS
|
||||
//
|
||||
// /!\ Note: OS_CHROMEOS is set by the build system, not this file
|
||||
//
|
||||
// Compiler:
|
||||
// COMPILER_MSVC / COMPILER_GCC
|
||||
//
|
||||
// Processor:
|
||||
// ARCH_CPU_ARM64 / ARCH_CPU_ARMEL / ARCH_CPU_MIPS / ARCH_CPU_MIPS64 /
|
||||
// ARCH_CPU_MIPS64EL / ARCH_CPU_MIPSEL / ARCH_CPU_PPC64 / ARCH_CPU_S390 /
|
||||
// ARCH_CPU_S390X / ARCH_CPU_X86 / ARCH_CPU_X86_64
|
||||
// Processor family:
|
||||
// ARCH_CPU_ARM_FAMILY: ARMEL or ARM64
|
||||
// ARCH_CPU_MIPS_FAMILY: MIPS64EL or MIPSEL or MIPS64 or MIPS
|
||||
// ARCH_CPU_PPC64_FAMILY: PPC64
|
||||
// ARCH_CPU_S390_FAMILY: S390 or S390X
|
||||
// ARCH_CPU_X86_FAMILY: X86 or X86_64
|
||||
// Processor features:
|
||||
// ARCH_CPU_31_BITS / ARCH_CPU_32_BITS / ARCH_CPU_64_BITS
|
||||
// ARCH_CPU_BIG_ENDIAN / ARCH_CPU_LITTLE_ENDIAN
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_BUILD_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_BUILD_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#if defined(_WIN32)
|
||||
#ifndef OS_WIN
|
||||
#define OS_WIN 1
|
||||
#endif
|
||||
// A set of macros to use for platform detection.
|
||||
#if defined(ANDROID)
|
||||
#define OS_ANDROID 1
|
||||
#elif defined(__APPLE__)
|
||||
// New platform defines after https://crbug.com/1105907.
|
||||
#ifndef OS_MAC
|
||||
// Only include TargetConditionals after testing ANDROID as some Android builds
|
||||
// on the Mac have this header available and it's not needed unless the target
|
||||
// is really an Apple platform.
|
||||
#include <TargetConditionals.h>
|
||||
#if defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE
|
||||
#define OS_IOS 1
|
||||
#else
|
||||
#define OS_MAC 1
|
||||
// For backwards compatibility.
|
||||
#define OS_MACOSX 1
|
||||
#endif // defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE
|
||||
#elif defined(__linux__)
|
||||
#if !defined(OS_CHROMEOS)
|
||||
// Do not define OS_LINUX on Chrome OS build.
|
||||
// The OS_CHROMEOS macro is defined in GN.
|
||||
#define OS_LINUX 1
|
||||
#endif // !defined(OS_CHROMEOS)
|
||||
// Include a system header to pull in features.h for glibc/uclibc macros.
|
||||
#include <unistd.h>
|
||||
#if defined(__GLIBC__) && !defined(__UCLIBC__)
|
||||
// We really are using glibc, not uClibc pretending to be glibc.
|
||||
#define LIBC_GLIBC 1
|
||||
#endif
|
||||
#ifndef OS_APPLE
|
||||
#elif defined(_WIN32)
|
||||
#define OS_WIN 1
|
||||
#elif defined(__Fuchsia__)
|
||||
#define OS_FUCHSIA 1
|
||||
#elif defined(__FreeBSD__)
|
||||
#define OS_FREEBSD 1
|
||||
#elif defined(__NetBSD__)
|
||||
#define OS_NETBSD 1
|
||||
#elif defined(__OpenBSD__)
|
||||
#define OS_OPENBSD 1
|
||||
#elif defined(__sun)
|
||||
#define OS_SOLARIS 1
|
||||
#elif defined(__QNXNTO__)
|
||||
#define OS_QNX 1
|
||||
#elif defined(_AIX)
|
||||
#define OS_AIX 1
|
||||
#elif defined(__asmjs__) || defined(__wasm__)
|
||||
#define OS_ASMJS 1
|
||||
#else
|
||||
#error Please add support for your platform in include/base/cef_build.h
|
||||
#endif
|
||||
// NOTE: Adding a new port? Please follow
|
||||
// https://chromium.googlesource.com/chromium/src/+/master/docs/new_port_policy.md
|
||||
|
||||
#if defined(OS_MAC) || defined(OS_IOS)
|
||||
#define OS_APPLE 1
|
||||
#endif
|
||||
// Old platform defines retained for backwards compatibility.
|
||||
#ifndef OS_MACOSX
|
||||
#define OS_MACOSX 1
|
||||
#endif
|
||||
#elif defined(__linux__)
|
||||
#ifndef OS_LINUX
|
||||
#define OS_LINUX 1
|
||||
#endif
|
||||
#else
|
||||
#error Please add support for your platform in cef_build.h
|
||||
|
||||
// For access to standard BSD features, use OS_BSD instead of a
|
||||
// more specific macro.
|
||||
#if defined(OS_FREEBSD) || defined(OS_NETBSD) || defined(OS_OPENBSD)
|
||||
#define OS_BSD 1
|
||||
#endif
|
||||
|
||||
// For access to standard POSIXish features, use OS_POSIX instead of a
|
||||
// more specific macro.
|
||||
#if defined(OS_MAC) || defined(OS_LINUX)
|
||||
#ifndef OS_POSIX
|
||||
#if defined(OS_AIX) || defined(OS_ANDROID) || defined(OS_ASMJS) || \
|
||||
defined(OS_FREEBSD) || defined(OS_IOS) || defined(OS_LINUX) || \
|
||||
defined(OS_CHROMEOS) || defined(OS_MAC) || defined(OS_NACL) || \
|
||||
defined(OS_NETBSD) || defined(OS_OPENBSD) || defined(OS_QNX) || \
|
||||
defined(OS_SOLARIS)
|
||||
#define OS_POSIX 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Compiler detection.
|
||||
// Compiler detection. Note: clang masquerades as GCC on POSIX and as MSVC on
|
||||
// Windows.
|
||||
#if defined(__GNUC__)
|
||||
#ifndef COMPILER_GCC
|
||||
#define COMPILER_GCC 1
|
||||
#endif
|
||||
#elif defined(_MSC_VER)
|
||||
#ifndef COMPILER_MSVC
|
||||
#define COMPILER_MSVC 1
|
||||
#endif
|
||||
#else
|
||||
#error Please add support for your compiler in cef_build.h
|
||||
#error Please add support for your compiler in build/build_config.h
|
||||
#endif
|
||||
|
||||
// Processor architecture detection. For more info on what's defined, see:
|
||||
@ -98,6 +165,26 @@
|
||||
#define ARCH_CPU_X86 1
|
||||
#define ARCH_CPU_32_BITS 1
|
||||
#define ARCH_CPU_LITTLE_ENDIAN 1
|
||||
#elif defined(__s390x__)
|
||||
#define ARCH_CPU_S390_FAMILY 1
|
||||
#define ARCH_CPU_S390X 1
|
||||
#define ARCH_CPU_64_BITS 1
|
||||
#define ARCH_CPU_BIG_ENDIAN 1
|
||||
#elif defined(__s390__)
|
||||
#define ARCH_CPU_S390_FAMILY 1
|
||||
#define ARCH_CPU_S390 1
|
||||
#define ARCH_CPU_31_BITS 1
|
||||
#define ARCH_CPU_BIG_ENDIAN 1
|
||||
#elif (defined(__PPC64__) || defined(__PPC__)) && defined(__BIG_ENDIAN__)
|
||||
#define ARCH_CPU_PPC64_FAMILY 1
|
||||
#define ARCH_CPU_PPC64 1
|
||||
#define ARCH_CPU_64_BITS 1
|
||||
#define ARCH_CPU_BIG_ENDIAN 1
|
||||
#elif defined(__PPC64__)
|
||||
#define ARCH_CPU_PPC64_FAMILY 1
|
||||
#define ARCH_CPU_PPC64 1
|
||||
#define ARCH_CPU_64_BITS 1
|
||||
#define ARCH_CPU_LITTLE_ENDIAN 1
|
||||
#elif defined(__ARMEL__)
|
||||
#define ARCH_CPU_ARM_FAMILY 1
|
||||
#define ARCH_CPU_ARMEL 1
|
||||
@ -108,21 +195,42 @@
|
||||
#define ARCH_CPU_ARM64 1
|
||||
#define ARCH_CPU_64_BITS 1
|
||||
#define ARCH_CPU_LITTLE_ENDIAN 1
|
||||
#elif defined(__pnacl__)
|
||||
#elif defined(__pnacl__) || defined(__asmjs__) || defined(__wasm__)
|
||||
#define ARCH_CPU_32_BITS 1
|
||||
#define ARCH_CPU_LITTLE_ENDIAN 1
|
||||
#elif defined(__MIPSEL__)
|
||||
#if defined(__LP64__)
|
||||
#define ARCH_CPU_MIPS_FAMILY 1
|
||||
#define ARCH_CPU_MIPS64EL 1
|
||||
#define ARCH_CPU_64_BITS 1
|
||||
#define ARCH_CPU_LITTLE_ENDIAN 1
|
||||
#else
|
||||
#define ARCH_CPU_MIPS_FAMILY 1
|
||||
#define ARCH_CPU_MIPSEL 1
|
||||
#define ARCH_CPU_32_BITS 1
|
||||
#define ARCH_CPU_LITTLE_ENDIAN 1
|
||||
#endif
|
||||
#elif defined(__MIPSEB__)
|
||||
#if defined(__LP64__)
|
||||
#define ARCH_CPU_MIPS_FAMILY 1
|
||||
#define ARCH_CPU_MIPS64 1
|
||||
#define ARCH_CPU_64_BITS 1
|
||||
#define ARCH_CPU_BIG_ENDIAN 1
|
||||
#else
|
||||
#error Please add support for your architecture in cef_build.h
|
||||
#define ARCH_CPU_MIPS_FAMILY 1
|
||||
#define ARCH_CPU_MIPS 1
|
||||
#define ARCH_CPU_32_BITS 1
|
||||
#define ARCH_CPU_BIG_ENDIAN 1
|
||||
#endif
|
||||
#else
|
||||
#error Please add support for your architecture in include/base/cef_build.h
|
||||
#endif
|
||||
|
||||
// Type detection for wchar_t.
|
||||
#if defined(OS_WIN)
|
||||
#define WCHAR_T_IS_UTF16
|
||||
#elif defined(OS_FUCHSIA)
|
||||
#define WCHAR_T_IS_UTF32
|
||||
#elif defined(OS_POSIX) && defined(COMPILER_GCC) && defined(__WCHAR_MAX__) && \
|
||||
(__WCHAR_MAX__ == 0x7fffffff || __WCHAR_MAX__ == 0xffffffff)
|
||||
#define WCHAR_T_IS_UTF32
|
||||
@ -134,82 +242,18 @@
|
||||
// short wchar works for them.
|
||||
#define WCHAR_T_IS_UTF16
|
||||
#else
|
||||
#error Please add support for your compiler in cef_build.h
|
||||
#error Please add support for your compiler in include/base/cef_build.h
|
||||
#endif
|
||||
|
||||
// Annotate a function indicating the caller must examine the return value.
|
||||
// Use like:
|
||||
// int foo() WARN_UNUSED_RESULT;
|
||||
// To explicitly ignore a result, see |ignore_result()| in <base/macros.h>.
|
||||
#ifndef WARN_UNUSED_RESULT
|
||||
#if defined(COMPILER_GCC)
|
||||
#define WARN_UNUSED_RESULT __attribute__((warn_unused_result))
|
||||
#else
|
||||
#define WARN_UNUSED_RESULT
|
||||
#endif
|
||||
#endif // WARN_UNUSED_RESULT
|
||||
|
||||
// Annotate a typedef or function indicating it's ok if it's not used.
|
||||
// Use like:
|
||||
// typedef Foo Bar ALLOW_UNUSED_TYPE;
|
||||
#ifndef ALLOW_UNUSED_TYPE
|
||||
#if defined(COMPILER_GCC)
|
||||
#define ALLOW_UNUSED_TYPE __attribute__((unused))
|
||||
#else
|
||||
#define ALLOW_UNUSED_TYPE
|
||||
#endif
|
||||
#endif // ALLOW_UNUSED_TYPE
|
||||
|
||||
// Annotate a variable indicating it's ok if the variable is not used.
|
||||
// (Typically used to silence a compiler warning when the assignment
|
||||
// is important for some other reason.)
|
||||
// Use like:
|
||||
// int x = ...;
|
||||
// ALLOW_UNUSED_LOCAL(x);
|
||||
#ifndef ALLOW_UNUSED_LOCAL
|
||||
#define ALLOW_UNUSED_LOCAL(x) false ? (void)x : (void)0
|
||||
#endif
|
||||
|
||||
// Sanitizers annotations.
|
||||
#if defined(__has_attribute)
|
||||
#if __has_attribute(no_sanitize)
|
||||
#define NO_SANITIZE(what) __attribute__((no_sanitize(what)))
|
||||
#endif
|
||||
#endif
|
||||
#if !defined(NO_SANITIZE)
|
||||
#define NO_SANITIZE(what)
|
||||
#if defined(OS_ANDROID)
|
||||
// The compiler thinks std::string::const_iterator and "const char*" are
|
||||
// equivalent types.
|
||||
#define STD_STRING_ITERATOR_IS_CHAR_POINTER
|
||||
// The compiler thinks std::u16string::const_iterator and "char16*" are
|
||||
// equivalent types.
|
||||
#define BASE_STRING16_ITERATOR_IS_CHAR16_POINTER
|
||||
#endif
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
// Annotate a virtual method indicating it must be overriding a virtual method
|
||||
// in the parent class.
|
||||
// Use like:
|
||||
// void foo() OVERRIDE;
|
||||
// NOTE: This define should only be used in classes exposed to the client since
|
||||
// C++11 support may not be enabled in client applications. CEF internal classes
|
||||
// should use the `override` keyword directly.
|
||||
#ifndef OVERRIDE
|
||||
#if defined(__clang__)
|
||||
#define OVERRIDE override
|
||||
#elif defined(COMPILER_MSVC) && _MSC_VER >= 1600
|
||||
// Visual Studio 2010 and later support override.
|
||||
#define OVERRIDE override
|
||||
#elif defined(COMPILER_GCC) && __cplusplus >= 201103 && \
|
||||
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100) >= 40700
|
||||
// GCC 4.7 supports explicit virtual overrides when C++11 support is enabled.
|
||||
#define OVERRIDE override
|
||||
#else
|
||||
#define OVERRIDE
|
||||
#endif
|
||||
#endif // OVERRIDE
|
||||
|
||||
// Check for C++11 template alias support which was added in VS2013 and GCC4.7.
|
||||
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2258.pdf
|
||||
#if __cplusplus > 199711L || (defined(_MSC_VER) && _MSC_VER >= 1800) || \
|
||||
(defined(__GNUC__) && \
|
||||
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__ >= 40700))
|
||||
#define HAS_CPP11_TEMPLATE_ALIAS_SUPPORT
|
||||
#endif
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_BUILD_H_
|
||||
|
@ -28,16 +28,49 @@
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Usage documentation
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Overview:
|
||||
// A callback is similar in concept to a function pointer: it wraps a runnable
|
||||
// object such as a function, method, lambda, or even another callback, allowing
|
||||
// the runnable object to be invoked later via the callback object.
|
||||
//
|
||||
// Unlike function pointers, callbacks are created with base::BindOnce() or
|
||||
// base::BindRepeating() and support partial function application.
|
||||
//
|
||||
// A base::OnceCallback may be Run() at most once; a base::RepeatingCallback may
|
||||
// be Run() any number of times. |is_null()| is guaranteed to return true for a
|
||||
// moved-from callback.
|
||||
//
|
||||
// // The lambda takes two arguments, but the first argument |x| is bound at
|
||||
// // callback creation.
|
||||
// base::OnceCallback<int(int)> cb = base::BindOnce([] (int x, int y) {
|
||||
// return x + y;
|
||||
// }, 1);
|
||||
// // Run() only needs the remaining unbound argument |y|.
|
||||
// printf("1 + 2 = %d\n", std::move(cb).Run(2)); // Prints 3
|
||||
// printf("cb is null? %s\n",
|
||||
// cb.is_null() ? "true" : "false"); // Prints true
|
||||
// std::move(cb).Run(2); // Crashes since |cb| has already run.
|
||||
//
|
||||
// Callbacks also support cancellation. A common use is binding the receiver
|
||||
// object as a WeakPtr<T>. If that weak pointer is invalidated, calling Run()
|
||||
// will be a no-op. Note that |IsCancelled()| and |is_null()| are distinct:
|
||||
// simply cancelling a callback will not also make it null.
|
||||
//
|
||||
// base::Callback is currently a type alias for base::RepeatingCallback. In the
|
||||
// future, we expect to flip this to default to base::OnceCallback.
|
||||
//
|
||||
// See https://chromium.googlesource.com/chromium/src/+/HEAD/docs/callback.md
|
||||
// for the full documentation.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_CALLBACK_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_CALLBACK_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_CALLBACK_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/callback.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
@ -45,755 +78,175 @@
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include "include/base/cef_bind.h"
|
||||
#include "include/base/cef_callback_forward.h"
|
||||
#include "include/base/cef_template_util.h"
|
||||
#include "include/base/cef_logging.h"
|
||||
#include "include/base/internal/cef_callback_internal.h"
|
||||
|
||||
// NOTE: Header files that do not require the full definition of Callback or
|
||||
// Closure should #include "base/cef_callback_forward.h" instead of this file.
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Introduction
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// The templated Callback class is a generalized function object. Together
|
||||
// with the Bind() function in bind.h, they provide a type-safe method for
|
||||
// performing partial application of functions.
|
||||
//
|
||||
// Partial application (or "currying") is the process of binding a subset of
|
||||
// a function's arguments to produce another function that takes fewer
|
||||
// arguments. This can be used to pass around a unit of delayed execution,
|
||||
// much like lexical closures are used in other languages. For example, it
|
||||
// is used in Chromium code to schedule tasks on different MessageLoops.
|
||||
//
|
||||
// A callback with no unbound input parameters (base::Callback<void(void)>)
|
||||
// is called a base::Closure. Note that this is NOT the same as what other
|
||||
// languages refer to as a closure -- it does not retain a reference to its
|
||||
// enclosing environment.
|
||||
//
|
||||
// MEMORY MANAGEMENT AND PASSING
|
||||
//
|
||||
// The Callback objects themselves should be passed by const-reference, and
|
||||
// stored by copy. They internally store their state via a refcounted class
|
||||
// and thus do not need to be deleted.
|
||||
//
|
||||
// The reason to pass via a const-reference is to avoid unnecessary
|
||||
// AddRef/Release pairs to the internal state.
|
||||
//
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// Quick reference for basic stuff
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// BINDING A BARE FUNCTION
|
||||
//
|
||||
// int Return5() { return 5; }
|
||||
// base::Callback<int(void)> func_cb = base::Bind(&Return5);
|
||||
// LOG(INFO) << func_cb.Run(); // Prints 5.
|
||||
//
|
||||
// BINDING A CLASS METHOD
|
||||
//
|
||||
// The first argument to bind is the member function to call, the second is
|
||||
// the object on which to call it.
|
||||
//
|
||||
// class Ref : public base::RefCountedThreadSafe<Ref> {
|
||||
// public:
|
||||
// int Foo() { return 3; }
|
||||
// void PrintBye() { LOG(INFO) << "bye."; }
|
||||
// };
|
||||
// scoped_refptr<Ref> ref = new Ref();
|
||||
// base::Callback<void(void)> ref_cb = base::Bind(&Ref::Foo, ref);
|
||||
// LOG(INFO) << ref_cb.Run(); // Prints out 3.
|
||||
//
|
||||
// By default the object must support RefCounted or you will get a compiler
|
||||
// error. If you're passing between threads, be sure it's
|
||||
// RefCountedThreadSafe! See "Advanced binding of member functions" below if
|
||||
// you don't want to use reference counting.
|
||||
//
|
||||
// RUNNING A CALLBACK
|
||||
//
|
||||
// Callbacks can be run with their "Run" method, which has the same
|
||||
// signature as the template argument to the callback.
|
||||
//
|
||||
// void DoSomething(const base::Callback<void(int, std::string)>& callback) {
|
||||
// callback.Run(5, "hello");
|
||||
// }
|
||||
//
|
||||
// Callbacks can be run more than once (they don't get deleted or marked when
|
||||
// run). However, this precludes using base::Passed (see below).
|
||||
//
|
||||
// void DoSomething(const base::Callback<double(double)>& callback) {
|
||||
// double myresult = callback.Run(3.14159);
|
||||
// myresult += callback.Run(2.71828);
|
||||
// }
|
||||
//
|
||||
// PASSING UNBOUND INPUT PARAMETERS
|
||||
//
|
||||
// Unbound parameters are specified at the time a callback is Run(). They are
|
||||
// specified in the Callback template type:
|
||||
//
|
||||
// void MyFunc(int i, const std::string& str) {}
|
||||
// base::Callback<void(int, const std::string&)> cb = base::Bind(&MyFunc);
|
||||
// cb.Run(23, "hello, world");
|
||||
//
|
||||
// PASSING BOUND INPUT PARAMETERS
|
||||
//
|
||||
// Bound parameters are specified when you create thee callback as arguments
|
||||
// to Bind(). They will be passed to the function and the Run()ner of the
|
||||
// callback doesn't see those values or even know that the function it's
|
||||
// calling.
|
||||
//
|
||||
// void MyFunc(int i, const std::string& str) {}
|
||||
// base::Callback<void(void)> cb = base::Bind(&MyFunc, 23, "hello world");
|
||||
// cb.Run();
|
||||
//
|
||||
// A callback with no unbound input parameters (base::Callback<void(void)>)
|
||||
// is called a base::Closure. So we could have also written:
|
||||
//
|
||||
// base::Closure cb = base::Bind(&MyFunc, 23, "hello world");
|
||||
//
|
||||
// When calling member functions, bound parameters just go after the object
|
||||
// pointer.
|
||||
//
|
||||
// base::Closure cb = base::Bind(&MyClass::MyFunc, this, 23, "hello world");
|
||||
//
|
||||
// PARTIAL BINDING OF PARAMETERS
|
||||
//
|
||||
// You can specify some parameters when you create the callback, and specify
|
||||
// the rest when you execute the callback.
|
||||
//
|
||||
// void MyFunc(int i, const std::string& str) {}
|
||||
// base::Callback<void(const std::string&)> cb = base::Bind(&MyFunc, 23);
|
||||
// cb.Run("hello world");
|
||||
//
|
||||
// When calling a function bound parameters are first, followed by unbound
|
||||
// parameters.
|
||||
//
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// Quick reference for advanced binding
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// BINDING A CLASS METHOD WITH WEAK POINTERS
|
||||
//
|
||||
// base::Bind(&MyClass::Foo, GetWeakPtr());
|
||||
//
|
||||
// The callback will not be run if the object has already been destroyed.
|
||||
// DANGER: weak pointers are not threadsafe, so don't use this
|
||||
// when passing between threads!
|
||||
//
|
||||
// BINDING A CLASS METHOD WITH MANUAL LIFETIME MANAGEMENT
|
||||
//
|
||||
// base::Bind(&MyClass::Foo, base::Unretained(this));
|
||||
//
|
||||
// This disables all lifetime management on the object. You're responsible
|
||||
// for making sure the object is alive at the time of the call. You break it,
|
||||
// you own it!
|
||||
//
|
||||
// BINDING A CLASS METHOD AND HAVING THE CALLBACK OWN THE CLASS
|
||||
//
|
||||
// MyClass* myclass = new MyClass;
|
||||
// base::Bind(&MyClass::Foo, base::Owned(myclass));
|
||||
//
|
||||
// The object will be deleted when the callback is destroyed, even if it's
|
||||
// not run (like if you post a task during shutdown). Potentially useful for
|
||||
// "fire and forget" cases.
|
||||
//
|
||||
// IGNORING RETURN VALUES
|
||||
//
|
||||
// Sometimes you want to call a function that returns a value in a callback
|
||||
// that doesn't expect a return value.
|
||||
//
|
||||
// int DoSomething(int arg) { cout << arg << endl; }
|
||||
// base::Callback<void<int>) cb =
|
||||
// base::Bind(base::IgnoreResult(&DoSomething));
|
||||
//
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// Quick reference for binding parameters to Bind()
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Bound parameters are specified as arguments to Bind() and are passed to the
|
||||
// function. A callback with no parameters or no unbound parameters is called a
|
||||
// Closure (base::Callback<void(void)> and base::Closure are the same thing).
|
||||
//
|
||||
// PASSING PARAMETERS OWNED BY THE CALLBACK
|
||||
//
|
||||
// void Foo(int* arg) { cout << *arg << endl; }
|
||||
// int* pn = new int(1);
|
||||
// base::Closure foo_callback = base::Bind(&foo, base::Owned(pn));
|
||||
//
|
||||
// The parameter will be deleted when the callback is destroyed, even if it's
|
||||
// not run (like if you post a task during shutdown).
|
||||
//
|
||||
// PASSING PARAMETERS AS A scoped_ptr
|
||||
//
|
||||
// void TakesOwnership(scoped_ptr<Foo> arg) {}
|
||||
// scoped_ptr<Foo> f(new Foo);
|
||||
// // f becomes null during the following call.
|
||||
// base::Closure cb = base::Bind(&TakesOwnership, base::Passed(&f));
|
||||
//
|
||||
// Ownership of the parameter will be with the callback until the it is run,
|
||||
// when ownership is passed to the callback function. This means the callback
|
||||
// can only be run once. If the callback is never run, it will delete the
|
||||
// object when it's destroyed.
|
||||
//
|
||||
// PASSING PARAMETERS AS A scoped_refptr
|
||||
//
|
||||
// void TakesOneRef(scoped_refptr<Foo> arg) {}
|
||||
// scoped_refptr<Foo> f(new Foo)
|
||||
// base::Closure cb = base::Bind(&TakesOneRef, f);
|
||||
//
|
||||
// This should "just work." The closure will take a reference as long as it
|
||||
// is alive, and another reference will be taken for the called function.
|
||||
//
|
||||
// PASSING PARAMETERS BY REFERENCE
|
||||
//
|
||||
// Const references are *copied* unless ConstRef is used. Example:
|
||||
//
|
||||
// void foo(const int& arg) { printf("%d %p\n", arg, &arg); }
|
||||
// int n = 1;
|
||||
// base::Closure has_copy = base::Bind(&foo, n);
|
||||
// base::Closure has_ref = base::Bind(&foo, base::ConstRef(n));
|
||||
// n = 2;
|
||||
// foo(n); // Prints "2 0xaaaaaaaaaaaa"
|
||||
// has_copy.Run(); // Prints "1 0xbbbbbbbbbbbb"
|
||||
// has_ref.Run(); // Prints "2 0xaaaaaaaaaaaa"
|
||||
//
|
||||
// Normally parameters are copied in the closure. DANGER: ConstRef stores a
|
||||
// const reference instead, referencing the original parameter. This means
|
||||
// that you must ensure the object outlives the callback!
|
||||
//
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// Implementation notes
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// WHERE IS THIS DESIGN FROM:
|
||||
//
|
||||
// The design Callback and Bind is heavily influenced by C++'s
|
||||
// tr1::function/tr1::bind, and by the "Google Callback" system used inside
|
||||
// Google.
|
||||
//
|
||||
//
|
||||
// HOW THE IMPLEMENTATION WORKS:
|
||||
//
|
||||
// There are three main components to the system:
|
||||
// 1) The Callback classes.
|
||||
// 2) The Bind() functions.
|
||||
// 3) The arguments wrappers (e.g., Unretained() and ConstRef()).
|
||||
//
|
||||
// The Callback classes represent a generic function pointer. Internally,
|
||||
// it stores a refcounted piece of state that represents the target function
|
||||
// and all its bound parameters. Each Callback specialization has a templated
|
||||
// constructor that takes an BindState<>*. In the context of the constructor,
|
||||
// the static type of this BindState<> pointer uniquely identifies the
|
||||
// function it is representing, all its bound parameters, and a Run() method
|
||||
// that is capable of invoking the target.
|
||||
//
|
||||
// Callback's constructor takes the BindState<>* that has the full static type
|
||||
// and erases the target function type as well as the types of the bound
|
||||
// parameters. It does this by storing a pointer to the specific Run()
|
||||
// function, and upcasting the state of BindState<>* to a
|
||||
// BindStateBase*. This is safe as long as this BindStateBase pointer
|
||||
// is only used with the stored Run() pointer.
|
||||
//
|
||||
// To BindState<> objects are created inside the Bind() functions.
|
||||
// These functions, along with a set of internal templates, are responsible for
|
||||
//
|
||||
// - Unwrapping the function signature into return type, and parameters
|
||||
// - Determining the number of parameters that are bound
|
||||
// - Creating the BindState storing the bound parameters
|
||||
// - Performing compile-time asserts to avoid error-prone behavior
|
||||
// - Returning an Callback<> with an arity matching the number of unbound
|
||||
// parameters and that knows the correct refcounting semantics for the
|
||||
// target object if we are binding a method.
|
||||
//
|
||||
// The Bind functions do the above using type-inference, and template
|
||||
// specializations.
|
||||
//
|
||||
// By default Bind() will store copies of all bound parameters, and attempt
|
||||
// to refcount a target object if the function being bound is a class method.
|
||||
// These copies are created even if the function takes parameters as const
|
||||
// references. (Binding to non-const references is forbidden, see bind.h.)
|
||||
//
|
||||
// To change this behavior, we introduce a set of argument wrappers
|
||||
// (e.g., Unretained(), and ConstRef()). These are simple container templates
|
||||
// that are passed by value, and wrap a pointer to argument. See the
|
||||
// file-level comment in base/bind_helpers.h for more info.
|
||||
//
|
||||
// These types are passed to the Unwrap() functions, and the MaybeRefcount()
|
||||
// functions respectively to modify the behavior of Bind(). The Unwrap()
|
||||
// and MaybeRefcount() functions change behavior by doing partial
|
||||
// specialization based on whether or not a parameter is a wrapper type.
|
||||
//
|
||||
// ConstRef() is similar to tr1::cref. Unretained() is specific to Chromium.
|
||||
//
|
||||
//
|
||||
// WHY NOT TR1 FUNCTION/BIND?
|
||||
//
|
||||
// Direct use of tr1::function and tr1::bind was considered, but ultimately
|
||||
// rejected because of the number of copy constructors invocations involved
|
||||
// in the binding of arguments during construction, and the forwarding of
|
||||
// arguments during invocation. These copies will no longer be an issue in
|
||||
// C++0x because C++0x will support rvalue reference allowing for the compiler
|
||||
// to avoid these copies. However, waiting for C++0x is not an option.
|
||||
//
|
||||
// Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the
|
||||
// tr1::bind call itself will invoke a non-trivial copy constructor three times
|
||||
// for each bound parameter. Also, each when passing a tr1::function, each
|
||||
// bound argument will be copied again.
|
||||
//
|
||||
// In addition to the copies taken at binding and invocation, copying a
|
||||
// tr1::function causes a copy to be made of all the bound parameters and
|
||||
// state.
|
||||
//
|
||||
// Furthermore, in Chromium, it is desirable for the Callback to take a
|
||||
// reference on a target object when representing a class method call. This
|
||||
// is not supported by tr1.
|
||||
//
|
||||
// Lastly, tr1::function and tr1::bind has a more general and flexible API.
|
||||
// This includes things like argument reordering by use of
|
||||
// tr1::bind::placeholder, support for non-const reference parameters, and some
|
||||
// limited amount of subtyping of the tr1::function object (e.g.,
|
||||
// tr1::function<int(int)> is convertible to tr1::function<void(int)>).
|
||||
//
|
||||
// These are not features that are required in Chromium. Some of them, such as
|
||||
// allowing for reference parameters, and subtyping of functions, may actually
|
||||
// become a source of errors. Removing support for these features actually
|
||||
// allows for a simpler implementation, and a terser Currying API.
|
||||
//
|
||||
//
|
||||
// WHY NOT GOOGLE CALLBACKS?
|
||||
//
|
||||
// The Google callback system also does not support refcounting. Furthermore,
|
||||
// its implementation has a number of strange edge cases with respect to type
|
||||
// conversion of its arguments. In particular, the argument's constness must
|
||||
// at times match exactly the function signature, or the type-inference might
|
||||
// break. Given the above, writing a custom solution was easier.
|
||||
//
|
||||
//
|
||||
// MISSING FUNCTIONALITY
|
||||
// - Invoking the return of Bind. Bind(&foo).Run() does not work;
|
||||
// - Binding arrays to functions that take a non-const pointer.
|
||||
// Example:
|
||||
// void Foo(const char* ptr);
|
||||
// void Bar(char* ptr);
|
||||
// Bind(&Foo, "test");
|
||||
// Bind(&Bar, "test"); // This fails because ptr is not const.
|
||||
|
||||
namespace base {
|
||||
|
||||
// First, we forward declare the Callback class template. This informs the
|
||||
// compiler that the template only has 1 type parameter which is the function
|
||||
// signature that the Callback is representing.
|
||||
//
|
||||
// After this, create template specializations for 0-7 parameters. Note that
|
||||
// even though the template typelist grows, the specialization still
|
||||
// only has one type: the function signature.
|
||||
//
|
||||
// If you are thinking of forward declaring Callback in your own header file,
|
||||
// please include "base/callback_forward.h" instead.
|
||||
template <typename Sig>
|
||||
class Callback;
|
||||
|
||||
namespace cef_internal {
|
||||
template <typename Runnable, typename RunType, typename BoundArgsType>
|
||||
struct BindState;
|
||||
} // namespace cef_internal
|
||||
|
||||
template <typename R>
|
||||
class Callback<R(void)> : public cef_internal::CallbackBase {
|
||||
template <typename R, typename... Args>
|
||||
class OnceCallback<R(Args...)> : public internal::CallbackBase {
|
||||
public:
|
||||
typedef R(RunType)();
|
||||
using ResultType = R;
|
||||
using RunType = R(Args...);
|
||||
using PolymorphicInvoke = R (*)(internal::BindStateBase*,
|
||||
internal::PassingType<Args>...);
|
||||
|
||||
Callback() : CallbackBase(NULL) {}
|
||||
constexpr OnceCallback() = default;
|
||||
OnceCallback(std::nullptr_t) = delete;
|
||||
|
||||
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
||||
// return the exact Callback<> type. See base/bind.h for details.
|
||||
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
||||
Callback(
|
||||
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
||||
: CallbackBase(bind_state) {
|
||||
// Force the assignment to a local variable of PolymorphicInvoke
|
||||
// so the compiler will typecheck that the passed in Run() method has
|
||||
// the correct type.
|
||||
PolymorphicInvoke invoke_func =
|
||||
&cef_internal::BindState<Runnable, BindRunType,
|
||||
BoundArgsType>::InvokerType::Run;
|
||||
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
||||
explicit OnceCallback(internal::BindStateBase* bind_state)
|
||||
: internal::CallbackBase(bind_state) {}
|
||||
|
||||
OnceCallback(const OnceCallback&) = delete;
|
||||
OnceCallback& operator=(const OnceCallback&) = delete;
|
||||
|
||||
OnceCallback(OnceCallback&&) noexcept = default;
|
||||
OnceCallback& operator=(OnceCallback&&) noexcept = default;
|
||||
|
||||
OnceCallback(RepeatingCallback<RunType> other)
|
||||
: internal::CallbackBase(std::move(other)) {}
|
||||
|
||||
OnceCallback& operator=(RepeatingCallback<RunType> other) {
|
||||
static_cast<internal::CallbackBase&>(*this) = std::move(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool Equals(const Callback& other) const {
|
||||
return CallbackBase::Equals(other);
|
||||
R Run(Args... args) const & {
|
||||
static_assert(!sizeof(*this),
|
||||
"OnceCallback::Run() may only be invoked on a non-const "
|
||||
"rvalue, i.e. std::move(callback).Run().");
|
||||
NOTREACHED();
|
||||
}
|
||||
|
||||
R Run() const {
|
||||
R Run(Args... args) && {
|
||||
// Move the callback instance into a local variable before the invocation,
|
||||
// that ensures the internal state is cleared after the invocation.
|
||||
// It's not safe to touch |this| after the invocation, since running the
|
||||
// bound function may destroy |this|.
|
||||
OnceCallback cb = std::move(*this);
|
||||
PolymorphicInvoke f =
|
||||
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
||||
|
||||
return f(bind_state_.get());
|
||||
reinterpret_cast<PolymorphicInvoke>(cb.polymorphic_invoke());
|
||||
return f(cb.bind_state_.get(), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
private:
|
||||
typedef R (*PolymorphicInvoke)(cef_internal::BindStateBase*);
|
||||
// Then() returns a new OnceCallback that receives the same arguments as
|
||||
// |this|, and with the return type of |then|. The returned callback will:
|
||||
// 1) Run the functor currently bound to |this| callback.
|
||||
// 2) Run the |then| callback with the result from step 1 as its single
|
||||
// argument.
|
||||
// 3) Return the value from running the |then| callback.
|
||||
//
|
||||
// Since this method generates a callback that is a replacement for `this`,
|
||||
// `this` will be consumed and reset to a null callback to ensure the
|
||||
// originally-bound functor can be run at most once.
|
||||
template <typename ThenR, typename... ThenArgs>
|
||||
OnceCallback<ThenR(Args...)> Then(OnceCallback<ThenR(ThenArgs...)> then) && {
|
||||
CHECK(then);
|
||||
return BindOnce(
|
||||
internal::ThenHelper<
|
||||
OnceCallback, OnceCallback<ThenR(ThenArgs...)>>::CreateTrampoline(),
|
||||
std::move(*this), std::move(then));
|
||||
}
|
||||
|
||||
// This overload is required; even though RepeatingCallback is implicitly
|
||||
// convertible to OnceCallback, that conversion will not used when matching
|
||||
// for template argument deduction.
|
||||
template <typename ThenR, typename... ThenArgs>
|
||||
OnceCallback<ThenR(Args...)> Then(
|
||||
RepeatingCallback<ThenR(ThenArgs...)> then) && {
|
||||
CHECK(then);
|
||||
return BindOnce(
|
||||
internal::ThenHelper<
|
||||
OnceCallback,
|
||||
RepeatingCallback<ThenR(ThenArgs...)>>::CreateTrampoline(),
|
||||
std::move(*this), std::move(then));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename R, typename A1>
|
||||
class Callback<R(A1)> : public cef_internal::CallbackBase {
|
||||
template <typename R, typename... Args>
|
||||
class RepeatingCallback<R(Args...)> : public internal::CallbackBaseCopyable {
|
||||
public:
|
||||
typedef R(RunType)(A1);
|
||||
using ResultType = R;
|
||||
using RunType = R(Args...);
|
||||
using PolymorphicInvoke = R (*)(internal::BindStateBase*,
|
||||
internal::PassingType<Args>...);
|
||||
|
||||
Callback() : CallbackBase(NULL) {}
|
||||
constexpr RepeatingCallback() = default;
|
||||
RepeatingCallback(std::nullptr_t) = delete;
|
||||
|
||||
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
||||
// return the exact Callback<> type. See base/bind.h for details.
|
||||
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
||||
Callback(
|
||||
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
||||
: CallbackBase(bind_state) {
|
||||
// Force the assignment to a local variable of PolymorphicInvoke
|
||||
// so the compiler will typecheck that the passed in Run() method has
|
||||
// the correct type.
|
||||
PolymorphicInvoke invoke_func =
|
||||
&cef_internal::BindState<Runnable, BindRunType,
|
||||
BoundArgsType>::InvokerType::Run;
|
||||
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
||||
explicit RepeatingCallback(internal::BindStateBase* bind_state)
|
||||
: internal::CallbackBaseCopyable(bind_state) {}
|
||||
|
||||
// Copyable and movable.
|
||||
RepeatingCallback(const RepeatingCallback&) = default;
|
||||
RepeatingCallback& operator=(const RepeatingCallback&) = default;
|
||||
RepeatingCallback(RepeatingCallback&&) noexcept = default;
|
||||
RepeatingCallback& operator=(RepeatingCallback&&) noexcept = default;
|
||||
|
||||
bool operator==(const RepeatingCallback& other) const {
|
||||
return EqualsInternal(other);
|
||||
}
|
||||
|
||||
bool Equals(const Callback& other) const {
|
||||
return CallbackBase::Equals(other);
|
||||
bool operator!=(const RepeatingCallback& other) const {
|
||||
return !operator==(other);
|
||||
}
|
||||
|
||||
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1) const {
|
||||
R Run(Args... args) const & {
|
||||
PolymorphicInvoke f =
|
||||
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
||||
|
||||
return f(bind_state_.get(), cef_internal::CallbackForward(a1));
|
||||
reinterpret_cast<PolymorphicInvoke>(this->polymorphic_invoke());
|
||||
return f(this->bind_state_.get(), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
private:
|
||||
typedef R (*PolymorphicInvoke)(
|
||||
cef_internal::BindStateBase*,
|
||||
typename cef_internal::CallbackParamTraits<A1>::ForwardType);
|
||||
};
|
||||
|
||||
template <typename R, typename A1, typename A2>
|
||||
class Callback<R(A1, A2)> : public cef_internal::CallbackBase {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2);
|
||||
|
||||
Callback() : CallbackBase(NULL) {}
|
||||
|
||||
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
||||
// return the exact Callback<> type. See base/bind.h for details.
|
||||
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
||||
Callback(
|
||||
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
||||
: CallbackBase(bind_state) {
|
||||
// Force the assignment to a local variable of PolymorphicInvoke
|
||||
// so the compiler will typecheck that the passed in Run() method has
|
||||
// the correct type.
|
||||
PolymorphicInvoke invoke_func =
|
||||
&cef_internal::BindState<Runnable, BindRunType,
|
||||
BoundArgsType>::InvokerType::Run;
|
||||
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
||||
}
|
||||
|
||||
bool Equals(const Callback& other) const {
|
||||
return CallbackBase::Equals(other);
|
||||
}
|
||||
|
||||
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2) const {
|
||||
R Run(Args... args) && {
|
||||
// Move the callback instance into a local variable before the invocation,
|
||||
// that ensures the internal state is cleared after the invocation.
|
||||
// It's not safe to touch |this| after the invocation, since running the
|
||||
// bound function may destroy |this|.
|
||||
RepeatingCallback cb = std::move(*this);
|
||||
PolymorphicInvoke f =
|
||||
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
||||
|
||||
return f(bind_state_.get(), cef_internal::CallbackForward(a1),
|
||||
cef_internal::CallbackForward(a2));
|
||||
reinterpret_cast<PolymorphicInvoke>(cb.polymorphic_invoke());
|
||||
return f(std::move(cb).bind_state_.get(), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
private:
|
||||
typedef R (*PolymorphicInvoke)(
|
||||
cef_internal::BindStateBase*,
|
||||
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType);
|
||||
// Then() returns a new RepeatingCallback that receives the same arguments as
|
||||
// |this|, and with the return type of |then|. The
|
||||
// returned callback will:
|
||||
// 1) Run the functor currently bound to |this| callback.
|
||||
// 2) Run the |then| callback with the result from step 1 as its single
|
||||
// argument.
|
||||
// 3) Return the value from running the |then| callback.
|
||||
//
|
||||
// If called on an rvalue (e.g. std::move(cb).Then(...)), this method
|
||||
// generates a callback that is a replacement for `this`. Therefore, `this`
|
||||
// will be consumed and reset to a null callback to ensure the
|
||||
// originally-bound functor will be run at most once.
|
||||
template <typename ThenR, typename... ThenArgs>
|
||||
RepeatingCallback<ThenR(Args...)> Then(
|
||||
RepeatingCallback<ThenR(ThenArgs...)> then) const& {
|
||||
CHECK(then);
|
||||
return BindRepeating(
|
||||
internal::ThenHelper<
|
||||
RepeatingCallback,
|
||||
RepeatingCallback<ThenR(ThenArgs...)>>::CreateTrampoline(),
|
||||
*this, std::move(then));
|
||||
}
|
||||
|
||||
template <typename ThenR, typename... ThenArgs>
|
||||
RepeatingCallback<ThenR(Args...)> Then(
|
||||
RepeatingCallback<ThenR(ThenArgs...)> then) && {
|
||||
CHECK(then);
|
||||
return BindRepeating(
|
||||
internal::ThenHelper<
|
||||
RepeatingCallback,
|
||||
RepeatingCallback<ThenR(ThenArgs...)>>::CreateTrampoline(),
|
||||
std::move(*this), std::move(then));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename R, typename A1, typename A2, typename A3>
|
||||
class Callback<R(A1, A2, A3)> : public cef_internal::CallbackBase {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3);
|
||||
|
||||
Callback() : CallbackBase(NULL) {}
|
||||
|
||||
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
||||
// return the exact Callback<> type. See base/bind.h for details.
|
||||
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
||||
Callback(
|
||||
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
||||
: CallbackBase(bind_state) {
|
||||
// Force the assignment to a local variable of PolymorphicInvoke
|
||||
// so the compiler will typecheck that the passed in Run() method has
|
||||
// the correct type.
|
||||
PolymorphicInvoke invoke_func =
|
||||
&cef_internal::BindState<Runnable, BindRunType,
|
||||
BoundArgsType>::InvokerType::Run;
|
||||
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
||||
}
|
||||
|
||||
bool Equals(const Callback& other) const {
|
||||
return CallbackBase::Equals(other);
|
||||
}
|
||||
|
||||
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3) const {
|
||||
PolymorphicInvoke f =
|
||||
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
||||
|
||||
return f(bind_state_.get(), cef_internal::CallbackForward(a1),
|
||||
cef_internal::CallbackForward(a2),
|
||||
cef_internal::CallbackForward(a3));
|
||||
}
|
||||
|
||||
private:
|
||||
typedef R (*PolymorphicInvoke)(
|
||||
cef_internal::BindStateBase*,
|
||||
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType);
|
||||
};
|
||||
|
||||
template <typename R, typename A1, typename A2, typename A3, typename A4>
|
||||
class Callback<R(A1, A2, A3, A4)> : public cef_internal::CallbackBase {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4);
|
||||
|
||||
Callback() : CallbackBase(NULL) {}
|
||||
|
||||
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
||||
// return the exact Callback<> type. See base/bind.h for details.
|
||||
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
||||
Callback(
|
||||
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
||||
: CallbackBase(bind_state) {
|
||||
// Force the assignment to a local variable of PolymorphicInvoke
|
||||
// so the compiler will typecheck that the passed in Run() method has
|
||||
// the correct type.
|
||||
PolymorphicInvoke invoke_func =
|
||||
&cef_internal::BindState<Runnable, BindRunType,
|
||||
BoundArgsType>::InvokerType::Run;
|
||||
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
||||
}
|
||||
|
||||
bool Equals(const Callback& other) const {
|
||||
return CallbackBase::Equals(other);
|
||||
}
|
||||
|
||||
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4) const {
|
||||
PolymorphicInvoke f =
|
||||
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
||||
|
||||
return f(bind_state_.get(), cef_internal::CallbackForward(a1),
|
||||
cef_internal::CallbackForward(a2),
|
||||
cef_internal::CallbackForward(a3),
|
||||
cef_internal::CallbackForward(a4));
|
||||
}
|
||||
|
||||
private:
|
||||
typedef R (*PolymorphicInvoke)(
|
||||
cef_internal::BindStateBase*,
|
||||
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType);
|
||||
};
|
||||
|
||||
template <typename R,
|
||||
typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5>
|
||||
class Callback<R(A1, A2, A3, A4, A5)> : public cef_internal::CallbackBase {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4, A5);
|
||||
|
||||
Callback() : CallbackBase(NULL) {}
|
||||
|
||||
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
||||
// return the exact Callback<> type. See base/bind.h for details.
|
||||
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
||||
Callback(
|
||||
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
||||
: CallbackBase(bind_state) {
|
||||
// Force the assignment to a local variable of PolymorphicInvoke
|
||||
// so the compiler will typecheck that the passed in Run() method has
|
||||
// the correct type.
|
||||
PolymorphicInvoke invoke_func =
|
||||
&cef_internal::BindState<Runnable, BindRunType,
|
||||
BoundArgsType>::InvokerType::Run;
|
||||
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
||||
}
|
||||
|
||||
bool Equals(const Callback& other) const {
|
||||
return CallbackBase::Equals(other);
|
||||
}
|
||||
|
||||
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename cef_internal::CallbackParamTraits<A5>::ForwardType a5) const {
|
||||
PolymorphicInvoke f =
|
||||
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
||||
|
||||
return f(
|
||||
bind_state_.get(), cef_internal::CallbackForward(a1),
|
||||
cef_internal::CallbackForward(a2), cef_internal::CallbackForward(a3),
|
||||
cef_internal::CallbackForward(a4), cef_internal::CallbackForward(a5));
|
||||
}
|
||||
|
||||
private:
|
||||
typedef R (*PolymorphicInvoke)(
|
||||
cef_internal::BindStateBase*,
|
||||
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A5>::ForwardType);
|
||||
};
|
||||
|
||||
template <typename R,
|
||||
typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5,
|
||||
typename A6>
|
||||
class Callback<R(A1, A2, A3, A4, A5, A6)> : public cef_internal::CallbackBase {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4, A5, A6);
|
||||
|
||||
Callback() : CallbackBase(NULL) {}
|
||||
|
||||
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
||||
// return the exact Callback<> type. See base/bind.h for details.
|
||||
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
||||
Callback(
|
||||
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
||||
: CallbackBase(bind_state) {
|
||||
// Force the assignment to a local variable of PolymorphicInvoke
|
||||
// so the compiler will typecheck that the passed in Run() method has
|
||||
// the correct type.
|
||||
PolymorphicInvoke invoke_func =
|
||||
&cef_internal::BindState<Runnable, BindRunType,
|
||||
BoundArgsType>::InvokerType::Run;
|
||||
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
||||
}
|
||||
|
||||
bool Equals(const Callback& other) const {
|
||||
return CallbackBase::Equals(other);
|
||||
}
|
||||
|
||||
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename cef_internal::CallbackParamTraits<A5>::ForwardType a5,
|
||||
typename cef_internal::CallbackParamTraits<A6>::ForwardType a6) const {
|
||||
PolymorphicInvoke f =
|
||||
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
||||
|
||||
return f(
|
||||
bind_state_.get(), cef_internal::CallbackForward(a1),
|
||||
cef_internal::CallbackForward(a2), cef_internal::CallbackForward(a3),
|
||||
cef_internal::CallbackForward(a4), cef_internal::CallbackForward(a5),
|
||||
cef_internal::CallbackForward(a6));
|
||||
}
|
||||
|
||||
private:
|
||||
typedef R (*PolymorphicInvoke)(
|
||||
cef_internal::BindStateBase*,
|
||||
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A5>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A6>::ForwardType);
|
||||
};
|
||||
|
||||
template <typename R,
|
||||
typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5,
|
||||
typename A6,
|
||||
typename A7>
|
||||
class Callback<R(A1, A2, A3, A4, A5, A6, A7)>
|
||||
: public cef_internal::CallbackBase {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4, A5, A6, A7);
|
||||
|
||||
Callback() : CallbackBase(NULL) {}
|
||||
|
||||
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
||||
// return the exact Callback<> type. See base/bind.h for details.
|
||||
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
||||
Callback(
|
||||
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
||||
: CallbackBase(bind_state) {
|
||||
// Force the assignment to a local variable of PolymorphicInvoke
|
||||
// so the compiler will typecheck that the passed in Run() method has
|
||||
// the correct type.
|
||||
PolymorphicInvoke invoke_func =
|
||||
&cef_internal::BindState<Runnable, BindRunType,
|
||||
BoundArgsType>::InvokerType::Run;
|
||||
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
||||
}
|
||||
|
||||
bool Equals(const Callback& other) const {
|
||||
return CallbackBase::Equals(other);
|
||||
}
|
||||
|
||||
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename cef_internal::CallbackParamTraits<A5>::ForwardType a5,
|
||||
typename cef_internal::CallbackParamTraits<A6>::ForwardType a6,
|
||||
typename cef_internal::CallbackParamTraits<A7>::ForwardType a7) const {
|
||||
PolymorphicInvoke f =
|
||||
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
||||
|
||||
return f(
|
||||
bind_state_.get(), cef_internal::CallbackForward(a1),
|
||||
cef_internal::CallbackForward(a2), cef_internal::CallbackForward(a3),
|
||||
cef_internal::CallbackForward(a4), cef_internal::CallbackForward(a5),
|
||||
cef_internal::CallbackForward(a6), cef_internal::CallbackForward(a7));
|
||||
}
|
||||
|
||||
private:
|
||||
typedef R (*PolymorphicInvoke)(
|
||||
cef_internal::BindStateBase*,
|
||||
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A5>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A6>::ForwardType,
|
||||
typename cef_internal::CallbackParamTraits<A7>::ForwardType);
|
||||
};
|
||||
|
||||
// Syntactic sugar to make Callbacks<void(void)> easier to declare since it
|
||||
// will be used in a lot of APIs with delayed execution.
|
||||
typedef Callback<void(void)> Closure;
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
@ -32,12 +32,7 @@
|
||||
#define INCLUDE_BASE_CEF_CALLBACK_FORWARD_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_CALLBACK_FORWARD_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/callback_forward.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
@ -47,10 +42,21 @@
|
||||
|
||||
namespace base {
|
||||
|
||||
template <typename Sig>
|
||||
class Callback;
|
||||
template <typename Signature>
|
||||
class OnceCallback;
|
||||
|
||||
typedef Callback<void(void)> Closure;
|
||||
template <typename Signature>
|
||||
class RepeatingCallback;
|
||||
|
||||
template <typename Signature>
|
||||
using Callback = RepeatingCallback<Signature>;
|
||||
|
||||
// Syntactic sugar to make OnceClosure<void()> and RepeatingClosure<void()>
|
||||
// easier to declare since they will be used in a lot of APIs with delayed
|
||||
// execution.
|
||||
using OnceClosure = OnceCallback<void()>;
|
||||
using RepeatingClosure = RepeatingCallback<void()>;
|
||||
using Closure = Callback<void()>;
|
||||
|
||||
} // namespace base
|
||||
|
||||
|
241
include/base/cef_callback_helpers.h
Normal file
241
include/base/cef_callback_helpers.h
Normal file
@ -0,0 +1,241 @@
|
||||
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2012
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// This defines helpful methods for dealing with Callbacks. Because Callbacks
|
||||
// are implemented using templates, with a class per callback signature, adding
|
||||
// methods to Callback<> itself is unattractive (lots of extra code gets
|
||||
// generated). Instead, consider adding methods here.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_CALLBACK_HELPERS_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_CALLBACK_HELPERS_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/callback_helpers.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <atomic>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "include/base/cef_bind.h"
|
||||
#include "include/base/cef_callback.h"
|
||||
#include "include/base/cef_compiler_specific.h"
|
||||
#include "include/base/cef_logging.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename T>
|
||||
struct IsBaseCallbackImpl : std::false_type {};
|
||||
|
||||
template <typename R, typename... Args>
|
||||
struct IsBaseCallbackImpl<OnceCallback<R(Args...)>> : std::true_type {};
|
||||
|
||||
template <typename R, typename... Args>
|
||||
struct IsBaseCallbackImpl<RepeatingCallback<R(Args...)>> : std::true_type {};
|
||||
|
||||
template <typename T>
|
||||
struct IsOnceCallbackImpl : std::false_type {};
|
||||
|
||||
template <typename R, typename... Args>
|
||||
struct IsOnceCallbackImpl<OnceCallback<R(Args...)>> : std::true_type {};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// IsBaseCallback<T>::value is true when T is any of the Closure or Callback
|
||||
// family of types.
|
||||
template <typename T>
|
||||
using IsBaseCallback = internal::IsBaseCallbackImpl<std::decay_t<T>>;
|
||||
|
||||
// IsOnceCallback<T>::value is true when T is a OnceClosure or OnceCallback
|
||||
// type.
|
||||
template <typename T>
|
||||
using IsOnceCallback = internal::IsOnceCallbackImpl<std::decay_t<T>>;
|
||||
|
||||
// SFINAE friendly enabler allowing to overload methods for both Repeating and
|
||||
// OnceCallbacks.
|
||||
//
|
||||
// Usage:
|
||||
// template <template <typename> class CallbackType,
|
||||
// ... other template args ...,
|
||||
// typename = EnableIfIsBaseCallback<CallbackType>>
|
||||
// void DoStuff(CallbackType<...> cb, ...);
|
||||
template <template <typename> class CallbackType>
|
||||
using EnableIfIsBaseCallback =
|
||||
std::enable_if_t<IsBaseCallback<CallbackType<void()>>::value>;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename... Args>
|
||||
class OnceCallbackHolder final {
|
||||
public:
|
||||
OnceCallbackHolder(OnceCallback<void(Args...)> callback,
|
||||
bool ignore_extra_runs)
|
||||
: callback_(std::move(callback)), ignore_extra_runs_(ignore_extra_runs) {
|
||||
DCHECK(callback_);
|
||||
}
|
||||
OnceCallbackHolder(const OnceCallbackHolder&) = delete;
|
||||
OnceCallbackHolder& operator=(const OnceCallbackHolder&) = delete;
|
||||
|
||||
void Run(Args... args) {
|
||||
if (has_run_.exchange(true)) {
|
||||
CHECK(ignore_extra_runs_) << "Both OnceCallbacks returned by "
|
||||
"base::SplitOnceCallback() were run. "
|
||||
"At most one of the pair should be run.";
|
||||
return;
|
||||
}
|
||||
DCHECK(callback_);
|
||||
std::move(callback_).Run(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
private:
|
||||
volatile std::atomic_bool has_run_{false};
|
||||
base::OnceCallback<void(Args...)> callback_;
|
||||
const bool ignore_extra_runs_;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Wraps the given OnceCallback into a RepeatingCallback that relays its
|
||||
// invocation to the original OnceCallback on the first invocation. The
|
||||
// following invocations are just ignored.
|
||||
//
|
||||
// Note that this deliberately subverts the Once/Repeating paradigm of Callbacks
|
||||
// but helps ease the migration from old-style Callbacks. Avoid if possible; use
|
||||
// if necessary for migration. TODO(tzik): Remove it. https://crbug.com/730593
|
||||
template <typename... Args>
|
||||
RepeatingCallback<void(Args...)> AdaptCallbackForRepeating(
|
||||
OnceCallback<void(Args...)> callback) {
|
||||
using Helper = internal::OnceCallbackHolder<Args...>;
|
||||
return base::BindRepeating(
|
||||
&Helper::Run, std::make_unique<Helper>(std::move(callback),
|
||||
/*ignore_extra_runs=*/true));
|
||||
}
|
||||
|
||||
// Wraps the given OnceCallback and returns two OnceCallbacks with an identical
|
||||
// signature. On first invokation of either returned callbacks, the original
|
||||
// callback is invoked. Invoking the remaining callback results in a crash.
|
||||
template <typename... Args>
|
||||
std::pair<OnceCallback<void(Args...)>, OnceCallback<void(Args...)>>
|
||||
SplitOnceCallback(OnceCallback<void(Args...)> callback) {
|
||||
using Helper = internal::OnceCallbackHolder<Args...>;
|
||||
auto wrapped_once = base::BindRepeating(
|
||||
&Helper::Run, std::make_unique<Helper>(std::move(callback),
|
||||
/*ignore_extra_runs=*/false));
|
||||
return std::make_pair(wrapped_once, wrapped_once);
|
||||
}
|
||||
|
||||
// ScopedClosureRunner is akin to std::unique_ptr<> for Closures. It ensures
|
||||
// that the Closure is executed no matter how the current scope exits.
|
||||
// If you are looking for "ScopedCallback", "CallbackRunner", or
|
||||
// "CallbackScoper" this is the class you want.
|
||||
class ScopedClosureRunner {
|
||||
public:
|
||||
ScopedClosureRunner();
|
||||
explicit ScopedClosureRunner(OnceClosure closure);
|
||||
ScopedClosureRunner(ScopedClosureRunner&& other);
|
||||
// Runs the current closure if it's set, then replaces it with the closure
|
||||
// from |other|. This is akin to how unique_ptr frees the contained pointer in
|
||||
// its move assignment operator. If you need to explicitly avoid running any
|
||||
// current closure, use ReplaceClosure().
|
||||
ScopedClosureRunner& operator=(ScopedClosureRunner&& other);
|
||||
~ScopedClosureRunner();
|
||||
|
||||
explicit operator bool() const { return !!closure_; }
|
||||
|
||||
// Calls the current closure and resets it, so it wont be called again.
|
||||
void RunAndReset();
|
||||
|
||||
// Replaces closure with the new one releasing the old one without calling it.
|
||||
void ReplaceClosure(OnceClosure closure);
|
||||
|
||||
// Releases the Closure without calling.
|
||||
OnceClosure Release() WARN_UNUSED_RESULT;
|
||||
|
||||
private:
|
||||
OnceClosure closure_;
|
||||
};
|
||||
|
||||
// Creates a null callback.
|
||||
class NullCallback {
|
||||
public:
|
||||
template <typename R, typename... Args>
|
||||
operator RepeatingCallback<R(Args...)>() const {
|
||||
return RepeatingCallback<R(Args...)>();
|
||||
}
|
||||
template <typename R, typename... Args>
|
||||
operator OnceCallback<R(Args...)>() const {
|
||||
return OnceCallback<R(Args...)>();
|
||||
}
|
||||
};
|
||||
|
||||
// Creates a callback that does nothing when called.
|
||||
class DoNothing {
|
||||
public:
|
||||
template <typename... Args>
|
||||
operator RepeatingCallback<void(Args...)>() const {
|
||||
return Repeatedly<Args...>();
|
||||
}
|
||||
template <typename... Args>
|
||||
operator OnceCallback<void(Args...)>() const {
|
||||
return Once<Args...>();
|
||||
}
|
||||
// Explicit way of specifying a specific callback type when the compiler can't
|
||||
// deduce it.
|
||||
template <typename... Args>
|
||||
static RepeatingCallback<void(Args...)> Repeatedly() {
|
||||
return BindRepeating([](Args... args) {});
|
||||
}
|
||||
template <typename... Args>
|
||||
static OnceCallback<void(Args...)> Once() {
|
||||
return BindOnce([](Args... args) {});
|
||||
}
|
||||
};
|
||||
|
||||
// Useful for creating a Closure that will delete a pointer when invoked. Only
|
||||
// use this when necessary. In most cases MessageLoop::DeleteSoon() is a better
|
||||
// fit.
|
||||
template <typename T>
|
||||
void DeletePointer(T* obj) {
|
||||
delete obj;
|
||||
}
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_CALLBACK_HELPERS_H_
|
@ -28,16 +28,60 @@
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// OVERVIEW:
|
||||
//
|
||||
// A container for a list of callbacks. Provides callers the ability to manually
|
||||
// or automatically unregister callbacks at any time, including during callback
|
||||
// notification.
|
||||
//
|
||||
// TYPICAL USAGE:
|
||||
//
|
||||
// class MyWidget {
|
||||
// public:
|
||||
// using CallbackList = base::RepeatingCallbackList<void(const Foo&)>;
|
||||
//
|
||||
// // Registers |cb| to be called whenever NotifyFoo() is executed.
|
||||
// CallbackListSubscription RegisterCallback(CallbackList::CallbackType cb) {
|
||||
// return callback_list_.Add(std::move(cb));
|
||||
// }
|
||||
//
|
||||
// private:
|
||||
// // Calls all registered callbacks, with |foo| as the supplied arg.
|
||||
// void NotifyFoo(const Foo& foo) {
|
||||
// callback_list_.Notify(foo);
|
||||
// }
|
||||
//
|
||||
// CallbackList callback_list_;
|
||||
// };
|
||||
//
|
||||
//
|
||||
// class MyWidgetListener {
|
||||
// private:
|
||||
// void OnFoo(const Foo& foo) {
|
||||
// // Called whenever MyWidget::NotifyFoo() is executed, unless
|
||||
// // |foo_subscription_| has been destroyed.
|
||||
// }
|
||||
//
|
||||
// // Automatically deregisters the callback when deleted (e.g. in
|
||||
// // ~MyWidgetListener()). Unretained(this) is safe here since the
|
||||
// // ScopedClosureRunner does not outlive |this|.
|
||||
// CallbackListSubscription foo_subscription_ =
|
||||
// MyWidget::Get()->RegisterCallback(
|
||||
// base::BindRepeating(&MyWidgetListener::OnFoo,
|
||||
// base::Unretained(this)));
|
||||
// };
|
||||
//
|
||||
// UNSUPPORTED:
|
||||
//
|
||||
// * Destroying the CallbackList during callback notification.
|
||||
//
|
||||
// This is possible to support, but not currently necessary.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_CALLBACK_LIST_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_CALLBACK_LIST_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_CALLBACK_LIST_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/callback_list.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
@ -45,402 +89,304 @@
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <algorithm>
|
||||
#include <list>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
#include "include/base/cef_basictypes.h"
|
||||
#include "include/base/cef_build.h"
|
||||
#include "include/base/cef_auto_reset.h"
|
||||
#include "include/base/cef_bind.h"
|
||||
#include "include/base/cef_callback.h"
|
||||
#include "include/base/cef_callback_helpers.h"
|
||||
#include "include/base/cef_compiler_specific.h"
|
||||
#include "include/base/cef_logging.h"
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/base/cef_scoped_ptr.h"
|
||||
#include "include/base/internal/cef_callback_internal.h"
|
||||
|
||||
// OVERVIEW:
|
||||
//
|
||||
// A container for a list of callbacks. Unlike a normal STL vector or list,
|
||||
// this container can be modified during iteration without invalidating the
|
||||
// iterator. It safely handles the case of a callback removing itself
|
||||
// or another callback from the list while callbacks are being run.
|
||||
//
|
||||
// TYPICAL USAGE:
|
||||
//
|
||||
// class MyWidget {
|
||||
// public:
|
||||
// ...
|
||||
//
|
||||
// typedef base::Callback<void(const Foo&)> OnFooCallback;
|
||||
//
|
||||
// scoped_ptr<base::CallbackList<void(const Foo&)>::Subscription>
|
||||
// RegisterCallback(const OnFooCallback& cb) {
|
||||
// return callback_list_.Add(cb);
|
||||
// }
|
||||
//
|
||||
// private:
|
||||
// void NotifyFoo(const Foo& foo) {
|
||||
// callback_list_.Notify(foo);
|
||||
// }
|
||||
//
|
||||
// base::CallbackList<void(const Foo&)> callback_list_;
|
||||
//
|
||||
// DISALLOW_COPY_AND_ASSIGN(MyWidget);
|
||||
// };
|
||||
//
|
||||
//
|
||||
// class MyWidgetListener {
|
||||
// public:
|
||||
// MyWidgetListener::MyWidgetListener() {
|
||||
// foo_subscription_ = MyWidget::GetCurrent()->RegisterCallback(
|
||||
// base::Bind(&MyWidgetListener::OnFoo, this)));
|
||||
// }
|
||||
//
|
||||
// MyWidgetListener::~MyWidgetListener() {
|
||||
// // Subscription gets deleted automatically and will deregister
|
||||
// // the callback in the process.
|
||||
// }
|
||||
//
|
||||
// private:
|
||||
// void OnFoo(const Foo& foo) {
|
||||
// // Do something.
|
||||
// }
|
||||
//
|
||||
// scoped_ptr<base::CallbackList<void(const Foo&)>::Subscription>
|
||||
// foo_subscription_;
|
||||
//
|
||||
// DISALLOW_COPY_AND_ASSIGN(MyWidgetListener);
|
||||
// };
|
||||
#include "include/base/cef_weak_ptr.h"
|
||||
|
||||
namespace base {
|
||||
namespace internal {
|
||||
template <typename CallbackListImpl>
|
||||
class CallbackListBase;
|
||||
} // namespace internal
|
||||
|
||||
namespace cef_internal {
|
||||
template <typename Signature>
|
||||
class OnceCallbackList;
|
||||
|
||||
template <typename CallbackType>
|
||||
template <typename Signature>
|
||||
class RepeatingCallbackList;
|
||||
|
||||
// A trimmed-down version of ScopedClosureRunner that can be used to guarantee a
|
||||
// closure is run on destruction. This is designed to be used by
|
||||
// CallbackListBase to run CancelCallback() when this subscription dies;
|
||||
// consumers can avoid callbacks on dead objects by ensuring the subscription
|
||||
// returned by CallbackListBase::Add() does not outlive the bound object in the
|
||||
// callback. A typical way to do this is to bind a callback to a member function
|
||||
// on `this` and store the returned subscription as a member variable.
|
||||
class CallbackListSubscription {
|
||||
public:
|
||||
CallbackListSubscription();
|
||||
CallbackListSubscription(CallbackListSubscription&& subscription);
|
||||
CallbackListSubscription& operator=(CallbackListSubscription&& subscription);
|
||||
~CallbackListSubscription();
|
||||
|
||||
explicit operator bool() const { return !!closure_; }
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
friend class internal::CallbackListBase;
|
||||
|
||||
explicit CallbackListSubscription(base::OnceClosure closure);
|
||||
|
||||
void Run();
|
||||
|
||||
OnceClosure closure_;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// From base/stl_util.h.
|
||||
template <class T, class Allocator, class Predicate>
|
||||
size_t EraseIf(std::list<T, Allocator>& container, Predicate pred) {
|
||||
size_t old_size = container.size();
|
||||
container.remove_if(pred);
|
||||
return old_size - container.size();
|
||||
}
|
||||
|
||||
// A traits class to break circular type dependencies between CallbackListBase
|
||||
// and its subclasses.
|
||||
template <typename CallbackList>
|
||||
struct CallbackListTraits;
|
||||
|
||||
// NOTE: It's important that Callbacks provide iterator stability when items are
|
||||
// added to the end, so e.g. a std::vector<> is not suitable here.
|
||||
template <typename Signature>
|
||||
struct CallbackListTraits<OnceCallbackList<Signature>> {
|
||||
using CallbackType = OnceCallback<Signature>;
|
||||
using Callbacks = std::list<CallbackType>;
|
||||
};
|
||||
template <typename Signature>
|
||||
struct CallbackListTraits<RepeatingCallbackList<Signature>> {
|
||||
using CallbackType = RepeatingCallback<Signature>;
|
||||
using Callbacks = std::list<CallbackType>;
|
||||
};
|
||||
|
||||
template <typename CallbackListImpl>
|
||||
class CallbackListBase {
|
||||
public:
|
||||
class Subscription {
|
||||
public:
|
||||
Subscription(CallbackListBase<CallbackType>* list,
|
||||
typename std::list<CallbackType>::iterator iter)
|
||||
: list_(list), iter_(iter) {}
|
||||
using CallbackType =
|
||||
typename CallbackListTraits<CallbackListImpl>::CallbackType;
|
||||
static_assert(IsBaseCallback<CallbackType>::value, "");
|
||||
|
||||
~Subscription() {
|
||||
if (list_->active_iterator_count_) {
|
||||
iter_->Reset();
|
||||
} else {
|
||||
list_->callbacks_.erase(iter_);
|
||||
if (!list_->removal_callback_.is_null())
|
||||
list_->removal_callback_.Run();
|
||||
}
|
||||
// TODO(crbug.com/1103086): Update references to use this directly and by
|
||||
// value, then remove.
|
||||
using Subscription = CallbackListSubscription;
|
||||
|
||||
CallbackListBase() = default;
|
||||
CallbackListBase(const CallbackListBase&) = delete;
|
||||
CallbackListBase& operator=(const CallbackListBase&) = delete;
|
||||
|
||||
~CallbackListBase() {
|
||||
// Destroying the list during iteration is unsupported and will cause a UAF.
|
||||
CHECK(!iterating_);
|
||||
}
|
||||
|
||||
// Registers |cb| for future notifications. Returns a CallbackListSubscription
|
||||
// whose destruction will cancel |cb|.
|
||||
CallbackListSubscription Add(CallbackType cb) WARN_UNUSED_RESULT {
|
||||
DCHECK(!cb.is_null());
|
||||
return CallbackListSubscription(base::BindOnce(
|
||||
&CallbackListBase::CancelCallback, weak_ptr_factory_.GetWeakPtr(),
|
||||
callbacks_.insert(callbacks_.end(), std::move(cb))));
|
||||
}
|
||||
|
||||
// Registers |cb| for future notifications. Provides no way for the caller to
|
||||
// cancel, so this is only safe for cases where the callback is guaranteed to
|
||||
// live at least as long as this list (e.g. if it's bound on the same object
|
||||
// that owns the list).
|
||||
// TODO(pkasting): Attempt to use Add() instead and see if callers can relax
|
||||
// other lifetime/ordering mechanisms as a result.
|
||||
void AddUnsafe(CallbackType cb) {
|
||||
DCHECK(!cb.is_null());
|
||||
callbacks_.push_back(std::move(cb));
|
||||
}
|
||||
|
||||
// Registers |removal_callback| to be run after elements are removed from the
|
||||
// list of registered callbacks.
|
||||
void set_removal_callback(const RepeatingClosure& removal_callback) {
|
||||
removal_callback_ = removal_callback;
|
||||
}
|
||||
|
||||
// Returns whether the list of registered callbacks is empty (from an external
|
||||
// perspective -- meaning no remaining callbacks are live).
|
||||
bool empty() const {
|
||||
return std::all_of(callbacks_.cbegin(), callbacks_.cend(),
|
||||
[](const auto& callback) { return callback.is_null(); });
|
||||
}
|
||||
|
||||
// Calls all registered callbacks that are not canceled beforehand. If any
|
||||
// callbacks are unregistered, notifies any registered removal callback at the
|
||||
// end.
|
||||
//
|
||||
// Arguments must be copyable, since they must be supplied to all callbacks.
|
||||
// Move-only types would be destructively modified by passing them to the
|
||||
// first callback and not reach subsequent callbacks as intended.
|
||||
//
|
||||
// Notify() may be called re-entrantly, in which case the nested call
|
||||
// completes before the outer one continues. Callbacks are only ever added at
|
||||
// the end and canceled callbacks are not pruned from the list until the
|
||||
// outermost iteration completes, so existing iterators should never be
|
||||
// invalidated. However, this does mean that a callback added during a nested
|
||||
// call can be notified by outer calls -- meaning it will be notified about
|
||||
// things that happened before it was added -- if its subscription outlives
|
||||
// the reentrant Notify() call.
|
||||
template <typename... RunArgs>
|
||||
void Notify(RunArgs&&... args) {
|
||||
if (empty())
|
||||
return; // Nothing to do.
|
||||
|
||||
{
|
||||
AutoReset<bool> iterating(&iterating_, true);
|
||||
|
||||
// Skip any callbacks that are canceled during iteration.
|
||||
// NOTE: Since RunCallback() may call Add(), it's not safe to cache the
|
||||
// value of callbacks_.end() across loop iterations.
|
||||
const auto next_valid = [this](const auto it) {
|
||||
return std::find_if_not(it, callbacks_.end(), [](const auto& callback) {
|
||||
return callback.is_null();
|
||||
});
|
||||
};
|
||||
for (auto it = next_valid(callbacks_.begin()); it != callbacks_.end();
|
||||
it = next_valid(it))
|
||||
// NOTE: Intentionally does not call std::forward<RunArgs>(args)...,
|
||||
// since that would allow move-only arguments.
|
||||
static_cast<CallbackListImpl*>(this)->RunCallback(it++, args...);
|
||||
}
|
||||
|
||||
private:
|
||||
CallbackListBase<CallbackType>* list_;
|
||||
typename std::list<CallbackType>::iterator iter_;
|
||||
// Re-entrant invocations shouldn't prune anything from the list. This can
|
||||
// invalidate iterators from underneath higher call frames. It's safe to
|
||||
// simply do nothing, since the outermost frame will continue through here
|
||||
// and prune all null callbacks below.
|
||||
if (iterating_)
|
||||
return;
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(Subscription);
|
||||
};
|
||||
// Any null callbacks remaining in the list were canceled due to
|
||||
// Subscription destruction during iteration, and can safely be erased now.
|
||||
const size_t erased_callbacks =
|
||||
EraseIf(callbacks_, [](const auto& cb) { return cb.is_null(); });
|
||||
|
||||
// Add a callback to the list. The callback will remain registered until the
|
||||
// returned Subscription is destroyed, which must occur before the
|
||||
// CallbackList is destroyed.
|
||||
scoped_ptr<Subscription> Add(const CallbackType& cb) WARN_UNUSED_RESULT {
|
||||
DCHECK(!cb.is_null());
|
||||
return scoped_ptr<Subscription>(
|
||||
new Subscription(this, callbacks_.insert(callbacks_.end(), cb)));
|
||||
}
|
||||
|
||||
// Sets a callback which will be run when a subscription list is changed.
|
||||
void set_removal_callback(const Closure& callback) {
|
||||
removal_callback_ = callback;
|
||||
}
|
||||
|
||||
// Returns true if there are no subscriptions. This is only valid to call when
|
||||
// not looping through the list.
|
||||
bool empty() {
|
||||
DCHECK_EQ(0, active_iterator_count_);
|
||||
return callbacks_.empty();
|
||||
// Run |removal_callback_| if any callbacks were canceled. Note that we
|
||||
// cannot simply compare list sizes before and after iterating, since
|
||||
// notification may result in Add()ing new callbacks as well as canceling
|
||||
// them. Also note that if this is a OnceCallbackList, the OnceCallbacks
|
||||
// that were executed above have all been removed regardless of whether
|
||||
// they're counted in |erased_callbacks_|.
|
||||
if (removal_callback_ &&
|
||||
(erased_callbacks || IsOnceCallback<CallbackType>::value))
|
||||
removal_callback_.Run(); // May delete |this|!
|
||||
}
|
||||
|
||||
protected:
|
||||
// An iterator class that can be used to access the list of callbacks.
|
||||
class Iterator {
|
||||
public:
|
||||
explicit Iterator(CallbackListBase<CallbackType>* list)
|
||||
: list_(list), list_iter_(list_->callbacks_.begin()) {
|
||||
++list_->active_iterator_count_;
|
||||
}
|
||||
using Callbacks = typename CallbackListTraits<CallbackListImpl>::Callbacks;
|
||||
|
||||
Iterator(const Iterator& iter)
|
||||
: list_(iter.list_), list_iter_(iter.list_iter_) {
|
||||
++list_->active_iterator_count_;
|
||||
}
|
||||
|
||||
~Iterator() {
|
||||
if (list_ && --list_->active_iterator_count_ == 0) {
|
||||
list_->Compact();
|
||||
}
|
||||
}
|
||||
|
||||
CallbackType* GetNext() {
|
||||
while ((list_iter_ != list_->callbacks_.end()) && list_iter_->is_null())
|
||||
++list_iter_;
|
||||
|
||||
CallbackType* cb = NULL;
|
||||
if (list_iter_ != list_->callbacks_.end()) {
|
||||
cb = &(*list_iter_);
|
||||
++list_iter_;
|
||||
}
|
||||
return cb;
|
||||
}
|
||||
|
||||
private:
|
||||
CallbackListBase<CallbackType>* list_;
|
||||
typename std::list<CallbackType>::iterator list_iter_;
|
||||
};
|
||||
|
||||
CallbackListBase() : active_iterator_count_(0) {}
|
||||
|
||||
~CallbackListBase() {
|
||||
DCHECK_EQ(0, active_iterator_count_);
|
||||
DCHECK_EQ(0U, callbacks_.size());
|
||||
}
|
||||
|
||||
// Returns an instance of a CallbackListBase::Iterator which can be used
|
||||
// to run callbacks.
|
||||
Iterator GetIterator() { return Iterator(this); }
|
||||
|
||||
// Compact the list: remove any entries which were NULLed out during
|
||||
// iteration.
|
||||
void Compact() {
|
||||
typename std::list<CallbackType>::iterator it = callbacks_.begin();
|
||||
bool updated = false;
|
||||
while (it != callbacks_.end()) {
|
||||
if ((*it).is_null()) {
|
||||
updated = true;
|
||||
it = callbacks_.erase(it);
|
||||
} else {
|
||||
++it;
|
||||
}
|
||||
|
||||
if (updated && !removal_callback_.is_null())
|
||||
removal_callback_.Run();
|
||||
}
|
||||
}
|
||||
// Holds non-null callbacks, which will be called during Notify().
|
||||
Callbacks callbacks_;
|
||||
|
||||
private:
|
||||
std::list<CallbackType> callbacks_;
|
||||
int active_iterator_count_;
|
||||
Closure removal_callback_;
|
||||
// Cancels the callback pointed to by |it|, which is guaranteed to be valid.
|
||||
void CancelCallback(const typename Callbacks::iterator& it) {
|
||||
if (static_cast<CallbackListImpl*>(this)->CancelNullCallback(it))
|
||||
return;
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(CallbackListBase);
|
||||
};
|
||||
|
||||
} // namespace cef_internal
|
||||
|
||||
template <typename Sig>
|
||||
class CallbackList;
|
||||
|
||||
template <>
|
||||
class CallbackList<void(void)>
|
||||
: public cef_internal::CallbackListBase<Callback<void(void)>> {
|
||||
public:
|
||||
typedef Callback<void(void)> CallbackType;
|
||||
|
||||
CallbackList() {}
|
||||
|
||||
void Notify() {
|
||||
cef_internal::CallbackListBase<CallbackType>::Iterator it =
|
||||
this->GetIterator();
|
||||
CallbackType* cb;
|
||||
while ((cb = it.GetNext()) != NULL) {
|
||||
cb->Run();
|
||||
if (iterating_) {
|
||||
// Calling erase() here is unsafe, since the loop in Notify() may be
|
||||
// referencing this same iterator, e.g. if adjacent callbacks'
|
||||
// Subscriptions are both destroyed when the first one is Run(). Just
|
||||
// reset the callback and let Notify() clean it up at the end.
|
||||
it->Reset();
|
||||
} else {
|
||||
callbacks_.erase(it);
|
||||
if (removal_callback_)
|
||||
removal_callback_.Run(); // May delete |this|!
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(CallbackList);
|
||||
// Set while Notify() is traversing |callbacks_|. Used primarily to avoid
|
||||
// invalidating iterators that may be in use.
|
||||
bool iterating_ = false;
|
||||
|
||||
// Called after elements are removed from |callbacks_|.
|
||||
RepeatingClosure removal_callback_;
|
||||
|
||||
WeakPtrFactory<CallbackListBase> weak_ptr_factory_{this};
|
||||
};
|
||||
|
||||
template <typename A1>
|
||||
class CallbackList<void(A1)>
|
||||
: public cef_internal::CallbackListBase<Callback<void(A1)>> {
|
||||
public:
|
||||
typedef Callback<void(A1)> CallbackType;
|
||||
} // namespace internal
|
||||
|
||||
CallbackList() {}
|
||||
template <typename Signature>
|
||||
class OnceCallbackList
|
||||
: public internal::CallbackListBase<OnceCallbackList<Signature>> {
|
||||
private:
|
||||
friend internal::CallbackListBase<OnceCallbackList>;
|
||||
using Traits = internal::CallbackListTraits<OnceCallbackList>;
|
||||
|
||||
void Notify(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1) {
|
||||
typename cef_internal::CallbackListBase<CallbackType>::Iterator it =
|
||||
this->GetIterator();
|
||||
CallbackType* cb;
|
||||
while ((cb = it.GetNext()) != NULL) {
|
||||
cb->Run(a1);
|
||||
}
|
||||
// Runs the current callback, which may cancel it or any other callbacks.
|
||||
template <typename... RunArgs>
|
||||
void RunCallback(typename Traits::Callbacks::iterator it, RunArgs&&... args) {
|
||||
// OnceCallbacks still have Subscriptions with outstanding iterators;
|
||||
// splice() removes them from |callbacks_| without invalidating those.
|
||||
null_callbacks_.splice(null_callbacks_.end(), this->callbacks_, it);
|
||||
|
||||
// NOTE: Intentionally does not call std::forward<RunArgs>(args)...; see
|
||||
// comments in Notify().
|
||||
std::move(*it).Run(args...);
|
||||
}
|
||||
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(CallbackList);
|
||||
};
|
||||
|
||||
template <typename A1, typename A2>
|
||||
class CallbackList<void(A1, A2)>
|
||||
: public cef_internal::CallbackListBase<Callback<void(A1, A2)>> {
|
||||
public:
|
||||
typedef Callback<void(A1, A2)> CallbackType;
|
||||
|
||||
CallbackList() {}
|
||||
|
||||
void Notify(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2) {
|
||||
typename cef_internal::CallbackListBase<CallbackType>::Iterator it =
|
||||
this->GetIterator();
|
||||
CallbackType* cb;
|
||||
while ((cb = it.GetNext()) != NULL) {
|
||||
cb->Run(a1, a2);
|
||||
// If |it| refers to an already-canceled callback, does any necessary cleanup
|
||||
// and returns true. Otherwise returns false.
|
||||
bool CancelNullCallback(const typename Traits::Callbacks::iterator& it) {
|
||||
if (it->is_null()) {
|
||||
null_callbacks_.erase(it);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(CallbackList);
|
||||
// Holds null callbacks whose Subscriptions are still alive, so the
|
||||
// Subscriptions will still contain valid iterators. Only needed for
|
||||
// OnceCallbacks, since RepeatingCallbacks are not canceled except by
|
||||
// Subscription destruction.
|
||||
typename Traits::Callbacks null_callbacks_;
|
||||
};
|
||||
|
||||
template <typename A1, typename A2, typename A3>
|
||||
class CallbackList<void(A1, A2, A3)>
|
||||
: public cef_internal::CallbackListBase<Callback<void(A1, A2, A3)>> {
|
||||
public:
|
||||
typedef Callback<void(A1, A2, A3)> CallbackType;
|
||||
|
||||
CallbackList() {}
|
||||
|
||||
void Notify(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3) {
|
||||
typename cef_internal::CallbackListBase<CallbackType>::Iterator it =
|
||||
this->GetIterator();
|
||||
CallbackType* cb;
|
||||
while ((cb = it.GetNext()) != NULL) {
|
||||
cb->Run(a1, a2, a3);
|
||||
}
|
||||
template <typename Signature>
|
||||
class RepeatingCallbackList
|
||||
: public internal::CallbackListBase<RepeatingCallbackList<Signature>> {
|
||||
private:
|
||||
friend internal::CallbackListBase<RepeatingCallbackList>;
|
||||
using Traits = internal::CallbackListTraits<RepeatingCallbackList>;
|
||||
// Runs the current callback, which may cancel it or any other callbacks.
|
||||
template <typename... RunArgs>
|
||||
void RunCallback(typename Traits::Callbacks::iterator it, RunArgs&&... args) {
|
||||
// NOTE: Intentionally does not call std::forward<RunArgs>(args)...; see
|
||||
// comments in Notify().
|
||||
it->Run(args...);
|
||||
}
|
||||
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(CallbackList);
|
||||
};
|
||||
|
||||
template <typename A1, typename A2, typename A3, typename A4>
|
||||
class CallbackList<void(A1, A2, A3, A4)>
|
||||
: public cef_internal::CallbackListBase<Callback<void(A1, A2, A3, A4)>> {
|
||||
public:
|
||||
typedef Callback<void(A1, A2, A3, A4)> CallbackType;
|
||||
|
||||
CallbackList() {}
|
||||
|
||||
void Notify(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4) {
|
||||
typename cef_internal::CallbackListBase<CallbackType>::Iterator it =
|
||||
this->GetIterator();
|
||||
CallbackType* cb;
|
||||
while ((cb = it.GetNext()) != NULL) {
|
||||
cb->Run(a1, a2, a3, a4);
|
||||
}
|
||||
// If |it| refers to an already-canceled callback, does any necessary cleanup
|
||||
// and returns true. Otherwise returns false.
|
||||
bool CancelNullCallback(const typename Traits::Callbacks::iterator& it) {
|
||||
// Because at most one Subscription can point to a given callback, and
|
||||
// RepeatingCallbacks are only reset by CancelCallback(), no one should be
|
||||
// able to request cancellation of a canceled RepeatingCallback.
|
||||
DCHECK(!it->is_null());
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(CallbackList);
|
||||
};
|
||||
|
||||
template <typename A1, typename A2, typename A3, typename A4, typename A5>
|
||||
class CallbackList<void(A1, A2, A3, A4, A5)>
|
||||
: public cef_internal::CallbackListBase<
|
||||
Callback<void(A1, A2, A3, A4, A5)>> {
|
||||
public:
|
||||
typedef Callback<void(A1, A2, A3, A4, A5)> CallbackType;
|
||||
|
||||
CallbackList() {}
|
||||
|
||||
void Notify(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename cef_internal::CallbackParamTraits<A5>::ForwardType a5) {
|
||||
typename cef_internal::CallbackListBase<CallbackType>::Iterator it =
|
||||
this->GetIterator();
|
||||
CallbackType* cb;
|
||||
while ((cb = it.GetNext()) != NULL) {
|
||||
cb->Run(a1, a2, a3, a4, a5);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(CallbackList);
|
||||
};
|
||||
|
||||
template <typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5,
|
||||
typename A6>
|
||||
class CallbackList<void(A1, A2, A3, A4, A5, A6)>
|
||||
: public cef_internal::CallbackListBase<
|
||||
Callback<void(A1, A2, A3, A4, A5, A6)>> {
|
||||
public:
|
||||
typedef Callback<void(A1, A2, A3, A4, A5, A6)> CallbackType;
|
||||
|
||||
CallbackList() {}
|
||||
|
||||
void Notify(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename cef_internal::CallbackParamTraits<A5>::ForwardType a5,
|
||||
typename cef_internal::CallbackParamTraits<A6>::ForwardType a6) {
|
||||
typename cef_internal::CallbackListBase<CallbackType>::Iterator it =
|
||||
this->GetIterator();
|
||||
CallbackType* cb;
|
||||
while ((cb = it.GetNext()) != NULL) {
|
||||
cb->Run(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(CallbackList);
|
||||
};
|
||||
|
||||
template <typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5,
|
||||
typename A6,
|
||||
typename A7>
|
||||
class CallbackList<void(A1, A2, A3, A4, A5, A6, A7)>
|
||||
: public cef_internal::CallbackListBase<
|
||||
Callback<void(A1, A2, A3, A4, A5, A6, A7)>> {
|
||||
public:
|
||||
typedef Callback<void(A1, A2, A3, A4, A5, A6, A7)> CallbackType;
|
||||
|
||||
CallbackList() {}
|
||||
|
||||
void Notify(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename cef_internal::CallbackParamTraits<A5>::ForwardType a5,
|
||||
typename cef_internal::CallbackParamTraits<A6>::ForwardType a6,
|
||||
typename cef_internal::CallbackParamTraits<A7>::ForwardType a7) {
|
||||
typename cef_internal::CallbackListBase<CallbackType>::Iterator it =
|
||||
this->GetIterator();
|
||||
CallbackType* cb;
|
||||
while ((cb = it.GetNext()) != NULL) {
|
||||
cb->Run(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(CallbackList);
|
||||
};
|
||||
// Syntactic sugar to parallel that used for Callbacks.
|
||||
// ClosureList explicitly not provided since it is not used, and CallbackList
|
||||
// is deprecated. {Once,Repeating}ClosureList should instead be used.
|
||||
using OnceClosureList = OnceCallbackList<void()>;
|
||||
using RepeatingClosureList = RepeatingCallbackList<void()>;
|
||||
|
||||
} // namespace base
|
||||
|
||||
|
@ -27,7 +27,7 @@
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
|
||||
// CancelableCallback is a wrapper around base::Callback that allows
|
||||
// cancellation of a callback. CancelableCallback takes a reference on the
|
||||
// wrapped callback until this object is destroyed or Reset()/Cancel() are
|
||||
@ -52,29 +52,26 @@
|
||||
// to the message loop, the intensive test runs, the message loop is run,
|
||||
// then the callback is cancelled.
|
||||
//
|
||||
// RunLoop run_loop;
|
||||
//
|
||||
// void TimeoutCallback(const std::string& timeout_message) {
|
||||
// FAIL() << timeout_message;
|
||||
// MessageLoop::current()->QuitWhenIdle();
|
||||
// run_loop.QuitWhenIdle();
|
||||
// }
|
||||
//
|
||||
// CancelableClosure timeout(base::Bind(&TimeoutCallback, "Test timed out."));
|
||||
// MessageLoop::current()->PostDelayedTask(FROM_HERE, timeout.callback(),
|
||||
// 4000) // 4 seconds to run.
|
||||
// CancelableOnceClosure timeout(
|
||||
// base::BindOnce(&TimeoutCallback, "Test timed out."));
|
||||
// ThreadTaskRunnerHandle::Get()->PostDelayedTask(FROM_HERE, timeout.callback(),
|
||||
// TimeDelta::FromSeconds(4));
|
||||
// RunIntensiveTest();
|
||||
// MessageLoop::current()->Run();
|
||||
// run_loop.Run();
|
||||
// timeout.Cancel(); // Hopefully this is hit before the timeout callback runs.
|
||||
//
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_CANCELABLE_CALLBACK_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_CANCELABLE_CALLBACK_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_CANCELABLE_CALLBACK_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/cancelable_callback.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
@ -82,209 +79,110 @@
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <utility>
|
||||
|
||||
#include "include/base/cef_bind.h"
|
||||
#include "include/base/cef_build.h"
|
||||
#include "include/base/cef_callback.h"
|
||||
#include "include/base/cef_logging.h"
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/base/cef_weak_ptr.h"
|
||||
#include "include/base/internal/cef_callback_internal.h"
|
||||
#include "include/base/cef_logging.h"
|
||||
#include "include/base/cef_compiler_specific.h"
|
||||
#include "include/base/cef_weak_ptr.h"
|
||||
|
||||
namespace base {
|
||||
namespace internal {
|
||||
|
||||
template <typename Sig>
|
||||
class CancelableCallback;
|
||||
|
||||
template <>
|
||||
class CancelableCallback<void(void)> {
|
||||
template <typename CallbackType>
|
||||
class CancelableCallbackImpl {
|
||||
public:
|
||||
CancelableCallback() : weak_factory_(this) {}
|
||||
CancelableCallbackImpl() = default;
|
||||
CancelableCallbackImpl(const CancelableCallbackImpl&) = delete;
|
||||
CancelableCallbackImpl& operator=(const CancelableCallbackImpl&) = delete;
|
||||
|
||||
// |callback| must not be null.
|
||||
explicit CancelableCallback(const base::Callback<void(void)>& callback)
|
||||
: weak_factory_(this), callback_(callback) {
|
||||
DCHECK(!callback.is_null());
|
||||
InitializeForwarder();
|
||||
explicit CancelableCallbackImpl(CallbackType callback)
|
||||
: callback_(std::move(callback)) {
|
||||
DCHECK(callback_);
|
||||
}
|
||||
|
||||
~CancelableCallback() {}
|
||||
~CancelableCallbackImpl() = default;
|
||||
|
||||
// Cancels and drops the reference to the wrapped callback.
|
||||
void Cancel() {
|
||||
weak_factory_.InvalidateWeakPtrs();
|
||||
forwarder_.Reset();
|
||||
weak_ptr_factory_.InvalidateWeakPtrs();
|
||||
callback_.Reset();
|
||||
}
|
||||
|
||||
// Returns true if the wrapped callback has been cancelled.
|
||||
bool IsCancelled() const { return callback_.is_null(); }
|
||||
bool IsCancelled() const {
|
||||
return callback_.is_null();
|
||||
}
|
||||
|
||||
// Sets |callback| as the closure that may be cancelled. |callback| may not
|
||||
// be null. Outstanding and any previously wrapped callbacks are cancelled.
|
||||
void Reset(const base::Callback<void(void)>& callback) {
|
||||
DCHECK(!callback.is_null());
|
||||
|
||||
void Reset(CallbackType callback) {
|
||||
DCHECK(callback);
|
||||
// Outstanding tasks (e.g., posted to a message loop) must not be called.
|
||||
Cancel();
|
||||
|
||||
// |forwarder_| is no longer valid after Cancel(), so re-bind.
|
||||
InitializeForwarder();
|
||||
|
||||
callback_ = callback;
|
||||
callback_ = std::move(callback);
|
||||
}
|
||||
|
||||
// Returns a callback that can be disabled by calling Cancel().
|
||||
const base::Callback<void(void)>& callback() const { return forwarder_; }
|
||||
CallbackType callback() const {
|
||||
if (!callback_)
|
||||
return CallbackType();
|
||||
CallbackType forwarder;
|
||||
MakeForwarder(&forwarder);
|
||||
return forwarder;
|
||||
}
|
||||
|
||||
private:
|
||||
void Forward() { callback_.Run(); }
|
||||
|
||||
// Helper method to bind |forwarder_| using a weak pointer from
|
||||
// |weak_factory_|.
|
||||
void InitializeForwarder() {
|
||||
forwarder_ = base::Bind(&CancelableCallback<void(void)>::Forward,
|
||||
weak_factory_.GetWeakPtr());
|
||||
template <typename... Args>
|
||||
void MakeForwarder(RepeatingCallback<void(Args...)>* out) const {
|
||||
using ForwarderType = void (CancelableCallbackImpl::*)(Args...);
|
||||
ForwarderType forwarder = &CancelableCallbackImpl::ForwardRepeating;
|
||||
*out = BindRepeating(forwarder, weak_ptr_factory_.GetWeakPtr());
|
||||
}
|
||||
|
||||
// Used to ensure Forward() is not run when this object is destroyed.
|
||||
base::WeakPtrFactory<CancelableCallback<void(void)>> weak_factory_;
|
||||
template <typename... Args>
|
||||
void MakeForwarder(OnceCallback<void(Args...)>* out) const {
|
||||
using ForwarderType = void (CancelableCallbackImpl::*)(Args...);
|
||||
ForwarderType forwarder = &CancelableCallbackImpl::ForwardOnce;
|
||||
*out = BindOnce(forwarder, weak_ptr_factory_.GetWeakPtr());
|
||||
}
|
||||
|
||||
// The wrapper closure.
|
||||
base::Callback<void(void)> forwarder_;
|
||||
template <typename... Args>
|
||||
void ForwardRepeating(Args... args) {
|
||||
callback_.Run(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <typename... Args>
|
||||
void ForwardOnce(Args... args) {
|
||||
weak_ptr_factory_.InvalidateWeakPtrs();
|
||||
std::move(callback_).Run(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
// The stored closure that may be cancelled.
|
||||
base::Callback<void(void)> callback_;
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(CancelableCallback);
|
||||
CallbackType callback_;
|
||||
mutable base::WeakPtrFactory<CancelableCallbackImpl> weak_ptr_factory_{this};
|
||||
};
|
||||
|
||||
template <typename A1>
|
||||
class CancelableCallback<void(A1)> {
|
||||
public:
|
||||
CancelableCallback() : weak_factory_(this) {}
|
||||
} // namespace internal
|
||||
|
||||
// |callback| must not be null.
|
||||
explicit CancelableCallback(const base::Callback<void(A1)>& callback)
|
||||
: weak_factory_(this), callback_(callback) {
|
||||
DCHECK(!callback.is_null());
|
||||
InitializeForwarder();
|
||||
}
|
||||
// Consider using base::WeakPtr directly instead of base::CancelableCallback for
|
||||
// the task cancellation.
|
||||
template <typename Signature>
|
||||
using CancelableOnceCallback =
|
||||
internal::CancelableCallbackImpl<OnceCallback<Signature>>;
|
||||
using CancelableOnceClosure = CancelableOnceCallback<void()>;
|
||||
|
||||
~CancelableCallback() {}
|
||||
template <typename Signature>
|
||||
using CancelableRepeatingCallback =
|
||||
internal::CancelableCallbackImpl<RepeatingCallback<Signature>>;
|
||||
using CancelableRepeatingClosure = CancelableRepeatingCallback<void()>;
|
||||
|
||||
// Cancels and drops the reference to the wrapped callback.
|
||||
void Cancel() {
|
||||
weak_factory_.InvalidateWeakPtrs();
|
||||
forwarder_.Reset();
|
||||
callback_.Reset();
|
||||
}
|
||||
|
||||
// Returns true if the wrapped callback has been cancelled.
|
||||
bool IsCancelled() const { return callback_.is_null(); }
|
||||
|
||||
// Sets |callback| as the closure that may be cancelled. |callback| may not
|
||||
// be null. Outstanding and any previously wrapped callbacks are cancelled.
|
||||
void Reset(const base::Callback<void(A1)>& callback) {
|
||||
DCHECK(!callback.is_null());
|
||||
|
||||
// Outstanding tasks (e.g., posted to a message loop) must not be called.
|
||||
Cancel();
|
||||
|
||||
// |forwarder_| is no longer valid after Cancel(), so re-bind.
|
||||
InitializeForwarder();
|
||||
|
||||
callback_ = callback;
|
||||
}
|
||||
|
||||
// Returns a callback that can be disabled by calling Cancel().
|
||||
const base::Callback<void(A1)>& callback() const { return forwarder_; }
|
||||
|
||||
private:
|
||||
void Forward(A1 a1) const { callback_.Run(a1); }
|
||||
|
||||
// Helper method to bind |forwarder_| using a weak pointer from
|
||||
// |weak_factory_|.
|
||||
void InitializeForwarder() {
|
||||
forwarder_ = base::Bind(&CancelableCallback<void(A1)>::Forward,
|
||||
weak_factory_.GetWeakPtr());
|
||||
}
|
||||
|
||||
// Used to ensure Forward() is not run when this object is destroyed.
|
||||
base::WeakPtrFactory<CancelableCallback<void(A1)>> weak_factory_;
|
||||
|
||||
// The wrapper closure.
|
||||
base::Callback<void(A1)> forwarder_;
|
||||
|
||||
// The stored closure that may be cancelled.
|
||||
base::Callback<void(A1)> callback_;
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(CancelableCallback);
|
||||
};
|
||||
|
||||
template <typename A1, typename A2>
|
||||
class CancelableCallback<void(A1, A2)> {
|
||||
public:
|
||||
CancelableCallback() : weak_factory_(this) {}
|
||||
|
||||
// |callback| must not be null.
|
||||
explicit CancelableCallback(const base::Callback<void(A1, A2)>& callback)
|
||||
: weak_factory_(this), callback_(callback) {
|
||||
DCHECK(!callback.is_null());
|
||||
InitializeForwarder();
|
||||
}
|
||||
|
||||
~CancelableCallback() {}
|
||||
|
||||
// Cancels and drops the reference to the wrapped callback.
|
||||
void Cancel() {
|
||||
weak_factory_.InvalidateWeakPtrs();
|
||||
forwarder_.Reset();
|
||||
callback_.Reset();
|
||||
}
|
||||
|
||||
// Returns true if the wrapped callback has been cancelled.
|
||||
bool IsCancelled() const { return callback_.is_null(); }
|
||||
|
||||
// Sets |callback| as the closure that may be cancelled. |callback| may not
|
||||
// be null. Outstanding and any previously wrapped callbacks are cancelled.
|
||||
void Reset(const base::Callback<void(A1, A2)>& callback) {
|
||||
DCHECK(!callback.is_null());
|
||||
|
||||
// Outstanding tasks (e.g., posted to a message loop) must not be called.
|
||||
Cancel();
|
||||
|
||||
// |forwarder_| is no longer valid after Cancel(), so re-bind.
|
||||
InitializeForwarder();
|
||||
|
||||
callback_ = callback;
|
||||
}
|
||||
|
||||
// Returns a callback that can be disabled by calling Cancel().
|
||||
const base::Callback<void(A1, A2)>& callback() const { return forwarder_; }
|
||||
|
||||
private:
|
||||
void Forward(A1 a1, A2 a2) const { callback_.Run(a1, a2); }
|
||||
|
||||
// Helper method to bind |forwarder_| using a weak pointer from
|
||||
// |weak_factory_|.
|
||||
void InitializeForwarder() {
|
||||
forwarder_ = base::Bind(&CancelableCallback<void(A1, A2)>::Forward,
|
||||
weak_factory_.GetWeakPtr());
|
||||
}
|
||||
|
||||
// Used to ensure Forward() is not run when this object is destroyed.
|
||||
base::WeakPtrFactory<CancelableCallback<void(A1, A2)>> weak_factory_;
|
||||
|
||||
// The wrapper closure.
|
||||
base::Callback<void(A1, A2)> forwarder_;
|
||||
|
||||
// The stored closure that may be cancelled.
|
||||
base::Callback<void(A1, A2)> callback_;
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(CancelableCallback);
|
||||
};
|
||||
|
||||
typedef CancelableCallback<void(void)> CancelableClosure;
|
||||
template <typename Signature>
|
||||
using CancelableCallback = CancelableRepeatingCallback<Signature>;
|
||||
using CancelableClosure = CancelableCallback<void()>;
|
||||
|
||||
} // namespace base
|
||||
|
||||
|
414
include/base/cef_compiler_specific.h
Normal file
414
include/base/cef_compiler_specific.h
Normal file
@ -0,0 +1,414 @@
|
||||
// Copyright (c) 2021 Marshall A. Greenblatt. Portions copyright (c) 2012
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_COMPILER_SPECIFIC_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_COMPILER_SPECIFIC_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_COMPILER_SPECIFIC_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/compiler_specific.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include "include/base/cef_build.h"
|
||||
|
||||
// This is a wrapper around `__has_cpp_attribute`, which can be used to test for
|
||||
// the presence of an attribute. In case the compiler does not support this
|
||||
// macro it will simply evaluate to 0.
|
||||
//
|
||||
// References:
|
||||
// https://wg21.link/sd6#testing-for-the-presence-of-an-attribute-__has_cpp_attribute
|
||||
// https://wg21.link/cpp.cond#:__has_cpp_attribute
|
||||
#if defined(__has_cpp_attribute)
|
||||
#define HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
|
||||
#else
|
||||
#define HAS_CPP_ATTRIBUTE(x) 0
|
||||
#endif
|
||||
|
||||
// A wrapper around `__has_builtin`, similar to HAS_CPP_ATTRIBUTE.
|
||||
#if defined(__has_builtin)
|
||||
#define HAS_BUILTIN(x) __has_builtin(x)
|
||||
#else
|
||||
#define HAS_BUILTIN(x) 0
|
||||
#endif
|
||||
|
||||
// Annotate a variable indicating it's ok if the variable is not used.
|
||||
// (Typically used to silence a compiler warning when the assignment
|
||||
// is important for some other reason.)
|
||||
// Use like:
|
||||
// int x = ...;
|
||||
// ALLOW_UNUSED_LOCAL(x);
|
||||
#define ALLOW_UNUSED_LOCAL(x) (void)x
|
||||
|
||||
// Annotate a typedef or function indicating it's ok if it's not used.
|
||||
// Use like:
|
||||
// typedef Foo Bar ALLOW_UNUSED_TYPE;
|
||||
#if defined(COMPILER_GCC) || defined(__clang__)
|
||||
#define ALLOW_UNUSED_TYPE __attribute__((unused))
|
||||
#else
|
||||
#define ALLOW_UNUSED_TYPE
|
||||
#endif
|
||||
|
||||
// Annotate a function indicating it should not be inlined.
|
||||
// Use like:
|
||||
// NOINLINE void DoStuff() { ... }
|
||||
#if defined(COMPILER_GCC)
|
||||
#define NOINLINE __attribute__((noinline))
|
||||
#elif defined(COMPILER_MSVC)
|
||||
#define NOINLINE __declspec(noinline)
|
||||
#else
|
||||
#define NOINLINE
|
||||
#endif
|
||||
|
||||
#if defined(COMPILER_GCC) && defined(NDEBUG)
|
||||
#define ALWAYS_INLINE inline __attribute__((__always_inline__))
|
||||
#elif defined(COMPILER_MSVC) && defined(NDEBUG)
|
||||
#define ALWAYS_INLINE __forceinline
|
||||
#else
|
||||
#define ALWAYS_INLINE inline
|
||||
#endif
|
||||
|
||||
// Annotate a function indicating it should never be tail called. Useful to make
|
||||
// sure callers of the annotated function are never omitted from call-stacks.
|
||||
// To provide the complementary behavior (prevent the annotated function from
|
||||
// being omitted) look at NOINLINE. Also note that this doesn't prevent code
|
||||
// folding of multiple identical caller functions into a single signature. To
|
||||
// prevent code folding, see NO_CODE_FOLDING() in base/debug/alias.h.
|
||||
// Use like:
|
||||
// void NOT_TAIL_CALLED FooBar();
|
||||
#if defined(__clang__) && __has_attribute(not_tail_called)
|
||||
#define NOT_TAIL_CALLED __attribute__((not_tail_called))
|
||||
#else
|
||||
#define NOT_TAIL_CALLED
|
||||
#endif
|
||||
|
||||
// Specify memory alignment for structs, classes, etc.
|
||||
// Use like:
|
||||
// class ALIGNAS(16) MyClass { ... }
|
||||
// ALIGNAS(16) int array[4];
|
||||
//
|
||||
// In most places you can use the C++11 keyword "alignas", which is preferred.
|
||||
//
|
||||
// But compilers have trouble mixing __attribute__((...)) syntax with
|
||||
// alignas(...) syntax.
|
||||
//
|
||||
// Doesn't work in clang or gcc:
|
||||
// struct alignas(16) __attribute__((packed)) S { char c; };
|
||||
// Works in clang but not gcc:
|
||||
// struct __attribute__((packed)) alignas(16) S2 { char c; };
|
||||
// Works in clang and gcc:
|
||||
// struct alignas(16) S3 { char c; } __attribute__((packed));
|
||||
//
|
||||
// There are also some attributes that must be specified *before* a class
|
||||
// definition: visibility (used for exporting functions/classes) is one of
|
||||
// these attributes. This means that it is not possible to use alignas() with a
|
||||
// class that is marked as exported.
|
||||
#if defined(COMPILER_MSVC)
|
||||
#define ALIGNAS(byte_alignment) __declspec(align(byte_alignment))
|
||||
#elif defined(COMPILER_GCC)
|
||||
#define ALIGNAS(byte_alignment) __attribute__((aligned(byte_alignment)))
|
||||
#endif
|
||||
|
||||
// Annotate a function indicating the caller must examine the return value.
|
||||
// Use like:
|
||||
// int foo() WARN_UNUSED_RESULT;
|
||||
// To explicitly ignore a result, see |ignore_result()| in base/macros.h.
|
||||
#undef WARN_UNUSED_RESULT
|
||||
#if defined(COMPILER_GCC) || defined(__clang__)
|
||||
#define WARN_UNUSED_RESULT __attribute__((warn_unused_result))
|
||||
#else
|
||||
#define WARN_UNUSED_RESULT
|
||||
#endif
|
||||
|
||||
// In case the compiler supports it NO_UNIQUE_ADDRESS evaluates to the C++20
|
||||
// attribute [[no_unique_address]]. This allows annotating data members so that
|
||||
// they need not have an address distinct from all other non-static data members
|
||||
// of its class.
|
||||
//
|
||||
// References:
|
||||
// * https://en.cppreference.com/w/cpp/language/attributes/no_unique_address
|
||||
// * https://wg21.link/dcl.attr.nouniqueaddr
|
||||
#if HAS_CPP_ATTRIBUTE(no_unique_address)
|
||||
#define NO_UNIQUE_ADDRESS [[no_unique_address]]
|
||||
#else
|
||||
#define NO_UNIQUE_ADDRESS
|
||||
#endif
|
||||
|
||||
// Tell the compiler a function is using a printf-style format string.
|
||||
// |format_param| is the one-based index of the format string parameter;
|
||||
// |dots_param| is the one-based index of the "..." parameter.
|
||||
// For v*printf functions (which take a va_list), pass 0 for dots_param.
|
||||
// (This is undocumented but matches what the system C headers do.)
|
||||
// For member functions, the implicit this parameter counts as index 1.
|
||||
#if defined(COMPILER_GCC) || defined(__clang__)
|
||||
#define PRINTF_FORMAT(format_param, dots_param) \
|
||||
__attribute__((format(printf, format_param, dots_param)))
|
||||
#else
|
||||
#define PRINTF_FORMAT(format_param, dots_param)
|
||||
#endif
|
||||
|
||||
// WPRINTF_FORMAT is the same, but for wide format strings.
|
||||
// This doesn't appear to yet be implemented in any compiler.
|
||||
// See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=38308 .
|
||||
#define WPRINTF_FORMAT(format_param, dots_param)
|
||||
// If available, it would look like:
|
||||
// __attribute__((format(wprintf, format_param, dots_param)))
|
||||
|
||||
// Sanitizers annotations.
|
||||
#if defined(__has_attribute)
|
||||
#if __has_attribute(no_sanitize)
|
||||
#define NO_SANITIZE(what) __attribute__((no_sanitize(what)))
|
||||
#endif
|
||||
#endif
|
||||
#if !defined(NO_SANITIZE)
|
||||
#define NO_SANITIZE(what)
|
||||
#endif
|
||||
|
||||
// MemorySanitizer annotations.
|
||||
#if defined(MEMORY_SANITIZER) && !defined(OS_NACL)
|
||||
#include <sanitizer/msan_interface.h>
|
||||
|
||||
// Mark a memory region fully initialized.
|
||||
// Use this to annotate code that deliberately reads uninitialized data, for
|
||||
// example a GC scavenging root set pointers from the stack.
|
||||
#define MSAN_UNPOISON(p, size) __msan_unpoison(p, size)
|
||||
|
||||
// Check a memory region for initializedness, as if it was being used here.
|
||||
// If any bits are uninitialized, crash with an MSan report.
|
||||
// Use this to sanitize data which MSan won't be able to track, e.g. before
|
||||
// passing data to another process via shared memory.
|
||||
#define MSAN_CHECK_MEM_IS_INITIALIZED(p, size) \
|
||||
__msan_check_mem_is_initialized(p, size)
|
||||
#else // MEMORY_SANITIZER
|
||||
#define MSAN_UNPOISON(p, size)
|
||||
#define MSAN_CHECK_MEM_IS_INITIALIZED(p, size)
|
||||
#endif // MEMORY_SANITIZER
|
||||
|
||||
// DISABLE_CFI_PERF -- Disable Control Flow Integrity for perf reasons.
|
||||
#if !defined(DISABLE_CFI_PERF)
|
||||
#if defined(__clang__) && defined(OFFICIAL_BUILD)
|
||||
#define DISABLE_CFI_PERF __attribute__((no_sanitize("cfi")))
|
||||
#else
|
||||
#define DISABLE_CFI_PERF
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// DISABLE_CFI_ICALL -- Disable Control Flow Integrity indirect call checks.
|
||||
#if !defined(DISABLE_CFI_ICALL)
|
||||
#if defined(OS_WIN)
|
||||
// Windows also needs __declspec(guard(nocf)).
|
||||
#define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall") __declspec(guard(nocf))
|
||||
#else
|
||||
#define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall")
|
||||
#endif
|
||||
#endif
|
||||
#if !defined(DISABLE_CFI_ICALL)
|
||||
#define DISABLE_CFI_ICALL
|
||||
#endif
|
||||
|
||||
// Macro useful for writing cross-platform function pointers.
|
||||
#if !defined(CDECL)
|
||||
#if defined(OS_WIN)
|
||||
#define CDECL __cdecl
|
||||
#else // defined(OS_WIN)
|
||||
#define CDECL
|
||||
#endif // defined(OS_WIN)
|
||||
#endif // !defined(CDECL)
|
||||
|
||||
// Macro for hinting that an expression is likely to be false.
|
||||
#if !defined(UNLIKELY)
|
||||
#if defined(COMPILER_GCC) || defined(__clang__)
|
||||
#define UNLIKELY(x) __builtin_expect(!!(x), 0)
|
||||
#else
|
||||
#define UNLIKELY(x) (x)
|
||||
#endif // defined(COMPILER_GCC)
|
||||
#endif // !defined(UNLIKELY)
|
||||
|
||||
#if !defined(LIKELY)
|
||||
#if defined(COMPILER_GCC) || defined(__clang__)
|
||||
#define LIKELY(x) __builtin_expect(!!(x), 1)
|
||||
#else
|
||||
#define LIKELY(x) (x)
|
||||
#endif // defined(COMPILER_GCC)
|
||||
#endif // !defined(LIKELY)
|
||||
|
||||
// Compiler feature-detection.
|
||||
// clang.llvm.org/docs/LanguageExtensions.html#has-feature-and-has-extension
|
||||
#if defined(__has_feature)
|
||||
#define HAS_FEATURE(FEATURE) __has_feature(FEATURE)
|
||||
#else
|
||||
#define HAS_FEATURE(FEATURE) 0
|
||||
#endif
|
||||
|
||||
// Macro for telling -Wimplicit-fallthrough that a fallthrough is intentional.
|
||||
#if defined(__clang__)
|
||||
#define FALLTHROUGH [[clang::fallthrough]]
|
||||
#else
|
||||
#define FALLTHROUGH
|
||||
#endif
|
||||
|
||||
#if defined(COMPILER_GCC)
|
||||
#define PRETTY_FUNCTION __PRETTY_FUNCTION__
|
||||
#elif defined(COMPILER_MSVC)
|
||||
#define PRETTY_FUNCTION __FUNCSIG__
|
||||
#else
|
||||
// See https://en.cppreference.com/w/c/language/function_definition#func
|
||||
#define PRETTY_FUNCTION __func__
|
||||
#endif
|
||||
|
||||
#if !defined(CPU_ARM_NEON)
|
||||
#if defined(__arm__)
|
||||
#if !defined(__ARMEB__) && !defined(__ARM_EABI__) && !defined(__EABI__) && \
|
||||
!defined(__VFP_FP__) && !defined(_WIN32_WCE) && !defined(ANDROID)
|
||||
#error Chromium does not support middle endian architecture
|
||||
#endif
|
||||
#if defined(__ARM_NEON__)
|
||||
#define CPU_ARM_NEON 1
|
||||
#endif
|
||||
#endif // defined(__arm__)
|
||||
#endif // !defined(CPU_ARM_NEON)
|
||||
|
||||
#if !defined(HAVE_MIPS_MSA_INTRINSICS)
|
||||
#if defined(__mips_msa) && defined(__mips_isa_rev) && (__mips_isa_rev >= 5)
|
||||
#define HAVE_MIPS_MSA_INTRINSICS 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__clang__) && __has_attribute(uninitialized)
|
||||
// Attribute "uninitialized" disables -ftrivial-auto-var-init=pattern for
|
||||
// the specified variable.
|
||||
// Library-wide alternative is
|
||||
// 'configs -= [ "//build/config/compiler:default_init_stack_vars" ]' in .gn
|
||||
// file.
|
||||
//
|
||||
// See "init_stack_vars" in build/config/compiler/BUILD.gn and
|
||||
// http://crbug.com/977230
|
||||
// "init_stack_vars" is enabled for non-official builds and we hope to enable it
|
||||
// in official build in 2020 as well. The flag writes fixed pattern into
|
||||
// uninitialized parts of all local variables. In rare cases such initialization
|
||||
// is undesirable and attribute can be used:
|
||||
// 1. Degraded performance
|
||||
// In most cases compiler is able to remove additional stores. E.g. if memory is
|
||||
// never accessed or properly initialized later. Preserved stores mostly will
|
||||
// not affect program performance. However if compiler failed on some
|
||||
// performance critical code we can get a visible regression in a benchmark.
|
||||
// 2. memset, memcpy calls
|
||||
// Compiler may replaces some memory writes with memset or memcpy calls. This is
|
||||
// not -ftrivial-auto-var-init specific, but it can happen more likely with the
|
||||
// flag. It can be a problem if code is not linked with C run-time library.
|
||||
//
|
||||
// Note: The flag is security risk mitigation feature. So in future the
|
||||
// attribute uses should be avoided when possible. However to enable this
|
||||
// mitigation on the most of the code we need to be less strict now and minimize
|
||||
// number of exceptions later. So if in doubt feel free to use attribute, but
|
||||
// please document the problem for someone who is going to cleanup it later.
|
||||
// E.g. platform, bot, benchmark or test name in patch description or next to
|
||||
// the attribute.
|
||||
#define STACK_UNINITIALIZED __attribute__((uninitialized))
|
||||
#else
|
||||
#define STACK_UNINITIALIZED
|
||||
#endif
|
||||
|
||||
// The ANALYZER_ASSUME_TRUE(bool arg) macro adds compiler-specific hints
|
||||
// to Clang which control what code paths are statically analyzed,
|
||||
// and is meant to be used in conjunction with assert & assert-like functions.
|
||||
// The expression is passed straight through if analysis isn't enabled.
|
||||
//
|
||||
// ANALYZER_SKIP_THIS_PATH() suppresses static analysis for the current
|
||||
// codepath and any other branching codepaths that might follow.
|
||||
#if defined(__clang_analyzer__)
|
||||
|
||||
inline constexpr bool AnalyzerNoReturn() __attribute__((analyzer_noreturn)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
inline constexpr bool AnalyzerAssumeTrue(bool arg) {
|
||||
// AnalyzerNoReturn() is invoked and analysis is terminated if |arg| is
|
||||
// false.
|
||||
return arg || AnalyzerNoReturn();
|
||||
}
|
||||
|
||||
#define ANALYZER_ASSUME_TRUE(arg) ::AnalyzerAssumeTrue(!!(arg))
|
||||
#define ANALYZER_SKIP_THIS_PATH() static_cast<void>(::AnalyzerNoReturn())
|
||||
#define ANALYZER_ALLOW_UNUSED(var) static_cast<void>(var);
|
||||
|
||||
#else // !defined(__clang_analyzer__)
|
||||
|
||||
#define ANALYZER_ASSUME_TRUE(arg) (arg)
|
||||
#define ANALYZER_SKIP_THIS_PATH()
|
||||
#define ANALYZER_ALLOW_UNUSED(var) static_cast<void>(var);
|
||||
|
||||
#endif // defined(__clang_analyzer__)
|
||||
|
||||
// Use nomerge attribute to disable optimization of merging multiple same calls.
|
||||
#if defined(__clang__) && __has_attribute(nomerge)
|
||||
#define NOMERGE [[clang::nomerge]]
|
||||
#else
|
||||
#define NOMERGE
|
||||
#endif
|
||||
|
||||
// Marks a type as being eligible for the "trivial" ABI despite having a
|
||||
// non-trivial destructor or copy/move constructor. Such types can be relocated
|
||||
// after construction by simply copying their memory, which makes them eligible
|
||||
// to be passed in registers. The canonical example is std::unique_ptr.
|
||||
//
|
||||
// Use with caution; this has some subtle effects on constructor/destructor
|
||||
// ordering and will be very incorrect if the type relies on its address
|
||||
// remaining constant. When used as a function argument (by value), the value
|
||||
// may be constructed in the caller's stack frame, passed in a register, and
|
||||
// then used and destructed in the callee's stack frame. A similar thing can
|
||||
// occur when values are returned.
|
||||
//
|
||||
// TRIVIAL_ABI is not needed for types which have a trivial destructor and
|
||||
// copy/move constructors, such as base::TimeTicks and other POD.
|
||||
//
|
||||
// It is also not likely to be effective on types too large to be passed in one
|
||||
// or two registers on typical target ABIs.
|
||||
//
|
||||
// See also:
|
||||
// https://clang.llvm.org/docs/AttributeReference.html#trivial-abi
|
||||
// https://libcxx.llvm.org/docs/DesignDocs/UniquePtrTrivialAbi.html
|
||||
#if defined(__clang__) && __has_attribute(trivial_abi)
|
||||
#define TRIVIAL_ABI [[clang::trivial_abi]]
|
||||
#else
|
||||
#define TRIVIAL_ABI
|
||||
#endif
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_COMPILER_SPECIFIC_H_
|
133
include/base/cef_cxx17_backports.h
Normal file
133
include/base/cef_cxx17_backports.h
Normal file
@ -0,0 +1,133 @@
|
||||
// Copyright (c) 2021 Marshall A. Greenblatt. Portions copyright (c) 2021
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_CXX17_BACKPORTS_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_CXX17_BACKPORTS_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
// TODO(cef): Change to "base/cxx17_backports.h" in M93.
|
||||
#include "base/stl_util.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <array>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
namespace base {
|
||||
|
||||
// C++14 implementation of C++17's std::size():
|
||||
// http://en.cppreference.com/w/cpp/iterator/size
|
||||
template <typename Container>
|
||||
constexpr auto size(const Container& c) -> decltype(c.size()) {
|
||||
return c.size();
|
||||
}
|
||||
|
||||
template <typename T, size_t N>
|
||||
constexpr size_t size(const T (&array)[N]) noexcept {
|
||||
return N;
|
||||
}
|
||||
|
||||
// C++14 implementation of C++17's std::empty():
|
||||
// http://en.cppreference.com/w/cpp/iterator/empty
|
||||
template <typename Container>
|
||||
constexpr auto empty(const Container& c) -> decltype(c.empty()) {
|
||||
return c.empty();
|
||||
}
|
||||
|
||||
template <typename T, size_t N>
|
||||
constexpr bool empty(const T (&array)[N]) noexcept {
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr bool empty(std::initializer_list<T> il) noexcept {
|
||||
return il.size() == 0;
|
||||
}
|
||||
|
||||
// C++14 implementation of C++17's std::data():
|
||||
// http://en.cppreference.com/w/cpp/iterator/data
|
||||
template <typename Container>
|
||||
constexpr auto data(Container& c) -> decltype(c.data()) {
|
||||
return c.data();
|
||||
}
|
||||
|
||||
// std::basic_string::data() had no mutable overload prior to C++17 [1].
|
||||
// Hence this overload is provided.
|
||||
// Note: str[0] is safe even for empty strings, as they are guaranteed to be
|
||||
// null-terminated [2].
|
||||
//
|
||||
// [1] http://en.cppreference.com/w/cpp/string/basic_string/data
|
||||
// [2] http://en.cppreference.com/w/cpp/string/basic_string/operator_at
|
||||
template <typename CharT, typename Traits, typename Allocator>
|
||||
CharT* data(std::basic_string<CharT, Traits, Allocator>& str) {
|
||||
return std::addressof(str[0]);
|
||||
}
|
||||
|
||||
template <typename Container>
|
||||
constexpr auto data(const Container& c) -> decltype(c.data()) {
|
||||
return c.data();
|
||||
}
|
||||
|
||||
template <typename T, size_t N>
|
||||
constexpr T* data(T (&array)[N]) noexcept {
|
||||
return array;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr const T* data(std::initializer_list<T> il) noexcept {
|
||||
return il.begin();
|
||||
}
|
||||
|
||||
// std::array::data() was not constexpr prior to C++17 [1].
|
||||
// Hence these overloads are provided.
|
||||
//
|
||||
// [1] https://en.cppreference.com/w/cpp/container/array/data
|
||||
template <typename T, size_t N>
|
||||
constexpr T* data(std::array<T, N>& array) noexcept {
|
||||
return !array.empty() ? &array[0] : nullptr;
|
||||
}
|
||||
|
||||
template <typename T, size_t N>
|
||||
constexpr const T* data(const std::array<T, N>& array) noexcept {
|
||||
return !array.empty() ? &array[0] : nullptr;
|
||||
}
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_CXX17_BACKPORTS_H_
|
@ -32,12 +32,7 @@
|
||||
#define CEF_INCLUDE_BASE_CEF_LOCK_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_SYNCHRONIZATION_LOCK_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/synchronization/lock.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
|
@ -41,180 +41,38 @@
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <stddef.h> // For size_t.
|
||||
#include "include/base/cef_build.h" // For COMPILER_MSVC
|
||||
// ALL DISALLOW_xxx MACROS ARE DEPRECATED; DO NOT USE IN NEW CODE.
|
||||
// Use explicit deletions instead. See the section on copyability/movability in
|
||||
// //styleguide/c++/c++-dos-and-donts.md for more information.
|
||||
|
||||
#if !defined(arraysize)
|
||||
// DEPRECATED: See above. Makes a class uncopyable.
|
||||
#define DISALLOW_COPY(TypeName) TypeName(const TypeName&) = delete
|
||||
|
||||
// The arraysize(arr) macro returns the # of elements in an array arr.
|
||||
// The expression is a compile-time constant, and therefore can be
|
||||
// used in defining new arrays, for example. If you use arraysize on
|
||||
// a pointer by mistake, you will get a compile-time error.
|
||||
//
|
||||
// One caveat is that arraysize() doesn't accept any array of an
|
||||
// anonymous type or a type defined inside a function. In these rare
|
||||
// cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is
|
||||
// due to a limitation in C++'s template system. The limitation might
|
||||
// eventually be removed, but it hasn't happened yet.
|
||||
// DEPRECATED: See above. Makes a class unassignable.
|
||||
#define DISALLOW_ASSIGN(TypeName) TypeName& operator=(const TypeName&) = delete
|
||||
|
||||
// This template function declaration is used in defining arraysize.
|
||||
// Note that the function doesn't need an implementation, as we only
|
||||
// use its type.
|
||||
template <typename T, size_t N>
|
||||
char (&ArraySizeHelper(T (&array)[N]))[N];
|
||||
|
||||
// That gcc wants both of these prototypes seems mysterious. VC, for
|
||||
// its part, can't decide which to use (another mystery). Matching of
|
||||
// template overloads: the final frontier.
|
||||
#ifndef _MSC_VER
|
||||
template <typename T, size_t N>
|
||||
char (&ArraySizeHelper(const T (&array)[N]))[N];
|
||||
#endif
|
||||
|
||||
#define arraysize(array) (sizeof(ArraySizeHelper(array)))
|
||||
|
||||
#endif // !arraysize
|
||||
|
||||
#if !defined(DISALLOW_COPY_AND_ASSIGN)
|
||||
|
||||
// A macro to disallow the copy constructor and operator= functions
|
||||
// This should be used in the private: declarations for a class
|
||||
// DEPRECATED: See above. Makes a class uncopyable and unassignable.
|
||||
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
|
||||
TypeName(const TypeName&); \
|
||||
void operator=(const TypeName&)
|
||||
DISALLOW_COPY(TypeName); \
|
||||
DISALLOW_ASSIGN(TypeName)
|
||||
|
||||
#endif // !DISALLOW_COPY_AND_ASSIGN
|
||||
|
||||
#if !defined(DISALLOW_IMPLICIT_CONSTRUCTORS)
|
||||
|
||||
// A macro to disallow all the implicit constructors, namely the
|
||||
// DEPRECATED: See above. Disallow all implicit constructors, namely the
|
||||
// default constructor, copy constructor and operator= functions.
|
||||
//
|
||||
// This should be used in the private: declarations for a class
|
||||
// that wants to prevent anyone from instantiating it. This is
|
||||
// especially useful for classes containing only static methods.
|
||||
#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
|
||||
TypeName(); \
|
||||
TypeName() = delete; \
|
||||
DISALLOW_COPY_AND_ASSIGN(TypeName)
|
||||
|
||||
#endif // !DISALLOW_IMPLICIT_CONSTRUCTORS
|
||||
|
||||
#if !defined(COMPILE_ASSERT)
|
||||
|
||||
// The COMPILE_ASSERT macro can be used to verify that a compile time
|
||||
// expression is true. For example, you could use it to verify the
|
||||
// size of a static array:
|
||||
// Used to explicitly mark the return value of a function as unused. If you are
|
||||
// really sure you don't want to do anything with the return value of a function
|
||||
// that has been marked WARN_UNUSED_RESULT, wrap it with this. Example:
|
||||
//
|
||||
// COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES,
|
||||
// content_type_names_incorrect_size);
|
||||
// std::unique_ptr<MyType> my_var = ...;
|
||||
// if (TakeOwnership(my_var.get()) == SUCCESS)
|
||||
// ignore_result(my_var.release());
|
||||
//
|
||||
// or to make sure a struct is smaller than a certain size:
|
||||
//
|
||||
// COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
|
||||
//
|
||||
// The second argument to the macro is the name of the variable. If
|
||||
// the expression is false, most compilers will issue a warning/error
|
||||
// containing the name of the variable.
|
||||
|
||||
#if __cplusplus >= 201103L
|
||||
|
||||
// Under C++11, just use static_assert.
|
||||
#define COMPILE_ASSERT(expr, msg) static_assert(expr, #msg)
|
||||
|
||||
#else
|
||||
|
||||
namespace cef {
|
||||
|
||||
template <bool>
|
||||
struct CompileAssert {};
|
||||
|
||||
} // namespace cef
|
||||
|
||||
#define COMPILE_ASSERT(expr, msg) \
|
||||
typedef cef::CompileAssert<(bool(expr))> \
|
||||
msg[bool(expr) ? 1 : -1] ALLOW_UNUSED_TYPE
|
||||
|
||||
// Implementation details of COMPILE_ASSERT:
|
||||
//
|
||||
// - COMPILE_ASSERT works by defining an array type that has -1
|
||||
// elements (and thus is invalid) when the expression is false.
|
||||
//
|
||||
// - The simpler definition
|
||||
//
|
||||
// #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
|
||||
//
|
||||
// does not work, as gcc supports variable-length arrays whose sizes
|
||||
// are determined at run-time (this is gcc's extension and not part
|
||||
// of the C++ standard). As a result, gcc fails to reject the
|
||||
// following code with the simple definition:
|
||||
//
|
||||
// int foo;
|
||||
// COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
|
||||
// // not a compile-time constant.
|
||||
//
|
||||
// - By using the type CompileAssert<(bool(expr))>, we ensures that
|
||||
// expr is a compile-time constant. (Template arguments must be
|
||||
// determined at compile-time.)
|
||||
//
|
||||
// - The outer parentheses in CompileAssert<(bool(expr))> are necessary
|
||||
// to work around a bug in gcc 3.4.4 and 4.0.1. If we had written
|
||||
//
|
||||
// CompileAssert<bool(expr)>
|
||||
//
|
||||
// instead, these compilers will refuse to compile
|
||||
//
|
||||
// COMPILE_ASSERT(5 > 0, some_message);
|
||||
//
|
||||
// (They seem to think the ">" in "5 > 0" marks the end of the
|
||||
// template argument list.)
|
||||
//
|
||||
// - The array size is (bool(expr) ? 1 : -1), instead of simply
|
||||
//
|
||||
// ((expr) ? 1 : -1).
|
||||
//
|
||||
// This is to avoid running into a bug in MS VC 7.1, which
|
||||
// causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
|
||||
|
||||
#endif // !(__cplusplus >= 201103L)
|
||||
|
||||
#endif // !defined(COMPILE_ASSERT)
|
||||
template <typename T>
|
||||
inline void ignore_result(const T&) {}
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#if !defined(MSVC_PUSH_DISABLE_WARNING) && defined(COMPILER_MSVC)
|
||||
|
||||
// MSVC_PUSH_DISABLE_WARNING pushes |n| onto a stack of warnings to be disabled.
|
||||
// The warning remains disabled until popped by MSVC_POP_WARNING.
|
||||
#define MSVC_PUSH_DISABLE_WARNING(n) \
|
||||
__pragma(warning(push)) __pragma(warning(disable : n))
|
||||
|
||||
// MSVC_PUSH_WARNING_LEVEL pushes |n| as the global warning level. The level
|
||||
// remains in effect until popped by MSVC_POP_WARNING(). Use 0 to disable all
|
||||
// warnings.
|
||||
#define MSVC_PUSH_WARNING_LEVEL(n) __pragma(warning(push, n))
|
||||
|
||||
// Pop effects of innermost MSVC_PUSH_* macro.
|
||||
#define MSVC_POP_WARNING() __pragma(warning(pop))
|
||||
|
||||
#endif // !defined(MSVC_PUSH_DISABLE_WARNING) && defined(COMPILER_MSVC)
|
||||
|
||||
#if !defined(ALLOW_THIS_IN_INITIALIZER_LIST)
|
||||
#if defined(COMPILER_MSVC)
|
||||
// Allows |this| to be passed as an argument in constructor initializer lists.
|
||||
// This uses push/pop instead of the seemingly simpler suppress feature to avoid
|
||||
// having the warning be disabled for more than just |code|.
|
||||
//
|
||||
// Example usage:
|
||||
// Foo::Foo() : x(NULL), ALLOW_THIS_IN_INITIALIZER_LIST(y(this)), z(3) {}
|
||||
//
|
||||
// Compiler warning C4355: 'this': used in base member initializer list:
|
||||
// http://msdn.microsoft.com/en-us/library/3c594ae3(VS.80).aspx
|
||||
#define ALLOW_THIS_IN_INITIALIZER_LIST(code) \
|
||||
MSVC_PUSH_DISABLE_WARNING(4355) \
|
||||
code MSVC_POP_WARNING()
|
||||
#else // !COMPILER_MSVC
|
||||
#define ALLOW_THIS_IN_INITIALIZER_LIST(code) code
|
||||
#endif // !COMPILER_MSVC
|
||||
#endif // !ALLOW_THIS_IN_INITIALIZER_LIST
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_MACROS_H_
|
||||
|
@ -1,261 +0,0 @@
|
||||
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2012
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_MOVE_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_MOVE_H_
|
||||
|
||||
#if defined(MOVE_ONLY_TYPE_FOR_CPP_03)
|
||||
// Do nothing if the macro in this header has already been defined.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/move.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
// Macro with the boilerplate that makes a type move-only in C++03.
|
||||
//
|
||||
// USAGE
|
||||
//
|
||||
// This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
|
||||
// a "move-only" type. Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
|
||||
// the first line in a class declaration.
|
||||
//
|
||||
// A class using this macro must call .Pass() (or somehow be an r-value already)
|
||||
// before it can be:
|
||||
//
|
||||
// * Passed as a function argument
|
||||
// * Used as the right-hand side of an assignment
|
||||
// * Returned from a function
|
||||
//
|
||||
// Each class will still need to define their own "move constructor" and "move
|
||||
// operator=" to make this useful. Here's an example of the macro, the move
|
||||
// constructor, and the move operator= from the scoped_ptr class:
|
||||
//
|
||||
// template <typename T>
|
||||
// class scoped_ptr {
|
||||
// MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
|
||||
// public:
|
||||
// scoped_ptr(RValue& other) : ptr_(other.release()) { }
|
||||
// scoped_ptr& operator=(RValue& other) {
|
||||
// swap(other);
|
||||
// return *this;
|
||||
// }
|
||||
// };
|
||||
//
|
||||
// Note that the constructor must NOT be marked explicit.
|
||||
//
|
||||
// For consistency, the second parameter to the macro should always be RValue
|
||||
// unless you have a strong reason to do otherwise. It is only exposed as a
|
||||
// macro parameter so that the move constructor and move operator= don't look
|
||||
// like they're using a phantom type.
|
||||
//
|
||||
//
|
||||
// HOW THIS WORKS
|
||||
//
|
||||
// For a thorough explanation of this technique, see:
|
||||
//
|
||||
// http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
|
||||
//
|
||||
// The summary is that we take advantage of 2 properties:
|
||||
//
|
||||
// 1) non-const references will not bind to r-values.
|
||||
// 2) C++ can apply one user-defined conversion when initializing a
|
||||
// variable.
|
||||
//
|
||||
// The first lets us disable the copy constructor and assignment operator
|
||||
// by declaring private version of them with a non-const reference parameter.
|
||||
//
|
||||
// For l-values, direct initialization still fails like in
|
||||
// DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
|
||||
// operators are private.
|
||||
//
|
||||
// For r-values, the situation is different. The copy constructor and
|
||||
// assignment operator are not viable due to (1), so we are trying to call
|
||||
// a non-existent constructor and non-existing operator= rather than a private
|
||||
// one. Since we have not committed an error quite yet, we can provide an
|
||||
// alternate conversion sequence and a constructor. We add
|
||||
//
|
||||
// * a private struct named "RValue"
|
||||
// * a user-defined conversion "operator RValue()"
|
||||
// * a "move constructor" and "move operator=" that take the RValue& as
|
||||
// their sole parameter.
|
||||
//
|
||||
// Only r-values will trigger this sequence and execute our "move constructor"
|
||||
// or "move operator=." L-values will match the private copy constructor and
|
||||
// operator= first giving a "private in this context" error. This combination
|
||||
// gives us a move-only type.
|
||||
//
|
||||
// For signaling a destructive transfer of data from an l-value, we provide a
|
||||
// method named Pass() which creates an r-value for the current instance
|
||||
// triggering the move constructor or move operator=.
|
||||
//
|
||||
// Other ways to get r-values is to use the result of an expression like a
|
||||
// function call.
|
||||
//
|
||||
// Here's an example with comments explaining what gets triggered where:
|
||||
//
|
||||
// class Foo {
|
||||
// MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
|
||||
//
|
||||
// public:
|
||||
// ... API ...
|
||||
// Foo(RValue other); // Move constructor.
|
||||
// Foo& operator=(RValue rhs); // Move operator=
|
||||
// };
|
||||
//
|
||||
// Foo MakeFoo(); // Function that returns a Foo.
|
||||
//
|
||||
// Foo f;
|
||||
// Foo f_copy(f); // ERROR: Foo(Foo&) is private in this context.
|
||||
// Foo f_assign;
|
||||
// f_assign = f; // ERROR: operator=(Foo&) is private in this context.
|
||||
//
|
||||
//
|
||||
// Foo f(MakeFoo()); // R-value so alternate conversion executed.
|
||||
// Foo f_copy(f.Pass()); // R-value so alternate conversion executed.
|
||||
// f = f_copy.Pass(); // R-value so alternate conversion executed.
|
||||
//
|
||||
//
|
||||
// IMPLEMENTATION SUBTLETIES WITH RValue
|
||||
//
|
||||
// The RValue struct is just a container for a pointer back to the original
|
||||
// object. It should only ever be created as a temporary, and no external
|
||||
// class should ever declare it or use it in a parameter.
|
||||
//
|
||||
// It is tempting to want to use the RValue type in function parameters, but
|
||||
// excluding the limited usage here for the move constructor and move
|
||||
// operator=, doing so would mean that the function could take both r-values
|
||||
// and l-values equially which is unexpected. See COMPARED To Boost.Move for
|
||||
// more details.
|
||||
//
|
||||
// An alternate, and incorrect, implementation of the RValue class used by
|
||||
// Boost.Move makes RValue a fieldless child of the move-only type. RValue&
|
||||
// is then used in place of RValue in the various operators. The RValue& is
|
||||
// "created" by doing *reinterpret_cast<RValue*>(this). This has the appeal
|
||||
// of never creating a temporary RValue struct even with optimizations
|
||||
// disabled. Also, by virtue of inheritance you can treat the RValue
|
||||
// reference as if it were the move-only type itself. Unfortunately,
|
||||
// using the result of this reinterpret_cast<> is actually undefined behavior
|
||||
// due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
|
||||
// will generate non-working code.
|
||||
//
|
||||
// In optimized builds, both implementations generate the same assembly so we
|
||||
// choose the one that adheres to the standard.
|
||||
//
|
||||
//
|
||||
// WHY HAVE typedef void MoveOnlyTypeForCPP03
|
||||
//
|
||||
// Callback<>/Bind() needs to understand movable-but-not-copyable semantics
|
||||
// to call .Pass() appropriately when it is expected to transfer the value.
|
||||
// The cryptic typedef MoveOnlyTypeForCPP03 is added to make this check
|
||||
// easy and automatic in helper templates for Callback<>/Bind().
|
||||
// See IsMoveOnlyType template and its usage in base/callback_internal.h
|
||||
// for more details.
|
||||
//
|
||||
//
|
||||
// COMPARED TO C++11
|
||||
//
|
||||
// In C++11, you would implement this functionality using an r-value reference
|
||||
// and our .Pass() method would be replaced with a call to std::move().
|
||||
//
|
||||
// This emulation also has a deficiency where it uses up the single
|
||||
// user-defined conversion allowed by C++ during initialization. This can
|
||||
// cause problems in some API edge cases. For instance, in scoped_ptr, it is
|
||||
// impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
|
||||
// value of type scoped_ptr<Child> even if you add a constructor to
|
||||
// scoped_ptr<> that would make it look like it should work. C++11 does not
|
||||
// have this deficiency.
|
||||
//
|
||||
//
|
||||
// COMPARED TO Boost.Move
|
||||
//
|
||||
// Our implementation similar to Boost.Move, but we keep the RValue struct
|
||||
// private to the move-only type, and we don't use the reinterpret_cast<> hack.
|
||||
//
|
||||
// In Boost.Move, RValue is the boost::rv<> template. This type can be used
|
||||
// when writing APIs like:
|
||||
//
|
||||
// void MyFunc(boost::rv<Foo>& f)
|
||||
//
|
||||
// that can take advantage of rv<> to avoid extra copies of a type. However you
|
||||
// would still be able to call this version of MyFunc with an l-value:
|
||||
//
|
||||
// Foo f;
|
||||
// MyFunc(f); // Uh oh, we probably just destroyed |f| w/o calling Pass().
|
||||
//
|
||||
// unless someone is very careful to also declare a parallel override like:
|
||||
//
|
||||
// void MyFunc(const Foo& f)
|
||||
//
|
||||
// that would catch the l-values first. This was declared unsafe in C++11 and
|
||||
// a C++11 compiler will explicitly fail MyFunc(f). Unfortunately, we cannot
|
||||
// ensure this in C++03.
|
||||
//
|
||||
// Since we have no need for writing such APIs yet, our implementation keeps
|
||||
// RValue private and uses a .Pass() method to do the conversion instead of
|
||||
// trying to write a version of "std::move()." Writing an API like std::move()
|
||||
// would require the RValue struct to be public.
|
||||
//
|
||||
//
|
||||
// CAVEATS
|
||||
//
|
||||
// If you include a move-only type as a field inside a class that does not
|
||||
// explicitly declare a copy constructor, the containing class's implicit
|
||||
// copy constructor will change from Containing(const Containing&) to
|
||||
// Containing(Containing&). This can cause some unexpected errors.
|
||||
//
|
||||
// http://llvm.org/bugs/show_bug.cgi?id=11528
|
||||
//
|
||||
// The workaround is to explicitly declare your copy constructor.
|
||||
//
|
||||
#define MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
|
||||
private: \
|
||||
struct rvalue_type { \
|
||||
explicit rvalue_type(type* object) : object(object) {} \
|
||||
type* object; \
|
||||
}; \
|
||||
type(type&); \
|
||||
void operator=(type&); \
|
||||
\
|
||||
public: \
|
||||
operator rvalue_type() { return rvalue_type(this); } \
|
||||
type Pass() { return type(rvalue_type(this)); } \
|
||||
typedef void MoveOnlyTypeForCPP03; \
|
||||
\
|
||||
private:
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_MOVE_H_
|
@ -35,12 +35,7 @@
|
||||
#ifndef CEF_INCLUDE_BASE_PLATFORM_THREAD_H_
|
||||
#define CEF_INCLUDE_BASE_PLATFORM_THREAD_H_
|
||||
|
||||
#if defined(BASE_THREADING_PLATFORM_THREAD_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/threading/platform_thread.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
|
58
include/base/cef_ptr_util.h
Normal file
58
include/base/cef_ptr_util.h
Normal file
@ -0,0 +1,58 @@
|
||||
// Copyright (c) 2021 Marshall A. Greenblatt. Portions copyright (c) 2015
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#ifndef INCLUDE_BASE_CEF_PTR_UTIL_H_
|
||||
#define INCLUDE_BASE_CEF_PTR_UTIL_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/memory/ptr_util.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
namespace base {
|
||||
|
||||
// Helper to transfer ownership of a raw pointer to a std::unique_ptr<T>.
|
||||
// Note that std::unique_ptr<T> has very different semantics from
|
||||
// std::unique_ptr<T[]>: do not use this helper for array allocations.
|
||||
template <typename T>
|
||||
std::unique_ptr<T> WrapUnique(T* ptr) {
|
||||
return std::unique_ptr<T>(ptr);
|
||||
}
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // INCLUDE_BASE_CEF_PTR_UTIL_H_
|
@ -33,12 +33,7 @@
|
||||
#define CEF_INCLUDE_BASE_CEF_REF_COUNTED_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_MEMORY_REF_COUNTED_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/memory/ref_counted.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
@ -46,16 +41,21 @@
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <cassert>
|
||||
#include <stddef.h>
|
||||
|
||||
#include <utility>
|
||||
|
||||
#include "include/base/cef_atomic_ref_count.h"
|
||||
#include "include/base/cef_build.h"
|
||||
#include "include/base/cef_compiler_specific.h"
|
||||
#include "include/base/cef_logging.h"
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/base/cef_scoped_refptr.h"
|
||||
#include "include/base/cef_template_util.h"
|
||||
#include "include/base/cef_thread_checker.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
namespace cef_subtle {
|
||||
namespace subtle {
|
||||
|
||||
class RefCountedBase {
|
||||
public:
|
||||
@ -63,13 +63,17 @@ class RefCountedBase {
|
||||
bool HasAtLeastOneRef() const { return ref_count_ >= 1; }
|
||||
|
||||
protected:
|
||||
RefCountedBase()
|
||||
: ref_count_(0)
|
||||
explicit RefCountedBase(StartRefCountFromZeroTag) {
|
||||
#if DCHECK_IS_ON()
|
||||
,
|
||||
in_dtor_(false)
|
||||
thread_checker_.DetachFromThread();
|
||||
#endif
|
||||
}
|
||||
|
||||
explicit RefCountedBase(StartRefCountFromOneTag) : ref_count_(1) {
|
||||
#if DCHECK_IS_ON()
|
||||
needs_adopt_ref_ = true;
|
||||
thread_checker_.DetachFromThread();
|
||||
#endif
|
||||
{
|
||||
}
|
||||
|
||||
~RefCountedBase() {
|
||||
@ -81,28 +85,88 @@ class RefCountedBase {
|
||||
void AddRef() const {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(!in_dtor_);
|
||||
DCHECK(!needs_adopt_ref_)
|
||||
<< "This RefCounted object is created with non-zero reference count."
|
||||
<< " The first reference to such a object has to be made by AdoptRef or"
|
||||
<< " MakeRefCounted.";
|
||||
if (ref_count_ >= 1) {
|
||||
DCHECK(CalledOnValidThread());
|
||||
}
|
||||
#endif
|
||||
++ref_count_;
|
||||
|
||||
AddRefImpl();
|
||||
}
|
||||
|
||||
// Returns true if the object should self-delete.
|
||||
bool Release() const {
|
||||
ReleaseImpl();
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(!in_dtor_);
|
||||
#endif
|
||||
if (--ref_count_ == 0) {
|
||||
#if DCHECK_IS_ON()
|
||||
if (ref_count_ == 0)
|
||||
in_dtor_ = true;
|
||||
|
||||
if (ref_count_ >= 1)
|
||||
DCHECK(CalledOnValidThread());
|
||||
if (ref_count_ == 1)
|
||||
thread_checker_.DetachFromThread();
|
||||
#endif
|
||||
|
||||
return ref_count_ == 0;
|
||||
}
|
||||
|
||||
// Returns true if it is safe to read or write the object, from a thread
|
||||
// safety standpoint. Should be DCHECK'd from the methods of RefCounted
|
||||
// classes if there is a danger of objects being shared across threads.
|
||||
//
|
||||
// This produces fewer false positives than adding a separate ThreadChecker
|
||||
// into the subclass, because it automatically detaches from the thread when
|
||||
// the reference count is 1 (and never fails if there is only one reference).
|
||||
//
|
||||
// This means unlike a separate ThreadChecker, it will permit a singly
|
||||
// referenced object to be passed between threads (not holding a reference on
|
||||
// the sending thread), but will trap if the sending thread holds onto a
|
||||
// reference, or if the object is accessed from multiple threads
|
||||
// simultaneously.
|
||||
bool IsOnValidThread() const {
|
||||
#if DCHECK_IS_ON()
|
||||
return ref_count_ <= 1 || CalledOnValidThread();
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
mutable int ref_count_;
|
||||
template <typename U>
|
||||
friend scoped_refptr<U> base::AdoptRef(U*);
|
||||
|
||||
void Adopted() const {
|
||||
#if DCHECK_IS_ON()
|
||||
mutable bool in_dtor_;
|
||||
DCHECK(needs_adopt_ref_);
|
||||
needs_adopt_ref_ = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(ARCH_CPU_64_BITS)
|
||||
void AddRefImpl() const;
|
||||
void ReleaseImpl() const;
|
||||
#else
|
||||
void AddRefImpl() const { ++ref_count_; }
|
||||
void ReleaseImpl() const { --ref_count_; }
|
||||
#endif
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
bool CalledOnValidThread() const;
|
||||
#endif
|
||||
|
||||
mutable uint32_t ref_count_ = 0;
|
||||
static_assert(std::is_unsigned<decltype(ref_count_)>::value,
|
||||
"ref_count_ must be an unsigned type.");
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
mutable bool needs_adopt_ref_ = false;
|
||||
mutable bool in_dtor_ = false;
|
||||
mutable ThreadChecker thread_checker_;
|
||||
#endif
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(RefCountedBase);
|
||||
@ -114,28 +178,117 @@ class RefCountedThreadSafeBase {
|
||||
bool HasAtLeastOneRef() const;
|
||||
|
||||
protected:
|
||||
RefCountedThreadSafeBase();
|
||||
explicit constexpr RefCountedThreadSafeBase(StartRefCountFromZeroTag) {}
|
||||
explicit constexpr RefCountedThreadSafeBase(StartRefCountFromOneTag)
|
||||
: ref_count_(1) {
|
||||
#if DCHECK_IS_ON()
|
||||
needs_adopt_ref_ = true;
|
||||
#endif
|
||||
}
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
~RefCountedThreadSafeBase();
|
||||
#else
|
||||
~RefCountedThreadSafeBase() = default;
|
||||
#endif
|
||||
|
||||
void AddRef() const;
|
||||
|
||||
// Release and AddRef are suitable for inlining on X86 because they generate
|
||||
// very small code threads. On other platforms (ARM), it causes a size
|
||||
// regression and is probably not worth it.
|
||||
#if defined(ARCH_CPU_X86_FAMILY)
|
||||
// Returns true if the object should self-delete.
|
||||
bool Release() const { return ReleaseImpl(); }
|
||||
void AddRef() const { AddRefImpl(); }
|
||||
void AddRefWithCheck() const { AddRefWithCheckImpl(); }
|
||||
#else
|
||||
// Returns true if the object should self-delete.
|
||||
bool Release() const;
|
||||
void AddRef() const;
|
||||
void AddRefWithCheck() const;
|
||||
#endif
|
||||
|
||||
private:
|
||||
mutable AtomicRefCount ref_count_;
|
||||
template <typename U>
|
||||
friend scoped_refptr<U> base::AdoptRef(U*);
|
||||
|
||||
void Adopted() const {
|
||||
#if DCHECK_IS_ON()
|
||||
mutable bool in_dtor_;
|
||||
DCHECK(needs_adopt_ref_);
|
||||
needs_adopt_ref_ = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void AddRefImpl() const {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(!in_dtor_);
|
||||
DCHECK(!needs_adopt_ref_)
|
||||
<< "This RefCounted object is created with non-zero reference count."
|
||||
<< " The first reference to such a object has to be made by AdoptRef or"
|
||||
<< " MakeRefCounted.";
|
||||
#endif
|
||||
ref_count_.Increment();
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void AddRefWithCheckImpl() const {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(!in_dtor_);
|
||||
DCHECK(!needs_adopt_ref_)
|
||||
<< "This RefCounted object is created with non-zero reference count."
|
||||
<< " The first reference to such a object has to be made by AdoptRef or"
|
||||
<< " MakeRefCounted.";
|
||||
#endif
|
||||
CHECK(ref_count_.Increment() > 0);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE bool ReleaseImpl() const {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(!in_dtor_);
|
||||
DCHECK(!ref_count_.IsZero());
|
||||
#endif
|
||||
if (!ref_count_.Decrement()) {
|
||||
#if DCHECK_IS_ON()
|
||||
in_dtor_ = true;
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
mutable AtomicRefCount ref_count_{0};
|
||||
#if DCHECK_IS_ON()
|
||||
mutable bool needs_adopt_ref_ = false;
|
||||
mutable bool in_dtor_ = false;
|
||||
#endif
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafeBase);
|
||||
};
|
||||
|
||||
} // namespace cef_subtle
|
||||
} // namespace subtle
|
||||
|
||||
// ScopedAllowCrossThreadRefCountAccess disables the check documented on
|
||||
// RefCounted below for rare pre-existing use cases where thread-safety was
|
||||
// guaranteed through other means (e.g. explicit sequencing of calls across
|
||||
// execution threads when bouncing between threads in order). New callers
|
||||
// should refrain from using this (callsites handling thread-safety through
|
||||
// locks should use RefCountedThreadSafe per the overhead of its atomics being
|
||||
// negligible compared to locks anyways and callsites doing explicit sequencing
|
||||
// should properly std::move() the ref to avoid hitting this check).
|
||||
// TODO(tzik): Cleanup existing use cases and remove
|
||||
// ScopedAllowCrossThreadRefCountAccess.
|
||||
class ScopedAllowCrossThreadRefCountAccess final {
|
||||
public:
|
||||
#if DCHECK_IS_ON()
|
||||
ScopedAllowCrossThreadRefCountAccess();
|
||||
~ScopedAllowCrossThreadRefCountAccess();
|
||||
#else
|
||||
ScopedAllowCrossThreadRefCountAccess() {}
|
||||
~ScopedAllowCrossThreadRefCountAccess() {}
|
||||
#endif
|
||||
};
|
||||
|
||||
//
|
||||
// A base class for reference counted classes. Otherwise, known as a cheap
|
||||
// knock-off of WebKit's RefCounted<T> class. To use this guy just extend your
|
||||
// knock-off of WebKit's RefCounted<T> class. To use this, just extend your
|
||||
// class from it like so:
|
||||
//
|
||||
// class MyFoo : public base::RefCounted<MyFoo> {
|
||||
@ -145,26 +298,86 @@ class RefCountedThreadSafeBase {
|
||||
// ~MyFoo();
|
||||
// };
|
||||
//
|
||||
// You should always make your destructor private, to avoid any code deleting
|
||||
// the object accidently while there are references to it.
|
||||
template <class T>
|
||||
class RefCounted : public cef_subtle::RefCountedBase {
|
||||
public:
|
||||
RefCounted() {}
|
||||
// Usage Notes:
|
||||
// 1. You should always make your destructor non-public, to avoid any code
|
||||
// deleting the object accidentally while there are references to it.
|
||||
// 2. You should always make the ref-counted base class a friend of your class,
|
||||
// so that it can access the destructor.
|
||||
//
|
||||
// The ref count manipulation to RefCounted is NOT thread safe and has DCHECKs
|
||||
// to trap unsafe cross thread usage. A subclass instance of RefCounted can be
|
||||
// passed to another execution thread only when its ref count is 1. If the ref
|
||||
// count is more than 1, the RefCounted class verifies the ref updates are made
|
||||
// on the same execution thread as the previous ones. The subclass can also
|
||||
// manually call IsOnValidThread to trap other non-thread-safe accesses; see
|
||||
// the documentation for that method.
|
||||
//
|
||||
//
|
||||
// The reference count starts from zero by default, and we intended to migrate
|
||||
// to start-from-one ref count. Put REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() to
|
||||
// the ref counted class to opt-in.
|
||||
//
|
||||
// If an object has start-from-one ref count, the first scoped_refptr need to be
|
||||
// created by base::AdoptRef() or base::MakeRefCounted(). We can use
|
||||
// base::MakeRefCounted() to create create both type of ref counted object.
|
||||
//
|
||||
// The motivations to use start-from-one ref count are:
|
||||
// - Start-from-one ref count doesn't need the ref count increment for the
|
||||
// first reference.
|
||||
// - It can detect an invalid object acquisition for a being-deleted object
|
||||
// that has zero ref count. That tends to happen on custom deleter that
|
||||
// delays the deletion.
|
||||
// TODO(tzik): Implement invalid acquisition detection.
|
||||
// - Behavior parity to Blink's WTF::RefCounted, whose count starts from one.
|
||||
// And start-from-one ref count is a step to merge WTF::RefCounted into
|
||||
// base::RefCounted.
|
||||
//
|
||||
#define REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() \
|
||||
static constexpr ::base::subtle::StartRefCountFromOneTag \
|
||||
kRefCountPreference = ::base::subtle::kStartRefCountFromOneTag
|
||||
|
||||
void AddRef() const { cef_subtle::RefCountedBase::AddRef(); }
|
||||
template <class T, typename Traits>
|
||||
class RefCounted;
|
||||
|
||||
template <typename T>
|
||||
struct DefaultRefCountedTraits {
|
||||
static void Destruct(const T* x) {
|
||||
RefCounted<T, DefaultRefCountedTraits>::DeleteInternal(x);
|
||||
}
|
||||
};
|
||||
|
||||
template <class T, typename Traits = DefaultRefCountedTraits<T>>
|
||||
class RefCounted : public subtle::RefCountedBase {
|
||||
public:
|
||||
static constexpr subtle::StartRefCountFromZeroTag kRefCountPreference =
|
||||
subtle::kStartRefCountFromZeroTag;
|
||||
|
||||
RefCounted() : subtle::RefCountedBase(T::kRefCountPreference) {}
|
||||
|
||||
void AddRef() const { subtle::RefCountedBase::AddRef(); }
|
||||
|
||||
void Release() const {
|
||||
if (cef_subtle::RefCountedBase::Release()) {
|
||||
delete static_cast<const T*>(this);
|
||||
if (subtle::RefCountedBase::Release()) {
|
||||
// Prune the code paths which the static analyzer may take to simulate
|
||||
// object destruction. Use-after-free errors aren't possible given the
|
||||
// lifetime guarantees of the refcounting system.
|
||||
ANALYZER_SKIP_THIS_PATH();
|
||||
|
||||
Traits::Destruct(static_cast<const T*>(this));
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
~RefCounted() {}
|
||||
~RefCounted() = default;
|
||||
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(RefCounted<T>);
|
||||
friend struct DefaultRefCountedTraits<T>;
|
||||
template <typename U>
|
||||
static void DeleteInternal(const U* x) {
|
||||
delete x;
|
||||
}
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(RefCounted);
|
||||
};
|
||||
|
||||
// Forward declaration.
|
||||
@ -196,25 +409,44 @@ struct DefaultRefCountedThreadSafeTraits {
|
||||
// private:
|
||||
// friend class base::RefCountedThreadSafe<MyFoo>;
|
||||
// ~MyFoo();
|
||||
//
|
||||
// We can use REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() with RefCountedThreadSafe
|
||||
// too. See the comment above the RefCounted definition for details.
|
||||
template <class T, typename Traits = DefaultRefCountedThreadSafeTraits<T>>
|
||||
class RefCountedThreadSafe : public cef_subtle::RefCountedThreadSafeBase {
|
||||
class RefCountedThreadSafe : public subtle::RefCountedThreadSafeBase {
|
||||
public:
|
||||
RefCountedThreadSafe() {}
|
||||
static constexpr subtle::StartRefCountFromZeroTag kRefCountPreference =
|
||||
subtle::kStartRefCountFromZeroTag;
|
||||
|
||||
void AddRef() const { cef_subtle::RefCountedThreadSafeBase::AddRef(); }
|
||||
explicit RefCountedThreadSafe()
|
||||
: subtle::RefCountedThreadSafeBase(T::kRefCountPreference) {}
|
||||
|
||||
void AddRef() const { AddRefImpl(T::kRefCountPreference); }
|
||||
|
||||
void Release() const {
|
||||
if (cef_subtle::RefCountedThreadSafeBase::Release()) {
|
||||
if (subtle::RefCountedThreadSafeBase::Release()) {
|
||||
ANALYZER_SKIP_THIS_PATH();
|
||||
Traits::Destruct(static_cast<const T*>(this));
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
~RefCountedThreadSafe() {}
|
||||
~RefCountedThreadSafe() = default;
|
||||
|
||||
private:
|
||||
friend struct DefaultRefCountedThreadSafeTraits<T>;
|
||||
static void DeleteInternal(const T* x) { delete x; }
|
||||
template <typename U>
|
||||
static void DeleteInternal(const U* x) {
|
||||
delete x;
|
||||
}
|
||||
|
||||
void AddRefImpl(subtle::StartRefCountFromZeroTag) const {
|
||||
subtle::RefCountedThreadSafeBase::AddRef();
|
||||
}
|
||||
|
||||
void AddRefImpl(subtle::StartRefCountFromOneTag) const {
|
||||
subtle::RefCountedThreadSafeBase::AddRefWithCheck();
|
||||
}
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafe);
|
||||
};
|
||||
@ -229,142 +461,30 @@ class RefCountedData
|
||||
public:
|
||||
RefCountedData() : data() {}
|
||||
RefCountedData(const T& in_value) : data(in_value) {}
|
||||
RefCountedData(T&& in_value) : data(std::move(in_value)) {}
|
||||
template <typename... Args>
|
||||
explicit RefCountedData(in_place_t, Args&&... args)
|
||||
: data(std::forward<Args>(args)...) {}
|
||||
|
||||
T data;
|
||||
|
||||
private:
|
||||
friend class base::RefCountedThreadSafe<base::RefCountedData<T>>;
|
||||
~RefCountedData() {}
|
||||
~RefCountedData() = default;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
bool operator==(const RefCountedData<T>& lhs, const RefCountedData<T>& rhs) {
|
||||
return lhs.data == rhs.data;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool operator!=(const RefCountedData<T>& lhs, const RefCountedData<T>& rhs) {
|
||||
return !(lhs == rhs);
|
||||
}
|
||||
|
||||
} // namespace base
|
||||
|
||||
//
|
||||
// A smart pointer class for reference counted objects. Use this class instead
|
||||
// of calling AddRef and Release manually on a reference counted object to
|
||||
// avoid common memory leaks caused by forgetting to Release an object
|
||||
// reference. Sample usage:
|
||||
//
|
||||
// class MyFoo : public RefCounted<MyFoo> {
|
||||
// ...
|
||||
// };
|
||||
//
|
||||
// void some_function() {
|
||||
// scoped_refptr<MyFoo> foo = new MyFoo();
|
||||
// foo->Method(param);
|
||||
// // |foo| is released when this function returns
|
||||
// }
|
||||
//
|
||||
// void some_other_function() {
|
||||
// scoped_refptr<MyFoo> foo = new MyFoo();
|
||||
// ...
|
||||
// foo = NULL; // explicitly releases |foo|
|
||||
// ...
|
||||
// if (foo)
|
||||
// foo->Method(param);
|
||||
// }
|
||||
//
|
||||
// The above examples show how scoped_refptr<T> acts like a pointer to T.
|
||||
// Given two scoped_refptr<T> classes, it is also possible to exchange
|
||||
// references between the two objects, like so:
|
||||
//
|
||||
// {
|
||||
// scoped_refptr<MyFoo> a = new MyFoo();
|
||||
// scoped_refptr<MyFoo> b;
|
||||
//
|
||||
// b.swap(a);
|
||||
// // now, |b| references the MyFoo object, and |a| references NULL.
|
||||
// }
|
||||
//
|
||||
// To make both |a| and |b| in the above example reference the same MyFoo
|
||||
// object, simply use the assignment operator:
|
||||
//
|
||||
// {
|
||||
// scoped_refptr<MyFoo> a = new MyFoo();
|
||||
// scoped_refptr<MyFoo> b;
|
||||
//
|
||||
// b = a;
|
||||
// // now, |a| and |b| each own a reference to the same MyFoo object.
|
||||
// }
|
||||
//
|
||||
template <class T>
|
||||
class scoped_refptr {
|
||||
public:
|
||||
typedef T element_type;
|
||||
|
||||
scoped_refptr() : ptr_(NULL) {}
|
||||
|
||||
scoped_refptr(T* p) : ptr_(p) {
|
||||
if (ptr_)
|
||||
ptr_->AddRef();
|
||||
}
|
||||
|
||||
scoped_refptr(const scoped_refptr<T>& r) : ptr_(r.ptr_) {
|
||||
if (ptr_)
|
||||
ptr_->AddRef();
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
scoped_refptr(const scoped_refptr<U>& r) : ptr_(r.get()) {
|
||||
if (ptr_)
|
||||
ptr_->AddRef();
|
||||
}
|
||||
|
||||
~scoped_refptr() {
|
||||
if (ptr_)
|
||||
ptr_->Release();
|
||||
}
|
||||
|
||||
T* get() const { return ptr_; }
|
||||
|
||||
// Allow scoped_refptr<C> to be used in boolean expression
|
||||
// and comparison operations.
|
||||
operator T*() const { return ptr_; }
|
||||
|
||||
T* operator->() const {
|
||||
assert(ptr_ != NULL);
|
||||
return ptr_;
|
||||
}
|
||||
|
||||
scoped_refptr<T>& operator=(T* p) {
|
||||
// AddRef first so that self assignment should work
|
||||
if (p)
|
||||
p->AddRef();
|
||||
T* old_ptr = ptr_;
|
||||
ptr_ = p;
|
||||
if (old_ptr)
|
||||
old_ptr->Release();
|
||||
return *this;
|
||||
}
|
||||
|
||||
scoped_refptr<T>& operator=(const scoped_refptr<T>& r) {
|
||||
return *this = r.ptr_;
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
scoped_refptr<T>& operator=(const scoped_refptr<U>& r) {
|
||||
return *this = r.get();
|
||||
}
|
||||
|
||||
void swap(T** pp) {
|
||||
T* p = ptr_;
|
||||
ptr_ = *pp;
|
||||
*pp = p;
|
||||
}
|
||||
|
||||
void swap(scoped_refptr<T>& r) { swap(&r.ptr_); }
|
||||
|
||||
protected:
|
||||
T* ptr_;
|
||||
};
|
||||
|
||||
// Handy utility for creating a scoped_refptr<T> out of a T* explicitly without
|
||||
// having to retype all the template arguments
|
||||
template <typename T>
|
||||
scoped_refptr<T> make_scoped_refptr(T* t) {
|
||||
return scoped_refptr<T>(t);
|
||||
}
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_REF_COUNTED_H_
|
||||
|
@ -1,625 +0,0 @@
|
||||
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2012
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Scopers help you manage ownership of a pointer, helping you easily manage a
|
||||
// pointer within a scope, and automatically destroying the pointer at the end
|
||||
// of a scope. There are two main classes you will use, which correspond to the
|
||||
// operators new/delete and new[]/delete[].
|
||||
//
|
||||
// Example usage (scoped_ptr<T>):
|
||||
// {
|
||||
// scoped_ptr<Foo> foo(new Foo("wee"));
|
||||
// } // foo goes out of scope, releasing the pointer with it.
|
||||
//
|
||||
// {
|
||||
// scoped_ptr<Foo> foo; // No pointer managed.
|
||||
// foo.reset(new Foo("wee")); // Now a pointer is managed.
|
||||
// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
|
||||
// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
|
||||
// foo->Method(); // Foo::Method() called.
|
||||
// foo.get()->Method(); // Foo::Method() called.
|
||||
// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
|
||||
// // manages a pointer.
|
||||
// foo.reset(new Foo("wee4")); // foo manages a pointer again.
|
||||
// foo.reset(); // Foo("wee4") destroyed, foo no longer
|
||||
// // manages a pointer.
|
||||
// } // foo wasn't managing a pointer, so nothing was destroyed.
|
||||
//
|
||||
// Example usage (scoped_ptr<T[]>):
|
||||
// {
|
||||
// scoped_ptr<Foo[]> foo(new Foo[100]);
|
||||
// foo.get()->Method(); // Foo::Method on the 0th element.
|
||||
// foo[10].Method(); // Foo::Method on the 10th element.
|
||||
// }
|
||||
//
|
||||
// These scopers also implement part of the functionality of C++11 unique_ptr
|
||||
// in that they are "movable but not copyable." You can use the scopers in
|
||||
// the parameter and return types of functions to signify ownership transfer
|
||||
// in to and out of a function. When calling a function that has a scoper
|
||||
// as the argument type, it must be called with the result of an analogous
|
||||
// scoper's Pass() function or another function that generates a temporary;
|
||||
// passing by copy will NOT work. Here is an example using scoped_ptr:
|
||||
//
|
||||
// void TakesOwnership(scoped_ptr<Foo> arg) {
|
||||
// // Do something with arg
|
||||
// }
|
||||
// scoped_ptr<Foo> CreateFoo() {
|
||||
// // No need for calling Pass() because we are constructing a temporary
|
||||
// // for the return value.
|
||||
// return scoped_ptr<Foo>(new Foo("new"));
|
||||
// }
|
||||
// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
|
||||
// return arg.Pass();
|
||||
// }
|
||||
//
|
||||
// {
|
||||
// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
|
||||
// TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
|
||||
// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
|
||||
// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
|
||||
// PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL.
|
||||
// }
|
||||
//
|
||||
// Notice that if you do not call Pass() when returning from PassThru(), or
|
||||
// when invoking TakesOwnership(), the code will not compile because scopers
|
||||
// are not copyable; they only implement move semantics which require calling
|
||||
// the Pass() function to signify a destructive transfer of state. CreateFoo()
|
||||
// is different though because we are constructing a temporary on the return
|
||||
// line and thus can avoid needing to call Pass().
|
||||
//
|
||||
// Pass() properly handles upcast in initialization, i.e. you can use a
|
||||
// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
|
||||
//
|
||||
// scoped_ptr<Foo> foo(new Foo());
|
||||
// scoped_ptr<FooParent> parent(foo.Pass());
|
||||
//
|
||||
// PassAs<>() should be used to upcast return value in return statement:
|
||||
//
|
||||
// scoped_ptr<Foo> CreateFoo() {
|
||||
// scoped_ptr<FooChild> result(new FooChild());
|
||||
// return result.PassAs<Foo>();
|
||||
// }
|
||||
//
|
||||
// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
|
||||
// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_MEMORY_SCOPED_PTR_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
// Do nothing when building CEF.
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
// This is an implementation designed to match the anticipated future TR2
|
||||
// implementation of the scoped_ptr class.
|
||||
|
||||
#include <assert.h>
|
||||
#include <stddef.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <algorithm> // For std::swap().
|
||||
|
||||
#include "include/base/cef_basictypes.h"
|
||||
#include "include/base/cef_build.h"
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/base/cef_move.h"
|
||||
#include "include/base/cef_template_util.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
namespace subtle {
|
||||
class RefCountedBase;
|
||||
class RefCountedThreadSafeBase;
|
||||
} // namespace subtle
|
||||
|
||||
// Function object which deletes its parameter, which must be a pointer.
|
||||
// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
|
||||
// invokes 'delete'. The default deleter for scoped_ptr<T>.
|
||||
template <class T>
|
||||
struct DefaultDeleter {
|
||||
DefaultDeleter() {}
|
||||
template <typename U>
|
||||
DefaultDeleter(const DefaultDeleter<U>& other) {
|
||||
// IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
|
||||
// if U* is implicitly convertible to T* and U is not an array type.
|
||||
//
|
||||
// Correct implementation should use SFINAE to disable this
|
||||
// constructor. However, since there are no other 1-argument constructors,
|
||||
// using a COMPILE_ASSERT() based on is_convertible<> and requiring
|
||||
// complete types is simpler and will cause compile failures for equivalent
|
||||
// misuses.
|
||||
//
|
||||
// Note, the is_convertible<U*, T*> check also ensures that U is not an
|
||||
// array. T is guaranteed to be a non-array, so any U* where U is an array
|
||||
// cannot convert to T*.
|
||||
enum { T_must_be_complete = sizeof(T) };
|
||||
enum { U_must_be_complete = sizeof(U) };
|
||||
COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
|
||||
U_ptr_must_implicitly_convert_to_T_ptr);
|
||||
}
|
||||
inline void operator()(T* ptr) const {
|
||||
enum { type_must_be_complete = sizeof(T) };
|
||||
delete ptr;
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization of DefaultDeleter for array types.
|
||||
template <class T>
|
||||
struct DefaultDeleter<T[]> {
|
||||
inline void operator()(T* ptr) const {
|
||||
enum { type_must_be_complete = sizeof(T) };
|
||||
delete[] ptr;
|
||||
}
|
||||
|
||||
private:
|
||||
// Disable this operator for any U != T because it is undefined to execute
|
||||
// an array delete when the static type of the array mismatches the dynamic
|
||||
// type.
|
||||
//
|
||||
// References:
|
||||
// C++98 [expr.delete]p3
|
||||
// http://cplusplus.github.com/LWG/lwg-defects.html#938
|
||||
template <typename U>
|
||||
void operator()(U* array) const;
|
||||
};
|
||||
|
||||
template <class T, int n>
|
||||
struct DefaultDeleter<T[n]> {
|
||||
// Never allow someone to declare something like scoped_ptr<int[10]>.
|
||||
COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
|
||||
};
|
||||
|
||||
// Function object which invokes 'free' on its parameter, which must be
|
||||
// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
|
||||
//
|
||||
// scoped_ptr<int, base::FreeDeleter> foo_ptr(
|
||||
// static_cast<int*>(malloc(sizeof(int))));
|
||||
struct FreeDeleter {
|
||||
inline void operator()(void* ptr) const { free(ptr); }
|
||||
};
|
||||
|
||||
namespace cef_internal {
|
||||
|
||||
template <typename T>
|
||||
struct IsNotRefCounted {
|
||||
enum {
|
||||
value =
|
||||
!base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
|
||||
!base::is_convertible<T*,
|
||||
base::subtle::RefCountedThreadSafeBase*>::value
|
||||
};
|
||||
};
|
||||
|
||||
// Minimal implementation of the core logic of scoped_ptr, suitable for
|
||||
// reuse in both scoped_ptr and its specializations.
|
||||
template <class T, class D>
|
||||
class scoped_ptr_impl {
|
||||
public:
|
||||
explicit scoped_ptr_impl(T* p) : data_(p) {}
|
||||
|
||||
// Initializer for deleters that have data parameters.
|
||||
scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
|
||||
|
||||
// Templated constructor that destructively takes the value from another
|
||||
// scoped_ptr_impl.
|
||||
template <typename U, typename V>
|
||||
scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
|
||||
: data_(other->release(), other->get_deleter()) {
|
||||
// We do not support move-only deleters. We could modify our move
|
||||
// emulation to have base::subtle::move() and base::subtle::forward()
|
||||
// functions that are imperfect emulations of their C++11 equivalents,
|
||||
// but until there's a requirement, just assume deleters are copyable.
|
||||
}
|
||||
|
||||
template <typename U, typename V>
|
||||
void TakeState(scoped_ptr_impl<U, V>* other) {
|
||||
// See comment in templated constructor above regarding lack of support
|
||||
// for move-only deleters.
|
||||
reset(other->release());
|
||||
get_deleter() = other->get_deleter();
|
||||
}
|
||||
|
||||
~scoped_ptr_impl() {
|
||||
if (data_.ptr != NULL) {
|
||||
// Not using get_deleter() saves one function call in non-optimized
|
||||
// builds.
|
||||
static_cast<D&>(data_)(data_.ptr);
|
||||
}
|
||||
}
|
||||
|
||||
void reset(T* p) {
|
||||
// This is a self-reset, which is no longer allowed: http://crbug.com/162971
|
||||
if (p != NULL && p == data_.ptr)
|
||||
abort();
|
||||
|
||||
// Note that running data_.ptr = p can lead to undefined behavior if
|
||||
// get_deleter()(get()) deletes this. In order to prevent this, reset()
|
||||
// should update the stored pointer before deleting its old value.
|
||||
//
|
||||
// However, changing reset() to use that behavior may cause current code to
|
||||
// break in unexpected ways. If the destruction of the owned object
|
||||
// dereferences the scoped_ptr when it is destroyed by a call to reset(),
|
||||
// then it will incorrectly dispatch calls to |p| rather than the original
|
||||
// value of |data_.ptr|.
|
||||
//
|
||||
// During the transition period, set the stored pointer to NULL while
|
||||
// deleting the object. Eventually, this safety check will be removed to
|
||||
// prevent the scenario initially described from occuring and
|
||||
// http://crbug.com/176091 can be closed.
|
||||
T* old = data_.ptr;
|
||||
data_.ptr = NULL;
|
||||
if (old != NULL)
|
||||
static_cast<D&>(data_)(old);
|
||||
data_.ptr = p;
|
||||
}
|
||||
|
||||
T* get() const { return data_.ptr; }
|
||||
|
||||
D& get_deleter() { return data_; }
|
||||
const D& get_deleter() const { return data_; }
|
||||
|
||||
void swap(scoped_ptr_impl& p2) {
|
||||
// Standard swap idiom: 'using std::swap' ensures that std::swap is
|
||||
// present in the overload set, but we call swap unqualified so that
|
||||
// any more-specific overloads can be used, if available.
|
||||
using std::swap;
|
||||
swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
|
||||
swap(data_.ptr, p2.data_.ptr);
|
||||
}
|
||||
|
||||
T* release() {
|
||||
T* old_ptr = data_.ptr;
|
||||
data_.ptr = NULL;
|
||||
return old_ptr;
|
||||
}
|
||||
|
||||
private:
|
||||
// Needed to allow type-converting constructor.
|
||||
template <typename U, typename V>
|
||||
friend class scoped_ptr_impl;
|
||||
|
||||
// Use the empty base class optimization to allow us to have a D
|
||||
// member, while avoiding any space overhead for it when D is an
|
||||
// empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
|
||||
// discussion of this technique.
|
||||
struct Data : public D {
|
||||
explicit Data(T* ptr_in) : ptr(ptr_in) {}
|
||||
Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
|
||||
T* ptr;
|
||||
};
|
||||
|
||||
Data data_;
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
|
||||
};
|
||||
|
||||
} // namespace cef_internal
|
||||
|
||||
} // namespace base
|
||||
|
||||
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
|
||||
// automatically deletes the pointer it holds (if any).
|
||||
// That is, scoped_ptr<T> owns the T object that it points to.
|
||||
// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
|
||||
// Also like T*, scoped_ptr<T> is thread-compatible, and once you
|
||||
// dereference it, you get the thread safety guarantees of T.
|
||||
//
|
||||
// The size of scoped_ptr is small. On most compilers, when using the
|
||||
// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
|
||||
// increase the size proportional to whatever state they need to have. See
|
||||
// comments inside scoped_ptr_impl<> for details.
|
||||
//
|
||||
// Current implementation targets having a strict subset of C++11's
|
||||
// unique_ptr<> features. Known deficiencies include not supporting move-only
|
||||
// deleteres, function pointers as deleters, and deleters with reference
|
||||
// types.
|
||||
template <class T, class D = base::DefaultDeleter<T>>
|
||||
class scoped_ptr {
|
||||
MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
|
||||
|
||||
COMPILE_ASSERT(base::cef_internal::IsNotRefCounted<T>::value,
|
||||
T_is_refcounted_type_and_needs_scoped_refptr);
|
||||
|
||||
public:
|
||||
// The element and deleter types.
|
||||
typedef T element_type;
|
||||
typedef D deleter_type;
|
||||
|
||||
// Constructor. Defaults to initializing with NULL.
|
||||
scoped_ptr() : impl_(NULL) {}
|
||||
|
||||
// Constructor. Takes ownership of p.
|
||||
explicit scoped_ptr(element_type* p) : impl_(p) {}
|
||||
|
||||
// Constructor. Allows initialization of a stateful deleter.
|
||||
scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
|
||||
|
||||
// Constructor. Allows construction from a scoped_ptr rvalue for a
|
||||
// convertible type and deleter.
|
||||
//
|
||||
// IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
|
||||
// from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
|
||||
// has different post-conditions if D is a reference type. Since this
|
||||
// implementation does not support deleters with reference type,
|
||||
// we do not need a separate move constructor allowing us to avoid one
|
||||
// use of SFINAE. You only need to care about this if you modify the
|
||||
// implementation of scoped_ptr.
|
||||
template <typename U, typename V>
|
||||
scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
|
||||
COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
|
||||
}
|
||||
|
||||
// Constructor. Move constructor for C++03 move emulation of this type.
|
||||
scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) {}
|
||||
|
||||
// operator=. Allows assignment from a scoped_ptr rvalue for a convertible
|
||||
// type and deleter.
|
||||
//
|
||||
// IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
|
||||
// the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
|
||||
// form has different requirements on for move-only Deleters. Since this
|
||||
// implementation does not support move-only Deleters, we do not need a
|
||||
// separate move assignment operator allowing us to avoid one use of SFINAE.
|
||||
// You only need to care about this if you modify the implementation of
|
||||
// scoped_ptr.
|
||||
template <typename U, typename V>
|
||||
scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
|
||||
COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
|
||||
impl_.TakeState(&rhs.impl_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Reset. Deletes the currently owned object, if any.
|
||||
// Then takes ownership of a new object, if given.
|
||||
void reset(element_type* p = NULL) { impl_.reset(p); }
|
||||
|
||||
// Accessors to get the owned object.
|
||||
// operator* and operator-> will assert() if there is no current object.
|
||||
element_type& operator*() const {
|
||||
assert(impl_.get() != NULL);
|
||||
return *impl_.get();
|
||||
}
|
||||
element_type* operator->() const {
|
||||
assert(impl_.get() != NULL);
|
||||
return impl_.get();
|
||||
}
|
||||
element_type* get() const { return impl_.get(); }
|
||||
|
||||
// Access to the deleter.
|
||||
deleter_type& get_deleter() { return impl_.get_deleter(); }
|
||||
const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
||||
|
||||
// Allow scoped_ptr<element_type> to be used in boolean expressions, but not
|
||||
// implicitly convertible to a real bool (which is dangerous).
|
||||
//
|
||||
// Note that this trick is only safe when the == and != operators
|
||||
// are declared explicitly, as otherwise "scoped_ptr1 ==
|
||||
// scoped_ptr2" will compile but do the wrong thing (i.e., convert
|
||||
// to Testable and then do the comparison).
|
||||
private:
|
||||
typedef base::cef_internal::scoped_ptr_impl<element_type, deleter_type>
|
||||
scoped_ptr::*Testable;
|
||||
|
||||
public:
|
||||
operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
|
||||
|
||||
// Comparison operators.
|
||||
// These return whether two scoped_ptr refer to the same object, not just to
|
||||
// two different but equal objects.
|
||||
bool operator==(const element_type* p) const { return impl_.get() == p; }
|
||||
bool operator!=(const element_type* p) const { return impl_.get() != p; }
|
||||
|
||||
// Swap two scoped pointers.
|
||||
void swap(scoped_ptr& p2) { impl_.swap(p2.impl_); }
|
||||
|
||||
// Release a pointer.
|
||||
// The return value is the current pointer held by this object.
|
||||
// If this object holds a NULL pointer, the return value is NULL.
|
||||
// After this operation, this object will hold a NULL pointer,
|
||||
// and will not own the object any more.
|
||||
element_type* release() WARN_UNUSED_RESULT { return impl_.release(); }
|
||||
|
||||
// C++98 doesn't support functions templates with default parameters which
|
||||
// makes it hard to write a PassAs() that understands converting the deleter
|
||||
// while preserving simple calling semantics.
|
||||
//
|
||||
// Until there is a use case for PassAs() with custom deleters, just ignore
|
||||
// the custom deleter.
|
||||
template <typename PassAsType>
|
||||
scoped_ptr<PassAsType> PassAs() {
|
||||
return scoped_ptr<PassAsType>(Pass());
|
||||
}
|
||||
|
||||
private:
|
||||
// Needed to reach into |impl_| in the constructor.
|
||||
template <typename U, typename V>
|
||||
friend class scoped_ptr;
|
||||
base::cef_internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
||||
|
||||
// Forbidden for API compatibility with std::unique_ptr.
|
||||
explicit scoped_ptr(int disallow_construction_from_null);
|
||||
|
||||
// Forbid comparison of scoped_ptr types. If U != T, it totally
|
||||
// doesn't make sense, and if U == T, it still doesn't make sense
|
||||
// because you should never have the same object owned by two different
|
||||
// scoped_ptrs.
|
||||
template <class U>
|
||||
bool operator==(scoped_ptr<U> const& p2) const;
|
||||
template <class U>
|
||||
bool operator!=(scoped_ptr<U> const& p2) const;
|
||||
};
|
||||
|
||||
template <class T, class D>
|
||||
class scoped_ptr<T[], D> {
|
||||
MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
|
||||
|
||||
public:
|
||||
// The element and deleter types.
|
||||
typedef T element_type;
|
||||
typedef D deleter_type;
|
||||
|
||||
// Constructor. Defaults to initializing with NULL.
|
||||
scoped_ptr() : impl_(NULL) {}
|
||||
|
||||
// Constructor. Stores the given array. Note that the argument's type
|
||||
// must exactly match T*. In particular:
|
||||
// - it cannot be a pointer to a type derived from T, because it is
|
||||
// inherently unsafe in the general case to access an array through a
|
||||
// pointer whose dynamic type does not match its static type (eg., if
|
||||
// T and the derived types had different sizes access would be
|
||||
// incorrectly calculated). Deletion is also always undefined
|
||||
// (C++98 [expr.delete]p3). If you're doing this, fix your code.
|
||||
// - it cannot be NULL, because NULL is an integral expression, not a
|
||||
// pointer to T. Use the no-argument version instead of explicitly
|
||||
// passing NULL.
|
||||
// - it cannot be const-qualified differently from T per unique_ptr spec
|
||||
// (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
|
||||
// to work around this may use implicit_cast<const T*>().
|
||||
// However, because of the first bullet in this comment, users MUST
|
||||
// NOT use implicit_cast<Base*>() to upcast the static type of the array.
|
||||
explicit scoped_ptr(element_type* array) : impl_(array) {}
|
||||
|
||||
// Constructor. Move constructor for C++03 move emulation of this type.
|
||||
scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) {}
|
||||
|
||||
// operator=. Move operator= for C++03 move emulation of this type.
|
||||
scoped_ptr& operator=(RValue rhs) {
|
||||
impl_.TakeState(&rhs.object->impl_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Reset. Deletes the currently owned array, if any.
|
||||
// Then takes ownership of a new object, if given.
|
||||
void reset(element_type* array = NULL) { impl_.reset(array); }
|
||||
|
||||
// Accessors to get the owned array.
|
||||
element_type& operator[](size_t i) const {
|
||||
assert(impl_.get() != NULL);
|
||||
return impl_.get()[i];
|
||||
}
|
||||
element_type* get() const { return impl_.get(); }
|
||||
|
||||
// Access to the deleter.
|
||||
deleter_type& get_deleter() { return impl_.get_deleter(); }
|
||||
const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
||||
|
||||
// Allow scoped_ptr<element_type> to be used in boolean expressions, but not
|
||||
// implicitly convertible to a real bool (which is dangerous).
|
||||
private:
|
||||
typedef base::cef_internal::scoped_ptr_impl<element_type, deleter_type>
|
||||
scoped_ptr::*Testable;
|
||||
|
||||
public:
|
||||
operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
|
||||
|
||||
// Comparison operators.
|
||||
// These return whether two scoped_ptr refer to the same object, not just to
|
||||
// two different but equal objects.
|
||||
bool operator==(element_type* array) const { return impl_.get() == array; }
|
||||
bool operator!=(element_type* array) const { return impl_.get() != array; }
|
||||
|
||||
// Swap two scoped pointers.
|
||||
void swap(scoped_ptr& p2) { impl_.swap(p2.impl_); }
|
||||
|
||||
// Release a pointer.
|
||||
// The return value is the current pointer held by this object.
|
||||
// If this object holds a NULL pointer, the return value is NULL.
|
||||
// After this operation, this object will hold a NULL pointer,
|
||||
// and will not own the object any more.
|
||||
element_type* release() WARN_UNUSED_RESULT { return impl_.release(); }
|
||||
|
||||
private:
|
||||
// Force element_type to be a complete type.
|
||||
enum { type_must_be_complete = sizeof(element_type) };
|
||||
|
||||
// Actually hold the data.
|
||||
base::cef_internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
||||
|
||||
// Disable initialization from any type other than element_type*, by
|
||||
// providing a constructor that matches such an initialization, but is
|
||||
// private and has no definition. This is disabled because it is not safe to
|
||||
// call delete[] on an array whose static type does not match its dynamic
|
||||
// type.
|
||||
template <typename U>
|
||||
explicit scoped_ptr(U* array);
|
||||
explicit scoped_ptr(int disallow_construction_from_null);
|
||||
|
||||
// Disable reset() from any type other than element_type*, for the same
|
||||
// reasons as the constructor above.
|
||||
template <typename U>
|
||||
void reset(U* array);
|
||||
void reset(int disallow_reset_from_null);
|
||||
|
||||
// Forbid comparison of scoped_ptr types. If U != T, it totally
|
||||
// doesn't make sense, and if U == T, it still doesn't make sense
|
||||
// because you should never have the same object owned by two different
|
||||
// scoped_ptrs.
|
||||
template <class U>
|
||||
bool operator==(scoped_ptr<U> const& p2) const;
|
||||
template <class U>
|
||||
bool operator!=(scoped_ptr<U> const& p2) const;
|
||||
};
|
||||
|
||||
// Free functions
|
||||
template <class T, class D>
|
||||
void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
|
||||
p1.swap(p2);
|
||||
}
|
||||
|
||||
template <class T, class D>
|
||||
bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
|
||||
return p1 == p2.get();
|
||||
}
|
||||
|
||||
template <class T, class D>
|
||||
bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
|
||||
return p1 != p2.get();
|
||||
}
|
||||
|
||||
// A function to convert T* into scoped_ptr<T>
|
||||
// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
|
||||
// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
|
||||
template <typename T>
|
||||
scoped_ptr<T> make_scoped_ptr(T* ptr) {
|
||||
return scoped_ptr<T>(ptr);
|
||||
}
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_
|
412
include/base/cef_scoped_refptr.h
Normal file
412
include/base/cef_scoped_refptr.h
Normal file
@ -0,0 +1,412 @@
|
||||
// Copyright (c) 2017 Marshall A. Greenblatt. Portions copyright (c) 2011
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/memory/scoped_refptr.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include <iosfwd>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "include/base/cef_logging.h"
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/base/cef_compiler_specific.h"
|
||||
|
||||
template <class T>
|
||||
class scoped_refptr;
|
||||
|
||||
namespace base {
|
||||
|
||||
template <class, typename>
|
||||
class RefCounted;
|
||||
template <class, typename>
|
||||
class RefCountedThreadSafe;
|
||||
class SequencedTaskRunner;
|
||||
class WrappedPromise;
|
||||
|
||||
template <typename T>
|
||||
scoped_refptr<T> AdoptRef(T* t);
|
||||
|
||||
namespace internal {
|
||||
|
||||
class BasePromise;
|
||||
|
||||
} // namespace internal
|
||||
|
||||
namespace subtle {
|
||||
|
||||
enum AdoptRefTag { kAdoptRefTag };
|
||||
enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
|
||||
enum StartRefCountFromOneTag { kStartRefCountFromOneTag };
|
||||
|
||||
template <typename T, typename U, typename V>
|
||||
constexpr bool IsRefCountPreferenceOverridden(const T*,
|
||||
const RefCounted<U, V>*) {
|
||||
return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
|
||||
std::decay_t<decltype(U::kRefCountPreference)>>::value;
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename V>
|
||||
constexpr bool IsRefCountPreferenceOverridden(
|
||||
const T*,
|
||||
const RefCountedThreadSafe<U, V>*) {
|
||||
return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
|
||||
std::decay_t<decltype(U::kRefCountPreference)>>::value;
|
||||
}
|
||||
|
||||
constexpr bool IsRefCountPreferenceOverridden(...) {
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace subtle
|
||||
|
||||
// Creates a scoped_refptr from a raw pointer without incrementing the reference
|
||||
// count. Use this only for a newly created object whose reference count starts
|
||||
// from 1 instead of 0.
|
||||
template <typename T>
|
||||
scoped_refptr<T> AdoptRef(T* obj) {
|
||||
using Tag = std::decay_t<decltype(T::kRefCountPreference)>;
|
||||
static_assert(std::is_same<subtle::StartRefCountFromOneTag, Tag>::value,
|
||||
"Use AdoptRef only if the reference count starts from one.");
|
||||
|
||||
DCHECK(obj);
|
||||
DCHECK(obj->HasOneRef());
|
||||
obj->Adopted();
|
||||
return scoped_refptr<T>(obj, subtle::kAdoptRefTag);
|
||||
}
|
||||
|
||||
namespace subtle {
|
||||
|
||||
template <typename T>
|
||||
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
|
||||
return scoped_refptr<T>(obj);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
|
||||
return AdoptRef(obj);
|
||||
}
|
||||
|
||||
} // namespace subtle
|
||||
|
||||
// Constructs an instance of T, which is a ref counted type, and wraps the
|
||||
// object into a scoped_refptr<T>.
|
||||
template <typename T, typename... Args>
|
||||
scoped_refptr<T> MakeRefCounted(Args&&... args) {
|
||||
T* obj = new T(std::forward<Args>(args)...);
|
||||
return subtle::AdoptRefIfNeeded(obj, T::kRefCountPreference);
|
||||
}
|
||||
|
||||
// Takes an instance of T, which is a ref counted type, and wraps the object
|
||||
// into a scoped_refptr<T>.
|
||||
template <typename T>
|
||||
scoped_refptr<T> WrapRefCounted(T* t) {
|
||||
return scoped_refptr<T>(t);
|
||||
}
|
||||
|
||||
} // namespace base
|
||||
|
||||
//
|
||||
// A smart pointer class for reference counted objects. Use this class instead
|
||||
// of calling AddRef and Release manually on a reference counted object to
|
||||
// avoid common memory leaks caused by forgetting to Release an object
|
||||
// reference. Sample usage:
|
||||
//
|
||||
// class MyFoo : public RefCounted<MyFoo> {
|
||||
// ...
|
||||
// private:
|
||||
// friend class RefCounted<MyFoo>; // Allow destruction by RefCounted<>.
|
||||
// ~MyFoo(); // Destructor must be private/protected.
|
||||
// };
|
||||
//
|
||||
// void some_function() {
|
||||
// scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
|
||||
// foo->Method(param);
|
||||
// // |foo| is released when this function returns
|
||||
// }
|
||||
//
|
||||
// void some_other_function() {
|
||||
// scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
|
||||
// ...
|
||||
// foo.reset(); // explicitly releases |foo|
|
||||
// ...
|
||||
// if (foo)
|
||||
// foo->Method(param);
|
||||
// }
|
||||
//
|
||||
// The above examples show how scoped_refptr<T> acts like a pointer to T.
|
||||
// Given two scoped_refptr<T> classes, it is also possible to exchange
|
||||
// references between the two objects, like so:
|
||||
//
|
||||
// {
|
||||
// scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
|
||||
// scoped_refptr<MyFoo> b;
|
||||
//
|
||||
// b.swap(a);
|
||||
// // now, |b| references the MyFoo object, and |a| references nullptr.
|
||||
// }
|
||||
//
|
||||
// To make both |a| and |b| in the above example reference the same MyFoo
|
||||
// object, simply use the assignment operator:
|
||||
//
|
||||
// {
|
||||
// scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
|
||||
// scoped_refptr<MyFoo> b;
|
||||
//
|
||||
// b = a;
|
||||
// // now, |a| and |b| each own a reference to the same MyFoo object.
|
||||
// }
|
||||
//
|
||||
// Also see Chromium's ownership and calling conventions:
|
||||
// https://chromium.googlesource.com/chromium/src/+/lkgr/styleguide/c++/c++.md#object-ownership-and-calling-conventions
|
||||
// Specifically:
|
||||
// If the function (at least sometimes) takes a ref on a refcounted object,
|
||||
// declare the param as scoped_refptr<T>. The caller can decide whether it
|
||||
// wishes to transfer ownership (by calling std::move(t) when passing t) or
|
||||
// retain its ref (by simply passing t directly).
|
||||
// In other words, use scoped_refptr like you would a std::unique_ptr except
|
||||
// in the odd case where it's required to hold on to a ref while handing one
|
||||
// to another component (if a component merely needs to use t on the stack
|
||||
// without keeping a ref: pass t as a raw T*).
|
||||
template <class T>
|
||||
class TRIVIAL_ABI scoped_refptr {
|
||||
public:
|
||||
typedef T element_type;
|
||||
|
||||
constexpr scoped_refptr() = default;
|
||||
|
||||
// Allow implicit construction from nullptr.
|
||||
constexpr scoped_refptr(std::nullptr_t) {}
|
||||
|
||||
// Constructs from a raw pointer. Note that this constructor allows implicit
|
||||
// conversion from T* to scoped_refptr<T> which is strongly discouraged. If
|
||||
// you are creating a new ref-counted object please use
|
||||
// base::MakeRefCounted<T>() or base::WrapRefCounted<T>(). Otherwise you
|
||||
// should move or copy construct from an existing scoped_refptr<T> to the
|
||||
// ref-counted object.
|
||||
scoped_refptr(T* p) : ptr_(p) {
|
||||
if (ptr_)
|
||||
AddRef(ptr_);
|
||||
}
|
||||
|
||||
// Copy constructor. This is required in addition to the copy conversion
|
||||
// constructor below.
|
||||
scoped_refptr(const scoped_refptr& r) : scoped_refptr(r.ptr_) {}
|
||||
|
||||
// Copy conversion constructor.
|
||||
template <typename U,
|
||||
typename = typename std::enable_if<
|
||||
std::is_convertible<U*, T*>::value>::type>
|
||||
scoped_refptr(const scoped_refptr<U>& r) : scoped_refptr(r.ptr_) {}
|
||||
|
||||
// Move constructor. This is required in addition to the move conversion
|
||||
// constructor below.
|
||||
scoped_refptr(scoped_refptr&& r) noexcept : ptr_(r.ptr_) { r.ptr_ = nullptr; }
|
||||
|
||||
// Move conversion constructor.
|
||||
template <typename U,
|
||||
typename = typename std::enable_if<
|
||||
std::is_convertible<U*, T*>::value>::type>
|
||||
scoped_refptr(scoped_refptr<U>&& r) noexcept : ptr_(r.ptr_) {
|
||||
r.ptr_ = nullptr;
|
||||
}
|
||||
|
||||
~scoped_refptr() {
|
||||
static_assert(!base::subtle::IsRefCountPreferenceOverridden(
|
||||
static_cast<T*>(nullptr), static_cast<T*>(nullptr)),
|
||||
"It's unsafe to override the ref count preference."
|
||||
" Please remove REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE"
|
||||
" from subclasses.");
|
||||
if (ptr_)
|
||||
Release(ptr_);
|
||||
}
|
||||
|
||||
T* get() const { return ptr_; }
|
||||
|
||||
T& operator*() const {
|
||||
DCHECK(ptr_);
|
||||
return *ptr_;
|
||||
}
|
||||
|
||||
T* operator->() const {
|
||||
DCHECK(ptr_);
|
||||
return ptr_;
|
||||
}
|
||||
|
||||
scoped_refptr& operator=(std::nullptr_t) {
|
||||
reset();
|
||||
return *this;
|
||||
}
|
||||
|
||||
scoped_refptr& operator=(T* p) { return *this = scoped_refptr(p); }
|
||||
|
||||
// Unified assignment operator.
|
||||
scoped_refptr& operator=(scoped_refptr r) noexcept {
|
||||
swap(r);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Sets managed object to null and releases reference to the previous managed
|
||||
// object, if it existed.
|
||||
void reset() { scoped_refptr().swap(*this); }
|
||||
|
||||
// Returns the owned pointer (if any), releasing ownership to the caller. The
|
||||
// caller is responsible for managing the lifetime of the reference.
|
||||
T* release() WARN_UNUSED_RESULT;
|
||||
|
||||
void swap(scoped_refptr& r) noexcept { std::swap(ptr_, r.ptr_); }
|
||||
|
||||
explicit operator bool() const { return ptr_ != nullptr; }
|
||||
|
||||
template <typename U>
|
||||
bool operator==(const scoped_refptr<U>& rhs) const {
|
||||
return ptr_ == rhs.get();
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
bool operator!=(const scoped_refptr<U>& rhs) const {
|
||||
return !operator==(rhs);
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
bool operator<(const scoped_refptr<U>& rhs) const {
|
||||
return ptr_ < rhs.get();
|
||||
}
|
||||
|
||||
protected:
|
||||
T* ptr_ = nullptr;
|
||||
|
||||
private:
|
||||
template <typename U>
|
||||
friend scoped_refptr<U> base::AdoptRef(U*);
|
||||
friend class ::base::SequencedTaskRunner;
|
||||
|
||||
// Friend access so these classes can use the constructor below as part of a
|
||||
// binary size optimization.
|
||||
friend class ::base::internal::BasePromise;
|
||||
friend class ::base::WrappedPromise;
|
||||
|
||||
scoped_refptr(T* p, base::subtle::AdoptRefTag) : ptr_(p) {}
|
||||
|
||||
// Friend required for move constructors that set r.ptr_ to null.
|
||||
template <typename U>
|
||||
friend class scoped_refptr;
|
||||
|
||||
// Non-inline helpers to allow:
|
||||
// class Opaque;
|
||||
// extern template class scoped_refptr<Opaque>;
|
||||
// Otherwise the compiler will complain that Opaque is an incomplete type.
|
||||
static void AddRef(T* ptr);
|
||||
static void Release(T* ptr);
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
T* scoped_refptr<T>::release() {
|
||||
T* ptr = ptr_;
|
||||
ptr_ = nullptr;
|
||||
return ptr;
|
||||
}
|
||||
|
||||
// static
|
||||
template <typename T>
|
||||
void scoped_refptr<T>::AddRef(T* ptr) {
|
||||
ptr->AddRef();
|
||||
}
|
||||
|
||||
// static
|
||||
template <typename T>
|
||||
void scoped_refptr<T>::Release(T* ptr) {
|
||||
ptr->Release();
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
|
||||
return lhs.get() == rhs;
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
|
||||
return lhs == rhs.get();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
|
||||
return !static_cast<bool>(lhs);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool operator==(std::nullptr_t null, const scoped_refptr<T>& rhs) {
|
||||
return !static_cast<bool>(rhs);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool operator!=(const scoped_refptr<T>& lhs, std::nullptr_t null) {
|
||||
return !operator==(lhs, null);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool operator!=(std::nullptr_t null, const scoped_refptr<T>& rhs) {
|
||||
return !operator==(null, rhs);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
|
||||
return out << p.get();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void swap(scoped_refptr<T>& lhs, scoped_refptr<T>& rhs) noexcept {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
|
180
include/base/cef_scoped_typeref_mac.h
Normal file
180
include/base/cef_scoped_typeref_mac.h
Normal file
@ -0,0 +1,180 @@
|
||||
// Copyright (c) 2021 Marshall A. Greenblatt. Portions copyright (c) 2013
|
||||
// Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// ScopedTypeRef<> is patterned after std::unique_ptr<>, but maintains ownership
|
||||
// of a reference to any type that is maintained by Retain and Release methods.
|
||||
//
|
||||
// The Traits structure must provide the Retain and Release methods for type T.
|
||||
// A default ScopedTypeRefTraits is used but not defined, and should be defined
|
||||
// for each type to use this interface. For example, an appropriate definition
|
||||
// of ScopedTypeRefTraits for CGLContextObj would be:
|
||||
//
|
||||
// template<>
|
||||
// struct ScopedTypeRefTraits<CGLContextObj> {
|
||||
// static CGLContextObj InvalidValue() { return nullptr; }
|
||||
// static CGLContextObj Retain(CGLContextObj object) {
|
||||
// CGLContextRetain(object);
|
||||
// return object;
|
||||
// }
|
||||
// static void Release(CGLContextObj object) { CGLContextRelease(object); }
|
||||
// };
|
||||
//
|
||||
// For the many types that have pass-by-pointer create functions, the function
|
||||
// InitializeInto() is provided to allow direct initialization and assumption
|
||||
// of ownership of the object. For example, continuing to use the above
|
||||
// CGLContextObj specialization:
|
||||
//
|
||||
// base::ScopedTypeRef<CGLContextObj> context;
|
||||
// CGLCreateContext(pixel_format, share_group, context.InitializeInto());
|
||||
//
|
||||
// For initialization with an existing object, the caller may specify whether
|
||||
// the ScopedTypeRef<> being initialized is assuming the caller's existing
|
||||
// ownership of the object (and should not call Retain in initialization) or if
|
||||
// it should not assume this ownership and must create its own (by calling
|
||||
// Retain in initialization). This behavior is based on the |policy| parameter,
|
||||
// with |ASSUME| for the former and |RETAIN| for the latter. The default policy
|
||||
// is to |ASSUME|.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_CEF_SCOPED_TYPEREF_MAC_H_
|
||||
#define CEF_INCLUDE_BASE_CEF_SCOPED_TYPEREF_MAC_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/mac/scoped_typeref.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
// The following is substantially similar to the Chromium implementation.
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include "include/base/cef_compiler_specific.h"
|
||||
#include "include/base/cef_logging.h"
|
||||
#include "include/base/internal/cef_scoped_policy.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
template<typename T>
|
||||
struct ScopedTypeRefTraits;
|
||||
|
||||
template<typename T, typename Traits = ScopedTypeRefTraits<T>>
|
||||
class ScopedTypeRef {
|
||||
public:
|
||||
using element_type = T;
|
||||
|
||||
explicit constexpr ScopedTypeRef(
|
||||
element_type object = Traits::InvalidValue(),
|
||||
base::scoped_policy::OwnershipPolicy policy = base::scoped_policy::ASSUME)
|
||||
: object_(object) {
|
||||
if (object_ && policy == base::scoped_policy::RETAIN)
|
||||
object_ = Traits::Retain(object_);
|
||||
}
|
||||
|
||||
ScopedTypeRef(const ScopedTypeRef<T, Traits>& that)
|
||||
: object_(that.object_) {
|
||||
if (object_)
|
||||
object_ = Traits::Retain(object_);
|
||||
}
|
||||
|
||||
// This allows passing an object to a function that takes its superclass.
|
||||
template <typename R, typename RTraits>
|
||||
explicit ScopedTypeRef(const ScopedTypeRef<R, RTraits>& that_as_subclass)
|
||||
: object_(that_as_subclass.get()) {
|
||||
if (object_)
|
||||
object_ = Traits::Retain(object_);
|
||||
}
|
||||
|
||||
ScopedTypeRef(ScopedTypeRef<T, Traits>&& that) : object_(that.object_) {
|
||||
that.object_ = Traits::InvalidValue();
|
||||
}
|
||||
|
||||
~ScopedTypeRef() {
|
||||
if (object_)
|
||||
Traits::Release(object_);
|
||||
}
|
||||
|
||||
ScopedTypeRef& operator=(const ScopedTypeRef<T, Traits>& that) {
|
||||
reset(that.get(), base::scoped_policy::RETAIN);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// This is to be used only to take ownership of objects that are created
|
||||
// by pass-by-pointer create functions. To enforce this, require that the
|
||||
// object be reset to NULL before this may be used.
|
||||
element_type* InitializeInto() WARN_UNUSED_RESULT {
|
||||
DCHECK(!object_);
|
||||
return &object_;
|
||||
}
|
||||
|
||||
void reset(const ScopedTypeRef<T, Traits>& that) {
|
||||
reset(that.get(), base::scoped_policy::RETAIN);
|
||||
}
|
||||
|
||||
void reset(element_type object = Traits::InvalidValue(),
|
||||
base::scoped_policy::OwnershipPolicy policy =
|
||||
base::scoped_policy::ASSUME) {
|
||||
if (object && policy == base::scoped_policy::RETAIN)
|
||||
object = Traits::Retain(object);
|
||||
if (object_)
|
||||
Traits::Release(object_);
|
||||
object_ = object;
|
||||
}
|
||||
|
||||
bool operator==(const element_type& that) const { return object_ == that; }
|
||||
|
||||
bool operator!=(const element_type& that) const { return object_ != that; }
|
||||
|
||||
operator element_type() const { return object_; }
|
||||
|
||||
element_type get() const { return object_; }
|
||||
|
||||
void swap(ScopedTypeRef& that) {
|
||||
element_type temp = that.object_;
|
||||
that.object_ = object_;
|
||||
object_ = temp;
|
||||
}
|
||||
|
||||
// ScopedTypeRef<>::release() is like std::unique_ptr<>::release. It is NOT
|
||||
// a wrapper for Release(). To force a ScopedTypeRef<> object to call
|
||||
// Release(), use ScopedTypeRef<>::reset().
|
||||
element_type release() WARN_UNUSED_RESULT {
|
||||
element_type temp = object_;
|
||||
object_ = Traits::InvalidValue();
|
||||
return temp;
|
||||
}
|
||||
|
||||
private:
|
||||
element_type object_;
|
||||
};
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_SCOPED_TYPEREF_MAC_H_
|
@ -32,12 +32,7 @@
|
||||
#define CEF_INCLUDE_BASE_CEF_TEMPLATE_UTIL_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_TEMPLATE_UTIL_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/template_util.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
@ -45,170 +40,370 @@
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include <cstddef> // For size_t.
|
||||
#include <stddef.h>
|
||||
#include <iosfwd>
|
||||
#include <iterator>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "include/base/cef_build.h"
|
||||
|
||||
// Some versions of libstdc++ have partial support for type_traits, but misses
|
||||
// a smaller subset while removing some of the older non-standard stuff. Assume
|
||||
// that all versions below 5.0 fall in this category, along with one 5.0
|
||||
// experimental release. Test for this by consulting compiler major version,
|
||||
// the only reliable option available, so theoretically this could fail should
|
||||
// you attempt to mix an earlier version of libstdc++ with >= GCC5. But
|
||||
// that's unlikely to work out, especially as GCC5 changed ABI.
|
||||
#define CR_GLIBCXX_5_0_0 20150123
|
||||
#if (defined(__GNUC__) && __GNUC__ < 5) || \
|
||||
(defined(__GLIBCXX__) && __GLIBCXX__ == CR_GLIBCXX_5_0_0)
|
||||
#define CR_USE_FALLBACKS_FOR_OLD_EXPERIMENTAL_GLIBCXX
|
||||
#endif
|
||||
|
||||
// This hacks around using gcc with libc++ which has some incompatibilies.
|
||||
// - is_trivially_* doesn't work: https://llvm.org/bugs/show_bug.cgi?id=27538
|
||||
// TODO(danakj): Remove this when android builders are all using a newer version
|
||||
// of gcc, or the android ndk is updated to a newer libc++ that works with older
|
||||
// gcc versions.
|
||||
#if !defined(__clang__) && defined(_LIBCPP_VERSION)
|
||||
#define CR_USE_FALLBACKS_FOR_GCC_WITH_LIBCXX
|
||||
#endif
|
||||
|
||||
namespace base {
|
||||
|
||||
// template definitions from tr1
|
||||
template <class T> struct is_non_const_reference : std::false_type {};
|
||||
template <class T> struct is_non_const_reference<T&> : std::true_type {};
|
||||
template <class T> struct is_non_const_reference<const T&> : std::false_type {};
|
||||
|
||||
template <class T, T v>
|
||||
struct integral_constant {
|
||||
static const T value = v;
|
||||
typedef T value_type;
|
||||
typedef integral_constant<T, v> type;
|
||||
namespace internal {
|
||||
|
||||
// Implementation detail of base::void_t below.
|
||||
template <typename...>
|
||||
struct make_void {
|
||||
using type = void;
|
||||
};
|
||||
|
||||
template <class T, T v>
|
||||
const T integral_constant<T, v>::value;
|
||||
} // namespace internal
|
||||
|
||||
typedef integral_constant<bool, true> true_type;
|
||||
typedef integral_constant<bool, false> false_type;
|
||||
|
||||
template <class T>
|
||||
struct is_pointer : false_type {};
|
||||
template <class T>
|
||||
struct is_pointer<T*> : true_type {};
|
||||
|
||||
// Member function pointer detection up to four params. Add more as needed
|
||||
// below. This is built-in to C++ 11, and we can remove this when we switch.
|
||||
template <typename T>
|
||||
struct is_member_function_pointer : false_type {};
|
||||
|
||||
template <typename R, typename Z>
|
||||
struct is_member_function_pointer<R (Z::*)()> : true_type {};
|
||||
template <typename R, typename Z>
|
||||
struct is_member_function_pointer<R (Z::*)() const> : true_type {};
|
||||
|
||||
template <typename R, typename Z, typename A>
|
||||
struct is_member_function_pointer<R (Z::*)(A)> : true_type {};
|
||||
template <typename R, typename Z, typename A>
|
||||
struct is_member_function_pointer<R (Z::*)(A) const> : true_type {};
|
||||
|
||||
template <typename R, typename Z, typename A, typename B>
|
||||
struct is_member_function_pointer<R (Z::*)(A, B)> : true_type {};
|
||||
template <typename R, typename Z, typename A, typename B>
|
||||
struct is_member_function_pointer<R (Z::*)(A, B) const> : true_type {};
|
||||
|
||||
template <typename R, typename Z, typename A, typename B, typename C>
|
||||
struct is_member_function_pointer<R (Z::*)(A, B, C)> : true_type {};
|
||||
template <typename R, typename Z, typename A, typename B, typename C>
|
||||
struct is_member_function_pointer<R (Z::*)(A, B, C) const> : true_type {};
|
||||
|
||||
template <typename R,
|
||||
typename Z,
|
||||
typename A,
|
||||
typename B,
|
||||
typename C,
|
||||
typename D>
|
||||
struct is_member_function_pointer<R (Z::*)(A, B, C, D)> : true_type {};
|
||||
template <typename R,
|
||||
typename Z,
|
||||
typename A,
|
||||
typename B,
|
||||
typename C,
|
||||
typename D>
|
||||
struct is_member_function_pointer<R (Z::*)(A, B, C, D) const> : true_type {};
|
||||
|
||||
template <class T, class U>
|
||||
struct is_same : public false_type {};
|
||||
template <class T>
|
||||
struct is_same<T, T> : true_type {};
|
||||
|
||||
template <class>
|
||||
struct is_array : public false_type {};
|
||||
template <class T, size_t n>
|
||||
struct is_array<T[n]> : public true_type {};
|
||||
template <class T>
|
||||
struct is_array<T[]> : public true_type {};
|
||||
|
||||
template <class T>
|
||||
struct is_non_const_reference : false_type {};
|
||||
template <class T>
|
||||
struct is_non_const_reference<T&> : true_type {};
|
||||
template <class T>
|
||||
struct is_non_const_reference<const T&> : false_type {};
|
||||
|
||||
template <class T>
|
||||
struct is_const : false_type {};
|
||||
template <class T>
|
||||
struct is_const<const T> : true_type {};
|
||||
|
||||
template <class T>
|
||||
struct is_void : false_type {};
|
||||
template <>
|
||||
struct is_void<void> : true_type {};
|
||||
|
||||
namespace cef_internal {
|
||||
|
||||
// Types YesType and NoType are guaranteed such that sizeof(YesType) <
|
||||
// sizeof(NoType).
|
||||
typedef char YesType;
|
||||
|
||||
struct NoType {
|
||||
YesType dummy[2];
|
||||
};
|
||||
|
||||
// This class is an implementation detail for is_convertible, and you
|
||||
// don't need to know how it works to use is_convertible. For those
|
||||
// who care: we declare two different functions, one whose argument is
|
||||
// of type To and one with a variadic argument list. We give them
|
||||
// return types of different size, so we can use sizeof to trick the
|
||||
// compiler into telling us which function it would have chosen if we
|
||||
// had called it with an argument of type From. See Alexandrescu's
|
||||
// _Modern C++ Design_ for more details on this sort of trick.
|
||||
|
||||
struct ConvertHelper {
|
||||
template <typename To>
|
||||
static YesType Test(To);
|
||||
|
||||
template <typename To>
|
||||
static NoType Test(...);
|
||||
|
||||
template <typename From>
|
||||
static From& Create();
|
||||
};
|
||||
|
||||
// Used to determine if a type is a struct/union/class. Inspired by Boost's
|
||||
// is_class type_trait implementation.
|
||||
struct IsClassHelper {
|
||||
template <typename C>
|
||||
static YesType Test(void (C::*)(void));
|
||||
|
||||
template <typename C>
|
||||
static NoType Test(...);
|
||||
};
|
||||
|
||||
} // namespace cef_internal
|
||||
|
||||
// Inherits from true_type if From is convertible to To, false_type otherwise.
|
||||
// base::void_t is an implementation of std::void_t from C++17.
|
||||
//
|
||||
// Note that if the type is convertible, this will be a true_type REGARDLESS
|
||||
// of whether or not the conversion would emit a warning.
|
||||
template <typename From, typename To>
|
||||
struct is_convertible
|
||||
: integral_constant<bool,
|
||||
sizeof(cef_internal::ConvertHelper::Test<To>(
|
||||
cef_internal::ConvertHelper::Create<From>())) ==
|
||||
sizeof(cef_internal::YesType)> {};
|
||||
// We use |base::internal::make_void| as a helper struct to avoid a C++14
|
||||
// defect:
|
||||
// http://en.cppreference.com/w/cpp/types/void_t
|
||||
// http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1558
|
||||
template <typename... Ts>
|
||||
using void_t = typename ::base::internal::make_void<Ts...>::type;
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Uses expression SFINAE to detect whether using operator<< would work.
|
||||
template <typename T, typename = void>
|
||||
struct SupportsOstreamOperator : std::false_type {};
|
||||
template <typename T>
|
||||
struct SupportsOstreamOperator<T,
|
||||
decltype(void(std::declval<std::ostream&>()
|
||||
<< std::declval<T>()))>
|
||||
: std::true_type {};
|
||||
|
||||
template <typename T, typename = void>
|
||||
struct SupportsToString : std::false_type {};
|
||||
template <typename T>
|
||||
struct SupportsToString<T, decltype(void(std::declval<T>().ToString()))>
|
||||
: std::true_type {};
|
||||
|
||||
// Used to detech whether the given type is an iterator. This is normally used
|
||||
// with std::enable_if to provide disambiguation for functions that take
|
||||
// templatzed iterators as input.
|
||||
template <typename T, typename = void>
|
||||
struct is_iterator : std::false_type {};
|
||||
|
||||
template <typename T>
|
||||
struct is_class
|
||||
: integral_constant<bool,
|
||||
sizeof(cef_internal::IsClassHelper::Test<T>(0)) ==
|
||||
sizeof(cef_internal::YesType)> {};
|
||||
struct is_iterator<T,
|
||||
void_t<typename std::iterator_traits<T>::iterator_category>>
|
||||
: std::true_type {};
|
||||
|
||||
template <bool B, class T = void>
|
||||
struct enable_if {};
|
||||
// Helper to express preferences in an overload set. If more than one overload
|
||||
// are available for a given set of parameters the overload with the higher
|
||||
// priority will be chosen.
|
||||
template <size_t I>
|
||||
struct priority_tag : priority_tag<I - 1> {};
|
||||
|
||||
template <>
|
||||
struct priority_tag<0> {};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// is_trivially_copyable is especially hard to get right.
|
||||
// - Older versions of libstdc++ will fail to have it like they do for other
|
||||
// type traits. This has become a subset of the second point, but used to be
|
||||
// handled independently.
|
||||
// - An experimental release of gcc includes most of type_traits but misses
|
||||
// is_trivially_copyable, so we still have to avoid using libstdc++ in this
|
||||
// case, which is covered by CR_USE_FALLBACKS_FOR_OLD_EXPERIMENTAL_GLIBCXX.
|
||||
// - When compiling libc++ from before r239653, with a gcc compiler, the
|
||||
// std::is_trivially_copyable can fail. So we need to work around that by not
|
||||
// using the one in libc++ in this case. This is covered by the
|
||||
// CR_USE_FALLBACKS_FOR_GCC_WITH_LIBCXX define, and is discussed in
|
||||
// https://llvm.org/bugs/show_bug.cgi?id=27538#c1 where they point out that
|
||||
// in libc++'s commit r239653 this is fixed by libc++ checking for gcc 5.1.
|
||||
// - In both of the above cases we are using the gcc compiler. When defining
|
||||
// this ourselves on compiler intrinsics, the __is_trivially_copyable()
|
||||
// intrinsic is not available on gcc before version 5.1 (see the discussion in
|
||||
// https://llvm.org/bugs/show_bug.cgi?id=27538#c1 again), so we must check for
|
||||
// that version.
|
||||
// - When __is_trivially_copyable() is not available because we are on gcc older
|
||||
// than 5.1, we need to fall back to something, so we use __has_trivial_copy()
|
||||
// instead based on what was done one-off in bit_cast() previously.
|
||||
|
||||
// TODO(crbug.com/554293): Remove this when all platforms have this in the std
|
||||
// namespace and it works with gcc as needed.
|
||||
#if defined(CR_USE_FALLBACKS_FOR_OLD_EXPERIMENTAL_GLIBCXX) || \
|
||||
defined(CR_USE_FALLBACKS_FOR_GCC_WITH_LIBCXX)
|
||||
template <typename T>
|
||||
struct is_trivially_copyable {
|
||||
// TODO(danakj): Remove this when android builders are all using a newer version
|
||||
// of gcc, or the android ndk is updated to a newer libc++ that does this for
|
||||
// us.
|
||||
#if _GNUC_VER >= 501
|
||||
static constexpr bool value = __is_trivially_copyable(T);
|
||||
#else
|
||||
static constexpr bool value =
|
||||
__has_trivial_copy(T) && __has_trivial_destructor(T);
|
||||
#endif
|
||||
};
|
||||
#else
|
||||
template <class T>
|
||||
struct enable_if<true, T> {
|
||||
typedef T type;
|
||||
using is_trivially_copyable = std::is_trivially_copyable<T>;
|
||||
#endif
|
||||
|
||||
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ <= 7
|
||||
// Workaround for g++7 and earlier family.
|
||||
// Due to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80654, without this
|
||||
// Optional<std::vector<T>> where T is non-copyable causes a compile error.
|
||||
// As we know it is not trivially copy constructible, explicitly declare so.
|
||||
template <typename T>
|
||||
struct is_trivially_copy_constructible
|
||||
: std::is_trivially_copy_constructible<T> {};
|
||||
|
||||
template <typename... T>
|
||||
struct is_trivially_copy_constructible<std::vector<T...>> : std::false_type {};
|
||||
#else
|
||||
// Otherwise use std::is_trivially_copy_constructible as is.
|
||||
template <typename T>
|
||||
using is_trivially_copy_constructible = std::is_trivially_copy_constructible<T>;
|
||||
#endif
|
||||
|
||||
// base::in_place_t is an implementation of std::in_place_t from
|
||||
// C++17. A tag type used to request in-place construction in template vararg
|
||||
// constructors.
|
||||
|
||||
// Specification:
|
||||
// https://en.cppreference.com/w/cpp/utility/in_place
|
||||
struct in_place_t {};
|
||||
constexpr in_place_t in_place = {};
|
||||
|
||||
// base::in_place_type_t is an implementation of std::in_place_type_t from
|
||||
// C++17. A tag type used for in-place construction when the type to construct
|
||||
// needs to be specified, such as with base::unique_any, designed to be a
|
||||
// drop-in replacement.
|
||||
|
||||
// Specification:
|
||||
// http://en.cppreference.com/w/cpp/utility/in_place
|
||||
template <typename T>
|
||||
struct in_place_type_t {};
|
||||
|
||||
template <typename T>
|
||||
struct is_in_place_type_t {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
template <typename... Ts>
|
||||
struct is_in_place_type_t<in_place_type_t<Ts...>> {
|
||||
static constexpr bool value = true;
|
||||
};
|
||||
|
||||
// C++14 implementation of C++17's std::bool_constant.
|
||||
//
|
||||
// Reference: https://en.cppreference.com/w/cpp/types/integral_constant
|
||||
// Specification: https://wg21.link/meta.type.synop
|
||||
template <bool B>
|
||||
using bool_constant = std::integral_constant<bool, B>;
|
||||
|
||||
// C++14 implementation of C++17's std::conjunction.
|
||||
//
|
||||
// Reference: https://en.cppreference.com/w/cpp/types/conjunction
|
||||
// Specification: https://wg21.link/meta.logical#1.itemdecl:1
|
||||
template <typename...>
|
||||
struct conjunction : std::true_type {};
|
||||
|
||||
template <typename B1>
|
||||
struct conjunction<B1> : B1 {};
|
||||
|
||||
template <typename B1, typename... Bn>
|
||||
struct conjunction<B1, Bn...>
|
||||
: std::conditional_t<static_cast<bool>(B1::value), conjunction<Bn...>, B1> {
|
||||
};
|
||||
|
||||
// C++14 implementation of C++17's std::disjunction.
|
||||
//
|
||||
// Reference: https://en.cppreference.com/w/cpp/types/disjunction
|
||||
// Specification: https://wg21.link/meta.logical#itemdecl:2
|
||||
template <typename...>
|
||||
struct disjunction : std::false_type {};
|
||||
|
||||
template <typename B1>
|
||||
struct disjunction<B1> : B1 {};
|
||||
|
||||
template <typename B1, typename... Bn>
|
||||
struct disjunction<B1, Bn...>
|
||||
: std::conditional_t<static_cast<bool>(B1::value), B1, disjunction<Bn...>> {
|
||||
};
|
||||
|
||||
// C++14 implementation of C++17's std::negation.
|
||||
//
|
||||
// Reference: https://en.cppreference.com/w/cpp/types/negation
|
||||
// Specification: https://wg21.link/meta.logical#itemdecl:3
|
||||
template <typename B>
|
||||
struct negation : bool_constant<!static_cast<bool>(B::value)> {};
|
||||
|
||||
// Implementation of C++17's invoke_result.
|
||||
//
|
||||
// This implementation adds references to `Functor` and `Args` to work around
|
||||
// some quirks of std::result_of. See the #Notes section of [1] for details.
|
||||
//
|
||||
// References:
|
||||
// [1] https://en.cppreference.com/w/cpp/types/result_of
|
||||
// [2] https://wg21.link/meta.trans.other#lib:invoke_result
|
||||
template <typename Functor, typename... Args>
|
||||
using invoke_result = std::result_of<Functor && (Args && ...)>;
|
||||
|
||||
// Implementation of C++17's std::invoke_result_t.
|
||||
//
|
||||
// Reference: https://wg21.link/meta.type.synop#lib:invoke_result_t
|
||||
template <typename Functor, typename... Args>
|
||||
using invoke_result_t = typename invoke_result<Functor, Args...>::type;
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Base case, `InvokeResult` does not have a nested type member. This means `F`
|
||||
// could not be invoked with `Args...` and thus is not invocable.
|
||||
template <typename InvokeResult, typename R, typename = void>
|
||||
struct IsInvocableImpl : std::false_type {};
|
||||
|
||||
// Happy case, `InvokeResult` does have a nested type member. Now check whether
|
||||
// `InvokeResult::type` is convertible to `R`. Short circuit in case
|
||||
// `std::is_void<R>`.
|
||||
template <typename InvokeResult, typename R>
|
||||
struct IsInvocableImpl<InvokeResult, R, void_t<typename InvokeResult::type>>
|
||||
: disjunction<std::is_void<R>,
|
||||
std::is_convertible<typename InvokeResult::type, R>> {};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Implementation of C++17's std::is_invocable_r.
|
||||
//
|
||||
// Returns whether `F` can be invoked with `Args...` and the result is
|
||||
// convertible to `R`.
|
||||
//
|
||||
// Reference: https://wg21.link/meta.rel#lib:is_invocable_r
|
||||
template <typename R, typename F, typename... Args>
|
||||
struct is_invocable_r
|
||||
: internal::IsInvocableImpl<invoke_result<F, Args...>, R> {};
|
||||
|
||||
// Implementation of C++17's std::is_invocable.
|
||||
//
|
||||
// Returns whether `F` can be invoked with `Args...`.
|
||||
//
|
||||
// Reference: https://wg21.link/meta.rel#lib:is_invocable
|
||||
template <typename F, typename... Args>
|
||||
struct is_invocable : is_invocable_r<void, F, Args...> {};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// The indirection with std::is_enum<T> is required, because instantiating
|
||||
// std::underlying_type_t<T> when T is not an enum is UB prior to C++20.
|
||||
template <typename T, bool = std::is_enum<T>::value>
|
||||
struct IsScopedEnumImpl : std::false_type {};
|
||||
|
||||
template <typename T>
|
||||
struct IsScopedEnumImpl<T, /*std::is_enum<T>::value=*/true>
|
||||
: negation<std::is_convertible<T, std::underlying_type_t<T>>> {};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Implementation of C++23's std::is_scoped_enum
|
||||
//
|
||||
// Reference: https://en.cppreference.com/w/cpp/types/is_scoped_enum
|
||||
template <typename T>
|
||||
struct is_scoped_enum : internal::IsScopedEnumImpl<T> {};
|
||||
|
||||
// Implementation of C++20's std::remove_cvref.
|
||||
//
|
||||
// References:
|
||||
// - https://en.cppreference.com/w/cpp/types/remove_cvref
|
||||
// - https://wg21.link/meta.trans.other#lib:remove_cvref
|
||||
template <typename T>
|
||||
struct remove_cvref {
|
||||
using type = std::remove_cv_t<std::remove_reference_t<T>>;
|
||||
};
|
||||
|
||||
// Implementation of C++20's std::remove_cvref_t.
|
||||
//
|
||||
// References:
|
||||
// - https://en.cppreference.com/w/cpp/types/remove_cvref
|
||||
// - https://wg21.link/meta.type.synop#lib:remove_cvref_t
|
||||
template <typename T>
|
||||
using remove_cvref_t = typename remove_cvref<T>::type;
|
||||
|
||||
// Simplified implementation of C++20's std::iter_value_t.
|
||||
// As opposed to std::iter_value_t, this implementation does not restrict
|
||||
// the type of `Iter` and does not consider specializations of
|
||||
// `indirectly_readable_traits`.
|
||||
//
|
||||
// Reference: https://wg21.link/readable.traits#2
|
||||
template <typename Iter>
|
||||
using iter_value_t =
|
||||
typename std::iterator_traits<remove_cvref_t<Iter>>::value_type;
|
||||
|
||||
// Simplified implementation of C++20's std::iter_reference_t.
|
||||
// As opposed to std::iter_reference_t, this implementation does not restrict
|
||||
// the type of `Iter`.
|
||||
//
|
||||
// Reference: https://wg21.link/iterator.synopsis#:~:text=iter_reference_t
|
||||
template <typename Iter>
|
||||
using iter_reference_t = decltype(*std::declval<Iter&>());
|
||||
|
||||
// Simplified implementation of C++20's std::indirect_result_t. As opposed to
|
||||
// std::indirect_result_t, this implementation does not restrict the type of
|
||||
// `Func` and `Iters`.
|
||||
//
|
||||
// Reference: https://wg21.link/iterator.synopsis#:~:text=indirect_result_t
|
||||
template <typename Func, typename... Iters>
|
||||
using indirect_result_t = invoke_result_t<Func, iter_reference_t<Iters>...>;
|
||||
|
||||
// Simplified implementation of C++20's std::projected. As opposed to
|
||||
// std::projected, this implementation does not explicitly restrict the type of
|
||||
// `Iter` and `Proj`, but rather does so implicitly by requiring
|
||||
// `indirect_result_t<Proj, Iter>` is a valid type. This is required for SFINAE
|
||||
// friendliness.
|
||||
//
|
||||
// Reference: https://wg21.link/projected
|
||||
template <typename Iter,
|
||||
typename Proj,
|
||||
typename IndirectResultT = indirect_result_t<Proj, Iter>>
|
||||
struct projected {
|
||||
using value_type = remove_cvref_t<IndirectResultT>;
|
||||
|
||||
IndirectResultT operator*() const; // not defined
|
||||
};
|
||||
|
||||
} // namespace base
|
||||
|
||||
#undef CR_USE_FALLBACKS_FOR_GCC_WITH_LIBCXX
|
||||
#undef CR_USE_FALLBACKS_FOR_OLD_EXPERIMENTAL_GLIBCXX
|
||||
|
||||
#endif // !USING_CHROMIUM_INCLUDES
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_CEF_TEMPLATE_UTIL_H_
|
||||
|
@ -32,12 +32,7 @@
|
||||
#define CEF_INCLUDE_BASE_THREAD_CHECKER_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_THREADING_THREAD_CHECKER_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/threading/thread_checker.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
|
@ -140,12 +140,7 @@
|
||||
#define CEF_INCLUDE_BASE_CEF_TRACE_EVENT_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(TRACE_EVENT0)
|
||||
// Do nothing if the macros provided by this header already exist.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/trace_event/trace_event.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -29,7 +29,7 @@
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Weak pointers are pointers to an object that do not affect its lifetime,
|
||||
// and which may be invalidated (i.e. reset to NULL) by the object, or its
|
||||
// and which may be invalidated (i.e. reset to nullptr) by the object, or its
|
||||
// owner, at any time, most commonly when the object is about to be deleted.
|
||||
|
||||
// Weak pointers are useful when an object needs to be accessed safely by one
|
||||
@ -42,25 +42,24 @@
|
||||
//
|
||||
// class Controller {
|
||||
// public:
|
||||
// Controller() : weak_factory_(this) {}
|
||||
// void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
|
||||
// void WorkComplete(const Result& result) { ... }
|
||||
// private:
|
||||
// // Member variables should appear before the WeakPtrFactory, to ensure
|
||||
// // that any WeakPtrs to Controller are invalidated before its members
|
||||
// // variable's destructors are executed, rendering them invalid.
|
||||
// WeakPtrFactory<Controller> weak_factory_;
|
||||
// WeakPtrFactory<Controller> weak_factory_{this};
|
||||
// };
|
||||
//
|
||||
// class Worker {
|
||||
// public:
|
||||
// static void StartNew(const WeakPtr<Controller>& controller) {
|
||||
// Worker* worker = new Worker(controller);
|
||||
// static void StartNew(WeakPtr<Controller> controller) {
|
||||
// Worker* worker = new Worker(std::move(controller));
|
||||
// // Kick off asynchronous processing...
|
||||
// }
|
||||
// private:
|
||||
// Worker(const WeakPtr<Controller>& controller)
|
||||
// : controller_(controller) {}
|
||||
// Worker(WeakPtr<Controller> controller)
|
||||
// : controller_(std::move(controller)) {}
|
||||
// void DidCompleteAsynchronousProcessing(const Result& result) {
|
||||
// if (controller_)
|
||||
// controller_->WorkComplete(result);
|
||||
@ -75,18 +74,19 @@
|
||||
// ------------------------- IMPORTANT: Thread-safety -------------------------
|
||||
|
||||
// Weak pointers may be passed safely between threads, but must always be
|
||||
// dereferenced and invalidated on the same thread otherwise checking the
|
||||
// pointer would be racey.
|
||||
// dereferenced and invalidated on the same ThreaddTaskRunner otherwise
|
||||
// checking the pointer would be racey.
|
||||
//
|
||||
// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
|
||||
// is dereferenced, the factory and its WeakPtrs become bound to the calling
|
||||
// thread, and cannot be dereferenced or invalidated on any other thread. Bound
|
||||
// WeakPtrs can still be handed off to other threads, e.g. to use to post tasks
|
||||
// back to object on the bound thread.
|
||||
// thread or current ThreaddWorkerPool token, and cannot be dereferenced or
|
||||
// invalidated on any other task runner. Bound WeakPtrs can still be handed
|
||||
// off to other task runners, e.g. to use to post tasks back to object on the
|
||||
// bound thread.
|
||||
//
|
||||
// If all WeakPtr objects are destroyed or invalidated then the factory is
|
||||
// unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
|
||||
// destroyed, or new WeakPtr objects may be used, from a different sequence.
|
||||
// unbound from the ThreaddTaskRunner/Thread. The WeakPtrFactory may then be
|
||||
// destroyed, or new WeakPtr objects may be used, from a different thread.
|
||||
//
|
||||
// Thus, at least one WeakPtr object must exist and have been dereferenced on
|
||||
// the correct thread to enforce that other WeakPtr objects will enforce they
|
||||
@ -96,12 +96,7 @@
|
||||
#define CEF_INCLUDE_BASE_CEF_WEAK_PTR_H_
|
||||
#pragma once
|
||||
|
||||
#if defined(BASE_MEMORY_WEAK_PTR_H_)
|
||||
// Do nothing if the Chromium header has already been included.
|
||||
// This can happen in cases where Chromium code is used directly by the
|
||||
// client application. When using Chromium code directly always include
|
||||
// the Chromium header first to avoid type conflicts.
|
||||
#elif defined(USING_CHROMIUM_INCLUDES)
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// When building CEF include the Chromium header directly.
|
||||
#include "base/memory/weak_ptr.h"
|
||||
#else // !USING_CHROMIUM_INCLUDES
|
||||
@ -109,10 +104,13 @@
|
||||
// If the Chromium implementation diverges the below implementation should be
|
||||
// updated to match.
|
||||
|
||||
#include "include/base/cef_basictypes.h"
|
||||
#include <cstddef>
|
||||
#include <type_traits>
|
||||
|
||||
#include "include/base/cef_atomic_flag.h"
|
||||
#include "include/base/cef_logging.h"
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/base/cef_ref_counted.h"
|
||||
#include "include/base/cef_template_util.h"
|
||||
#include "include/base/cef_thread_checker.h"
|
||||
|
||||
namespace base {
|
||||
@ -122,14 +120,14 @@ class SupportsWeakPtr;
|
||||
template <typename T>
|
||||
class WeakPtr;
|
||||
|
||||
namespace cef_internal {
|
||||
namespace internal {
|
||||
// These classes are part of the WeakPtr implementation.
|
||||
// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
|
||||
|
||||
class WeakReference {
|
||||
public:
|
||||
// Although Flag is bound to a specific thread, it may be deleted from another
|
||||
// via base::WeakPtr::~WeakPtr().
|
||||
// Although Flag is bound to a specific ThreaddTaskRunner, it may be
|
||||
// deleted from another via base::WeakPtr::~WeakPtr().
|
||||
class Flag : public RefCountedThreadSafe<Flag> {
|
||||
public:
|
||||
Flag();
|
||||
@ -137,23 +135,30 @@ class WeakReference {
|
||||
void Invalidate();
|
||||
bool IsValid() const;
|
||||
|
||||
bool MaybeValid() const;
|
||||
|
||||
void DetachFromThread();
|
||||
|
||||
private:
|
||||
friend class base::RefCountedThreadSafe<Flag>;
|
||||
|
||||
~Flag();
|
||||
|
||||
// The current Chromium implementation uses SequenceChecker instead of
|
||||
// ThreadChecker to support SequencedWorkerPools. CEF does not yet expose
|
||||
// the concept of SequencedWorkerPools.
|
||||
ThreadChecker thread_checker_;
|
||||
bool is_valid_;
|
||||
base::ThreadChecker thread_checker_;
|
||||
AtomicFlag invalidated_;
|
||||
};
|
||||
|
||||
WeakReference();
|
||||
explicit WeakReference(const Flag* flag);
|
||||
explicit WeakReference(const scoped_refptr<Flag>& flag);
|
||||
~WeakReference();
|
||||
|
||||
bool is_valid() const;
|
||||
WeakReference(WeakReference&& other) noexcept;
|
||||
WeakReference(const WeakReference& other);
|
||||
WeakReference& operator=(WeakReference&& other) noexcept = default;
|
||||
WeakReference& operator=(const WeakReference& other) = default;
|
||||
|
||||
bool IsValid() const;
|
||||
bool MaybeValid() const;
|
||||
|
||||
private:
|
||||
scoped_refptr<const Flag> flag_;
|
||||
@ -166,12 +171,12 @@ class WeakReferenceOwner {
|
||||
|
||||
WeakReference GetRef() const;
|
||||
|
||||
bool HasRefs() const { return flag_.get() && !flag_->HasOneRef(); }
|
||||
bool HasRefs() const { return !flag_->HasOneRef(); }
|
||||
|
||||
void Invalidate();
|
||||
|
||||
private:
|
||||
mutable scoped_refptr<WeakReference::Flag> flag_;
|
||||
scoped_refptr<WeakReference::Flag> flag_;
|
||||
};
|
||||
|
||||
// This class simplifies the implementation of WeakPtr's type conversion
|
||||
@ -183,10 +188,24 @@ class WeakPtrBase {
|
||||
WeakPtrBase();
|
||||
~WeakPtrBase();
|
||||
|
||||
WeakPtrBase(const WeakPtrBase& other) = default;
|
||||
WeakPtrBase(WeakPtrBase&& other) noexcept = default;
|
||||
WeakPtrBase& operator=(const WeakPtrBase& other) = default;
|
||||
WeakPtrBase& operator=(WeakPtrBase&& other) noexcept = default;
|
||||
|
||||
void reset() {
|
||||
ref_ = internal::WeakReference();
|
||||
ptr_ = 0;
|
||||
}
|
||||
|
||||
protected:
|
||||
explicit WeakPtrBase(const WeakReference& ref);
|
||||
WeakPtrBase(const WeakReference& ref, uintptr_t ptr);
|
||||
|
||||
WeakReference ref_;
|
||||
|
||||
// This pointer is only valid when ref_.is_valid() is true. Otherwise, its
|
||||
// value is undefined (as opposed to nullptr).
|
||||
uintptr_t ptr_;
|
||||
};
|
||||
|
||||
// This class provides a common implementation of common functions that would
|
||||
@ -198,13 +217,14 @@ class SupportsWeakPtrBase {
|
||||
// conversion will only compile if there is exists a Base which inherits
|
||||
// from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
|
||||
// function that makes calling this easier.
|
||||
//
|
||||
// Precondition: t != nullptr
|
||||
template <typename Derived>
|
||||
static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
|
||||
typedef is_convertible<Derived, cef_internal::SupportsWeakPtrBase&>
|
||||
convertible;
|
||||
COMPILE_ASSERT(convertible::value,
|
||||
AsWeakPtr_argument_inherits_from_SupportsWeakPtr);
|
||||
return AsWeakPtrImpl<Derived>(t, *t);
|
||||
static_assert(
|
||||
std::is_base_of<internal::SupportsWeakPtrBase, Derived>::value,
|
||||
"AsWeakPtr argument must inherit from SupportsWeakPtr");
|
||||
return AsWeakPtrImpl<Derived>(t);
|
||||
}
|
||||
|
||||
private:
|
||||
@ -212,14 +232,14 @@ class SupportsWeakPtrBase {
|
||||
// which is an instance of SupportsWeakPtr<Base>. We can then safely
|
||||
// static_cast the Base* to a Derived*.
|
||||
template <typename Derived, typename Base>
|
||||
static WeakPtr<Derived> AsWeakPtrImpl(Derived* t,
|
||||
const SupportsWeakPtr<Base>&) {
|
||||
WeakPtr<Base> ptr = t->Base::AsWeakPtr();
|
||||
return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
|
||||
static WeakPtr<Derived> AsWeakPtrImpl(SupportsWeakPtr<Base>* t) {
|
||||
WeakPtr<Base> ptr = t->AsWeakPtr();
|
||||
return WeakPtr<Derived>(
|
||||
ptr.ref_, static_cast<Derived*>(reinterpret_cast<Base*>(ptr.ptr_)));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cef_internal
|
||||
} // namespace internal
|
||||
|
||||
template <typename T>
|
||||
class WeakPtrFactory;
|
||||
@ -238,81 +258,113 @@ class WeakPtrFactory;
|
||||
// foo->method();
|
||||
//
|
||||
template <typename T>
|
||||
class WeakPtr : public cef_internal::WeakPtrBase {
|
||||
class WeakPtr : public internal::WeakPtrBase {
|
||||
public:
|
||||
WeakPtr() : ptr_(NULL) {}
|
||||
WeakPtr() = default;
|
||||
WeakPtr(std::nullptr_t) {}
|
||||
|
||||
// Allow conversion from U to T provided U "is a" T. Note that this
|
||||
// is separate from the (implicit) copy constructor.
|
||||
// is separate from the (implicit) copy and move constructors.
|
||||
template <typename U>
|
||||
WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {}
|
||||
WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other) {
|
||||
// Need to cast from U* to T* to do pointer adjustment in case of multiple
|
||||
// inheritance. This also enforces the "U is a T" rule.
|
||||
T* t = reinterpret_cast<U*>(other.ptr_);
|
||||
ptr_ = reinterpret_cast<uintptr_t>(t);
|
||||
}
|
||||
template <typename U>
|
||||
WeakPtr(WeakPtr<U>&& other) noexcept : WeakPtrBase(std::move(other)) {
|
||||
// Need to cast from U* to T* to do pointer adjustment in case of multiple
|
||||
// inheritance. This also enforces the "U is a T" rule.
|
||||
T* t = reinterpret_cast<U*>(other.ptr_);
|
||||
ptr_ = reinterpret_cast<uintptr_t>(t);
|
||||
}
|
||||
|
||||
T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
|
||||
T* get() const {
|
||||
return ref_.IsValid() ? reinterpret_cast<T*>(ptr_) : nullptr;
|
||||
}
|
||||
|
||||
T& operator*() const {
|
||||
CHECK(ref_.is_valid());
|
||||
CHECK(ref_.IsValid());
|
||||
return *get();
|
||||
}
|
||||
T* operator->() const {
|
||||
CHECK(ref_.is_valid());
|
||||
CHECK(ref_.IsValid());
|
||||
return get();
|
||||
}
|
||||
|
||||
// Allow WeakPtr<element_type> to be used in boolean expressions, but not
|
||||
// implicitly convertible to a real bool (which is dangerous).
|
||||
// Allow conditionals to test validity, e.g. if (weak_ptr) {...};
|
||||
explicit operator bool() const { return get() != nullptr; }
|
||||
|
||||
// Returns false if the WeakPtr is confirmed to be invalid. This call is safe
|
||||
// to make from any thread, e.g. to optimize away unnecessary work, but
|
||||
// operator bool() must always be called, on the correct thread, before
|
||||
// actually using the pointer.
|
||||
//
|
||||
// Note that this trick is only safe when the == and != operators
|
||||
// are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
|
||||
// will compile but do the wrong thing (i.e., convert to Testable
|
||||
// and then do the comparison).
|
||||
private:
|
||||
typedef T* WeakPtr::*Testable;
|
||||
// Warning: as with any object, this call is only thread-safe if the WeakPtr
|
||||
// instance isn't being re-assigned or reset() racily with this call.
|
||||
bool MaybeValid() const { return ref_.MaybeValid(); }
|
||||
|
||||
public:
|
||||
operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
|
||||
|
||||
void reset() {
|
||||
ref_ = cef_internal::WeakReference();
|
||||
ptr_ = NULL;
|
||||
}
|
||||
// Returns whether the object |this| points to has been invalidated. This can
|
||||
// be used to distinguish a WeakPtr to a destroyed object from one that has
|
||||
// been explicitly set to null.
|
||||
bool WasInvalidated() const { return ptr_ && !ref_.IsValid(); }
|
||||
|
||||
private:
|
||||
// Explicitly declare comparison operators as required by the bool
|
||||
// trick, but keep them private.
|
||||
template <class U>
|
||||
bool operator==(WeakPtr<U> const&) const;
|
||||
template <class U>
|
||||
bool operator!=(WeakPtr<U> const&) const;
|
||||
|
||||
friend class cef_internal::SupportsWeakPtrBase;
|
||||
friend class internal::SupportsWeakPtrBase;
|
||||
template <typename U>
|
||||
friend class WeakPtr;
|
||||
friend class SupportsWeakPtr<T>;
|
||||
friend class WeakPtrFactory<T>;
|
||||
|
||||
WeakPtr(const cef_internal::WeakReference& ref, T* ptr)
|
||||
: WeakPtrBase(ref), ptr_(ptr) {}
|
||||
|
||||
// This pointer is only valid when ref_.is_valid() is true. Otherwise, its
|
||||
// value is undefined (as opposed to NULL).
|
||||
T* ptr_;
|
||||
WeakPtr(const internal::WeakReference& ref, T* ptr)
|
||||
: WeakPtrBase(ref, reinterpret_cast<uintptr_t>(ptr)) {}
|
||||
};
|
||||
|
||||
// Allow callers to compare WeakPtrs against nullptr to test validity.
|
||||
template <class T>
|
||||
bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
|
||||
return !(weak_ptr == nullptr);
|
||||
}
|
||||
template <class T>
|
||||
bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
|
||||
return weak_ptr != nullptr;
|
||||
}
|
||||
template <class T>
|
||||
bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
|
||||
return weak_ptr.get() == nullptr;
|
||||
}
|
||||
template <class T>
|
||||
bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
|
||||
return weak_ptr == nullptr;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
class WeakPtrFactoryBase {
|
||||
protected:
|
||||
WeakPtrFactoryBase(uintptr_t ptr);
|
||||
~WeakPtrFactoryBase();
|
||||
internal::WeakReferenceOwner weak_reference_owner_;
|
||||
uintptr_t ptr_;
|
||||
};
|
||||
} // namespace internal
|
||||
|
||||
// A class may be composed of a WeakPtrFactory and thereby
|
||||
// control how it exposes weak pointers to itself. This is helpful if you only
|
||||
// need weak pointers within the implementation of a class. This class is also
|
||||
// useful when working with primitive types. For example, you could have a
|
||||
// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
|
||||
template <class T>
|
||||
class WeakPtrFactory {
|
||||
class WeakPtrFactory : public internal::WeakPtrFactoryBase {
|
||||
public:
|
||||
explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {}
|
||||
explicit WeakPtrFactory(T* ptr)
|
||||
: WeakPtrFactoryBase(reinterpret_cast<uintptr_t>(ptr)) {}
|
||||
|
||||
~WeakPtrFactory() { ptr_ = NULL; }
|
||||
~WeakPtrFactory() = default;
|
||||
|
||||
WeakPtr<T> GetWeakPtr() {
|
||||
DCHECK(ptr_);
|
||||
return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
|
||||
WeakPtr<T> GetWeakPtr() const {
|
||||
return WeakPtr<T>(weak_reference_owner_.GetRef(),
|
||||
reinterpret_cast<T*>(ptr_));
|
||||
}
|
||||
|
||||
// Call this method to invalidate all existing weak pointers.
|
||||
@ -328,8 +380,6 @@ class WeakPtrFactory {
|
||||
}
|
||||
|
||||
private:
|
||||
cef_internal::WeakReferenceOwner weak_reference_owner_;
|
||||
T* ptr_;
|
||||
DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
|
||||
};
|
||||
|
||||
@ -339,19 +389,19 @@ class WeakPtrFactory {
|
||||
// weak pointers to the class until after the derived class' members have been
|
||||
// destroyed, its use can lead to subtle use-after-destroy issues.
|
||||
template <class T>
|
||||
class SupportsWeakPtr : public cef_internal::SupportsWeakPtrBase {
|
||||
class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
|
||||
public:
|
||||
SupportsWeakPtr() {}
|
||||
SupportsWeakPtr() = default;
|
||||
|
||||
WeakPtr<T> AsWeakPtr() {
|
||||
return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
|
||||
}
|
||||
|
||||
protected:
|
||||
~SupportsWeakPtr() {}
|
||||
~SupportsWeakPtr() = default;
|
||||
|
||||
private:
|
||||
cef_internal::WeakReferenceOwner weak_reference_owner_;
|
||||
internal::WeakReferenceOwner weak_reference_owner_;
|
||||
DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
|
||||
};
|
||||
|
||||
@ -375,7 +425,7 @@ class SupportsWeakPtr : public cef_internal::SupportsWeakPtrBase {
|
||||
|
||||
template <typename Derived>
|
||||
WeakPtr<Derived> AsWeakPtr(Derived* t) {
|
||||
return cef_internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
|
||||
return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
|
||||
}
|
||||
|
||||
} // namespace base
|
||||
|
@ -1,335 +0,0 @@
|
||||
// Copyright (c) 2012 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Do not include this header file directly. Use base/cef_atomicops.h
|
||||
// instead.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM64_GCC_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM64_GCC_H_
|
||||
|
||||
namespace base {
|
||||
namespace subtle {
|
||||
|
||||
inline void MemoryBarrier() {
|
||||
__asm__ __volatile__ ("dmb ish" ::: "memory"); // NOLINT
|
||||
}
|
||||
|
||||
// NoBarrier versions of the operation include "memory" in the clobber list.
|
||||
// This is not required for direct usage of the NoBarrier versions of the
|
||||
// operations. However this is required for correctness when they are used as
|
||||
// part of the Acquire or Release versions, to ensure that nothing from outside
|
||||
// the call is reordered between the operation and the memory barrier. This does
|
||||
// not change the code generated, so has no or minimal impact on the
|
||||
// NoBarrier operations.
|
||||
|
||||
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 prev;
|
||||
int32_t temp;
|
||||
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"0: \n\t"
|
||||
"ldxr %w[prev], %[ptr] \n\t" // Load the previous value.
|
||||
"cmp %w[prev], %w[old_value] \n\t"
|
||||
"bne 1f \n\t"
|
||||
"stxr %w[temp], %w[new_value], %[ptr] \n\t" // Try to store the new value.
|
||||
"cbnz %w[temp], 0b \n\t" // Retry if it did not work.
|
||||
"1: \n\t"
|
||||
: [prev]"=&r" (prev),
|
||||
[temp]"=&r" (temp),
|
||||
[ptr]"+Q" (*ptr)
|
||||
: [old_value]"IJr" (old_value),
|
||||
[new_value]"r" (new_value)
|
||||
: "cc", "memory"
|
||||
); // NOLINT
|
||||
|
||||
return prev;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 result;
|
||||
int32_t temp;
|
||||
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"0: \n\t"
|
||||
"ldxr %w[result], %[ptr] \n\t" // Load the previous value.
|
||||
"stxr %w[temp], %w[new_value], %[ptr] \n\t" // Try to store the new value.
|
||||
"cbnz %w[temp], 0b \n\t" // Retry if it did not work.
|
||||
: [result]"=&r" (result),
|
||||
[temp]"=&r" (temp),
|
||||
[ptr]"+Q" (*ptr)
|
||||
: [new_value]"r" (new_value)
|
||||
: "memory"
|
||||
); // NOLINT
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
Atomic32 result;
|
||||
int32_t temp;
|
||||
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"0: \n\t"
|
||||
"ldxr %w[result], %[ptr] \n\t" // Load the previous value.
|
||||
"add %w[result], %w[result], %w[increment]\n\t"
|
||||
"stxr %w[temp], %w[result], %[ptr] \n\t" // Try to store the result.
|
||||
"cbnz %w[temp], 0b \n\t" // Retry on failure.
|
||||
: [result]"=&r" (result),
|
||||
[temp]"=&r" (temp),
|
||||
[ptr]"+Q" (*ptr)
|
||||
: [increment]"IJr" (increment)
|
||||
: "memory"
|
||||
); // NOLINT
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
Atomic32 result;
|
||||
|
||||
MemoryBarrier();
|
||||
result = NoBarrier_AtomicIncrement(ptr, increment);
|
||||
MemoryBarrier();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 prev;
|
||||
|
||||
prev = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
MemoryBarrier();
|
||||
|
||||
return prev;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 prev;
|
||||
|
||||
MemoryBarrier();
|
||||
prev = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
|
||||
return prev;
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
MemoryBarrier();
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"stlr %w[value], %[ptr] \n\t"
|
||||
: [ptr]"=Q" (*ptr)
|
||||
: [value]"r" (value)
|
||||
: "memory"
|
||||
); // NOLINT
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
|
||||
Atomic32 value;
|
||||
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"ldar %w[value], %[ptr] \n\t"
|
||||
: [value]"=r" (value)
|
||||
: [ptr]"Q" (*ptr)
|
||||
: "memory"
|
||||
); // NOLINT
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
// 64-bit versions of the operations.
|
||||
// See the 32-bit versions for comments.
|
||||
|
||||
inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
Atomic64 prev;
|
||||
int32_t temp;
|
||||
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"0: \n\t"
|
||||
"ldxr %[prev], %[ptr] \n\t"
|
||||
"cmp %[prev], %[old_value] \n\t"
|
||||
"bne 1f \n\t"
|
||||
"stxr %w[temp], %[new_value], %[ptr] \n\t"
|
||||
"cbnz %w[temp], 0b \n\t"
|
||||
"1: \n\t"
|
||||
: [prev]"=&r" (prev),
|
||||
[temp]"=&r" (temp),
|
||||
[ptr]"+Q" (*ptr)
|
||||
: [old_value]"IJr" (old_value),
|
||||
[new_value]"r" (new_value)
|
||||
: "cc", "memory"
|
||||
); // NOLINT
|
||||
|
||||
return prev;
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
|
||||
Atomic64 new_value) {
|
||||
Atomic64 result;
|
||||
int32_t temp;
|
||||
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"0: \n\t"
|
||||
"ldxr %[result], %[ptr] \n\t"
|
||||
"stxr %w[temp], %[new_value], %[ptr] \n\t"
|
||||
"cbnz %w[temp], 0b \n\t"
|
||||
: [result]"=&r" (result),
|
||||
[temp]"=&r" (temp),
|
||||
[ptr]"+Q" (*ptr)
|
||||
: [new_value]"r" (new_value)
|
||||
: "memory"
|
||||
); // NOLINT
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
Atomic64 result;
|
||||
int32_t temp;
|
||||
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"0: \n\t"
|
||||
"ldxr %[result], %[ptr] \n\t"
|
||||
"add %[result], %[result], %[increment] \n\t"
|
||||
"stxr %w[temp], %[result], %[ptr] \n\t"
|
||||
"cbnz %w[temp], 0b \n\t"
|
||||
: [result]"=&r" (result),
|
||||
[temp]"=&r" (temp),
|
||||
[ptr]"+Q" (*ptr)
|
||||
: [increment]"IJr" (increment)
|
||||
: "memory"
|
||||
); // NOLINT
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
Atomic64 result;
|
||||
|
||||
MemoryBarrier();
|
||||
result = NoBarrier_AtomicIncrement(ptr, increment);
|
||||
MemoryBarrier();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
Atomic64 prev;
|
||||
|
||||
prev = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
MemoryBarrier();
|
||||
|
||||
return prev;
|
||||
}
|
||||
|
||||
inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
Atomic64 prev;
|
||||
|
||||
MemoryBarrier();
|
||||
prev = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
|
||||
return prev;
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value;
|
||||
MemoryBarrier();
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"stlr %x[value], %[ptr] \n\t"
|
||||
: [ptr]"=Q" (*ptr)
|
||||
: [value]"r" (value)
|
||||
: "memory"
|
||||
); // NOLINT
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
|
||||
Atomic64 value;
|
||||
|
||||
__asm__ __volatile__ ( // NOLINT
|
||||
"ldar %x[value], %[ptr] \n\t"
|
||||
: [value]"=r" (value)
|
||||
: [ptr]"Q" (*ptr)
|
||||
: "memory"
|
||||
); // NOLINT
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
} } // namespace base::subtle
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM64_GCC_H_
|
||||
|
@ -1,197 +0,0 @@
|
||||
// Copyright (c) 2008 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Do not include this header file directly. Use base/cef_atomicops.h
|
||||
// instead.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM64_MSVC_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM64_MSVC_H_
|
||||
|
||||
#include <windows.h>
|
||||
|
||||
#include <intrin.h>
|
||||
|
||||
#include "include/base/cef_macros.h"
|
||||
|
||||
namespace base {
|
||||
namespace subtle {
|
||||
|
||||
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
LONG result = _InterlockedCompareExchange(
|
||||
reinterpret_cast<volatile LONG*>(ptr), static_cast<LONG>(new_value),
|
||||
static_cast<LONG>(old_value));
|
||||
return static_cast<Atomic32>(result);
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
||||
Atomic32 new_value) {
|
||||
LONG result = _InterlockedExchange(reinterpret_cast<volatile LONG*>(ptr),
|
||||
static_cast<LONG>(new_value));
|
||||
return static_cast<Atomic32>(result);
|
||||
}
|
||||
|
||||
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
return _InterlockedExchangeAdd(reinterpret_cast<volatile LONG*>(ptr),
|
||||
static_cast<LONG>(increment)) +
|
||||
increment;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
return Barrier_AtomicIncrement(ptr, increment);
|
||||
}
|
||||
|
||||
#if !(defined(_MSC_VER) && _MSC_VER >= 1400)
|
||||
#error "We require at least vs2005 for MemoryBarrier"
|
||||
#endif
|
||||
|
||||
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
NoBarrier_AtomicExchange(ptr, value);
|
||||
// acts as a barrier in this implementation
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
// See comments in Atomic64 version of Release_Store() below.
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
|
||||
Atomic32 value = *ptr;
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
#if defined(_WIN64)
|
||||
|
||||
// 64-bit low-level operations on 64-bit platform.
|
||||
|
||||
COMPILE_ASSERT(sizeof(Atomic64) == sizeof(PVOID), atomic_word_is_atomic);
|
||||
|
||||
inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
PVOID result = InterlockedCompareExchangePointer(
|
||||
reinterpret_cast<volatile PVOID*>(ptr),
|
||||
reinterpret_cast<PVOID>(new_value), reinterpret_cast<PVOID>(old_value));
|
||||
return reinterpret_cast<Atomic64>(result);
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
|
||||
Atomic64 new_value) {
|
||||
PVOID result =
|
||||
InterlockedExchangePointer(reinterpret_cast<volatile PVOID*>(ptr),
|
||||
reinterpret_cast<PVOID>(new_value));
|
||||
return reinterpret_cast<Atomic64>(result);
|
||||
}
|
||||
|
||||
inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
return InterlockedExchangeAdd64(reinterpret_cast<volatile LONGLONG*>(ptr),
|
||||
static_cast<LONGLONG>(increment)) +
|
||||
increment;
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
return Barrier_AtomicIncrement(ptr, increment);
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
NoBarrier_AtomicExchange(ptr, value);
|
||||
// acts as a barrier in this implementation
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
|
||||
Atomic64 value = *ptr;
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
#endif // defined(_WIN64)
|
||||
|
||||
} // namespace base::subtle
|
||||
} // namespace base
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM64_MSVC_H_
|
||||
|
@ -1,325 +0,0 @@
|
||||
// Copyright (c) 2013 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Do not include this header file directly. Use base/cef_atomicops.h
|
||||
// instead.
|
||||
//
|
||||
// LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
|
||||
|
||||
#if defined(OS_QNX)
|
||||
#include <sys/cpuinline.h>
|
||||
#endif
|
||||
|
||||
namespace base {
|
||||
namespace subtle {
|
||||
|
||||
// Memory barriers on ARM are funky, but the kernel is here to help:
|
||||
//
|
||||
// * ARMv5 didn't support SMP, there is no memory barrier instruction at
|
||||
// all on this architecture, or when targeting its machine code.
|
||||
//
|
||||
// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
|
||||
// writing a random value to a very specific coprocessor register.
|
||||
//
|
||||
// * On ARMv7, the "dmb" instruction is used to perform a full memory
|
||||
// barrier (though writing to the co-processor will still work).
|
||||
// However, on single core devices (e.g. Nexus One, or Nexus S),
|
||||
// this instruction will take up to 200 ns, which is huge, even though
|
||||
// it's completely un-needed on these devices.
|
||||
//
|
||||
// * There is no easy way to determine at runtime if the device is
|
||||
// single or multi-core. However, the kernel provides a useful helper
|
||||
// function at a fixed memory address (0xffff0fa0), which will always
|
||||
// perform a memory barrier in the most efficient way. I.e. on single
|
||||
// core devices, this is an empty function that exits immediately.
|
||||
// On multi-core devices, it implements a full memory barrier.
|
||||
//
|
||||
// * This source could be compiled to ARMv5 machine code that runs on a
|
||||
// multi-core ARMv6 or ARMv7 device. In this case, memory barriers
|
||||
// are needed for correct execution. Always call the kernel helper, even
|
||||
// when targeting ARMv5TE.
|
||||
//
|
||||
|
||||
inline void MemoryBarrier() {
|
||||
#if defined(OS_LINUX) || defined(OS_ANDROID)
|
||||
// Note: This is a function call, which is also an implicit compiler barrier.
|
||||
typedef void (*KernelMemoryBarrierFunc)();
|
||||
((KernelMemoryBarrierFunc)0xffff0fa0)();
|
||||
#elif defined(OS_QNX)
|
||||
__cpu_membarrier();
|
||||
#else
|
||||
#error MemoryBarrier() is not implemented on this platform.
|
||||
#endif
|
||||
}
|
||||
|
||||
// An ARM toolchain would only define one of these depending on which
|
||||
// variant of the target architecture is being used. This tests against
|
||||
// any known ARMv6 or ARMv7 variant, where it is possible to directly
|
||||
// use ldrex/strex instructions to implement fast atomic operations.
|
||||
#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
|
||||
defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
|
||||
defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
|
||||
defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
|
||||
defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)
|
||||
|
||||
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 prev_value;
|
||||
int reloop;
|
||||
do {
|
||||
// The following is equivalent to:
|
||||
//
|
||||
// prev_value = LDREX(ptr)
|
||||
// reloop = 0
|
||||
// if (prev_value != old_value)
|
||||
// reloop = STREX(ptr, new_value)
|
||||
__asm__ __volatile__(
|
||||
" ldrex %0, [%3]\n"
|
||||
" mov %1, #0\n"
|
||||
" cmp %0, %4\n"
|
||||
#ifdef __thumb2__
|
||||
" it eq\n"
|
||||
#endif
|
||||
" strexeq %1, %5, [%3]\n"
|
||||
: "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
|
||||
: "r"(ptr), "r"(old_value), "r"(new_value)
|
||||
: "cc", "memory");
|
||||
} while (reloop != 0);
|
||||
return prev_value;
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
MemoryBarrier();
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
MemoryBarrier();
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
Atomic32 value;
|
||||
int reloop;
|
||||
do {
|
||||
// Equivalent to:
|
||||
//
|
||||
// value = LDREX(ptr)
|
||||
// value += increment
|
||||
// reloop = STREX(ptr, value)
|
||||
//
|
||||
__asm__ __volatile__(
|
||||
" ldrex %0, [%3]\n"
|
||||
" add %0, %0, %4\n"
|
||||
" strex %1, %0, [%3]\n"
|
||||
: "=&r"(value), "=&r"(reloop), "+m"(*ptr)
|
||||
: "r"(ptr), "r"(increment)
|
||||
: "cc", "memory");
|
||||
} while (reloop);
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
// TODO(digit): Investigate if it's possible to implement this with
|
||||
// a single MemoryBarrier() operation between the LDREX and STREX.
|
||||
// See http://crbug.com/246514
|
||||
MemoryBarrier();
|
||||
Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
|
||||
MemoryBarrier();
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 old_value;
|
||||
int reloop;
|
||||
do {
|
||||
// old_value = LDREX(ptr)
|
||||
// reloop = STREX(ptr, new_value)
|
||||
__asm__ __volatile__(
|
||||
" ldrex %0, [%3]\n"
|
||||
" strex %1, %4, [%3]\n"
|
||||
: "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
|
||||
: "r"(ptr), "r"(new_value)
|
||||
: "cc", "memory");
|
||||
} while (reloop != 0);
|
||||
return old_value;
|
||||
}
|
||||
|
||||
// This tests against any known ARMv5 variant.
|
||||
#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
|
||||
defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
|
||||
|
||||
// The kernel also provides a helper function to perform an atomic
|
||||
// compare-and-swap operation at the hard-wired address 0xffff0fc0.
|
||||
// On ARMv5, this is implemented by a special code path that the kernel
|
||||
// detects and treats specially when thread pre-emption happens.
|
||||
// On ARMv6 and higher, it uses LDREX/STREX instructions instead.
|
||||
//
|
||||
// Note that this always perform a full memory barrier, there is no
|
||||
// need to add calls MemoryBarrier() before or after it. It also
|
||||
// returns 0 on success, and 1 on exit.
|
||||
//
|
||||
// Available and reliable since Linux 2.6.24. Both Android and ChromeOS
|
||||
// use newer kernel revisions, so this should not be a concern.
|
||||
namespace {
|
||||
|
||||
inline int LinuxKernelCmpxchg(Atomic32 old_value,
|
||||
Atomic32 new_value,
|
||||
volatile Atomic32* ptr) {
|
||||
typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
|
||||
return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 prev_value;
|
||||
for (;;) {
|
||||
prev_value = *ptr;
|
||||
if (prev_value != old_value)
|
||||
return prev_value;
|
||||
if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
|
||||
return old_value;
|
||||
}
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 old_value;
|
||||
do {
|
||||
old_value = *ptr;
|
||||
} while (LinuxKernelCmpxchg(old_value, new_value, ptr));
|
||||
return old_value;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
return Barrier_AtomicIncrement(ptr, increment);
|
||||
}
|
||||
|
||||
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
for (;;) {
|
||||
// Atomic exchange the old value with an incremented one.
|
||||
Atomic32 old_value = *ptr;
|
||||
Atomic32 new_value = old_value + increment;
|
||||
if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
|
||||
// The exchange took place as expected.
|
||||
return new_value;
|
||||
}
|
||||
// Otherwise, *ptr changed mid-loop and we need to retry.
|
||||
}
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 prev_value;
|
||||
for (;;) {
|
||||
prev_value = *ptr;
|
||||
if (prev_value != old_value) {
|
||||
// Always ensure acquire semantics.
|
||||
MemoryBarrier();
|
||||
return prev_value;
|
||||
}
|
||||
if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
|
||||
return old_value;
|
||||
}
|
||||
}
|
||||
|
||||
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
// This could be implemented as:
|
||||
// MemoryBarrier();
|
||||
// return NoBarrier_CompareAndSwap();
|
||||
//
|
||||
// But would use 3 barriers per succesful CAS. To save performance,
|
||||
// use Acquire_CompareAndSwap(). Its implementation guarantees that:
|
||||
// - A succesful swap uses only 2 barriers (in the kernel helper).
|
||||
// - An early return due to (prev_value != old_value) performs
|
||||
// a memory barrier with no store, which is equivalent to the
|
||||
// generic implementation above.
|
||||
return Acquire_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
#else
|
||||
#error "Your CPU's ARM architecture is not supported yet"
|
||||
#endif
|
||||
|
||||
// NOTE: Atomicity of the following load and store operations is only
|
||||
// guaranteed in case of 32-bit alignement of |ptr| values.
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
MemoryBarrier();
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
MemoryBarrier();
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
|
||||
Atomic32 value = *ptr;
|
||||
MemoryBarrier();
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
} // namespace base::subtle
|
||||
} // namespace base
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
|
@ -1,124 +0,0 @@
|
||||
// Copyright (c) 2011 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Do not include this header file directly. Use base/cef_atomicops.h
|
||||
// instead.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ATOMICWORD_COMPAT_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ATOMICWORD_COMPAT_H_
|
||||
|
||||
// AtomicWord is a synonym for intptr_t, and Atomic32 is a synonym for int32,
|
||||
// which in turn means int. On some LP32 platforms, intptr_t is an int, but
|
||||
// on others, it's a long. When AtomicWord and Atomic32 are based on different
|
||||
// fundamental types, their pointers are incompatible.
|
||||
//
|
||||
// This file defines function overloads to allow both AtomicWord and Atomic32
|
||||
// data to be used with this interface.
|
||||
//
|
||||
// On LP64 platforms, AtomicWord and Atomic64 are both always long,
|
||||
// so this problem doesn't occur.
|
||||
|
||||
#if !defined(ARCH_CPU_64_BITS)
|
||||
|
||||
namespace base {
|
||||
namespace subtle {
|
||||
|
||||
inline AtomicWord NoBarrier_CompareAndSwap(volatile AtomicWord* ptr,
|
||||
AtomicWord old_value,
|
||||
AtomicWord new_value) {
|
||||
return NoBarrier_CompareAndSwap(reinterpret_cast<volatile Atomic32*>(ptr),
|
||||
old_value, new_value);
|
||||
}
|
||||
|
||||
inline AtomicWord NoBarrier_AtomicExchange(volatile AtomicWord* ptr,
|
||||
AtomicWord new_value) {
|
||||
return NoBarrier_AtomicExchange(reinterpret_cast<volatile Atomic32*>(ptr),
|
||||
new_value);
|
||||
}
|
||||
|
||||
inline AtomicWord NoBarrier_AtomicIncrement(volatile AtomicWord* ptr,
|
||||
AtomicWord increment) {
|
||||
return NoBarrier_AtomicIncrement(reinterpret_cast<volatile Atomic32*>(ptr),
|
||||
increment);
|
||||
}
|
||||
|
||||
inline AtomicWord Barrier_AtomicIncrement(volatile AtomicWord* ptr,
|
||||
AtomicWord increment) {
|
||||
return Barrier_AtomicIncrement(reinterpret_cast<volatile Atomic32*>(ptr),
|
||||
increment);
|
||||
}
|
||||
|
||||
inline AtomicWord Acquire_CompareAndSwap(volatile AtomicWord* ptr,
|
||||
AtomicWord old_value,
|
||||
AtomicWord new_value) {
|
||||
return base::subtle::Acquire_CompareAndSwap(
|
||||
reinterpret_cast<volatile Atomic32*>(ptr), old_value, new_value);
|
||||
}
|
||||
|
||||
inline AtomicWord Release_CompareAndSwap(volatile AtomicWord* ptr,
|
||||
AtomicWord old_value,
|
||||
AtomicWord new_value) {
|
||||
return base::subtle::Release_CompareAndSwap(
|
||||
reinterpret_cast<volatile Atomic32*>(ptr), old_value, new_value);
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile AtomicWord* ptr, AtomicWord value) {
|
||||
NoBarrier_Store(reinterpret_cast<volatile Atomic32*>(ptr), value);
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile AtomicWord* ptr, AtomicWord value) {
|
||||
return base::subtle::Acquire_Store(reinterpret_cast<volatile Atomic32*>(ptr),
|
||||
value);
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile AtomicWord* ptr, AtomicWord value) {
|
||||
return base::subtle::Release_Store(reinterpret_cast<volatile Atomic32*>(ptr),
|
||||
value);
|
||||
}
|
||||
|
||||
inline AtomicWord NoBarrier_Load(volatile const AtomicWord* ptr) {
|
||||
return NoBarrier_Load(reinterpret_cast<volatile const Atomic32*>(ptr));
|
||||
}
|
||||
|
||||
inline AtomicWord Acquire_Load(volatile const AtomicWord* ptr) {
|
||||
return base::subtle::Acquire_Load(
|
||||
reinterpret_cast<volatile const Atomic32*>(ptr));
|
||||
}
|
||||
|
||||
inline AtomicWord Release_Load(volatile const AtomicWord* ptr) {
|
||||
return base::subtle::Release_Load(
|
||||
reinterpret_cast<volatile const Atomic32*>(ptr));
|
||||
}
|
||||
|
||||
} // namespace base::subtle
|
||||
} // namespace base
|
||||
|
||||
#endif // !defined(ARCH_CPU_64_BITS)
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ATOMICWORD_COMPAT_H_
|
@ -1,223 +0,0 @@
|
||||
// Copyright (c) 2012 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Do not include this header file directly. Use base/cef_atomicops.h
|
||||
// instead.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_MAC_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_MAC_H_
|
||||
|
||||
#include <libkern/OSAtomic.h>
|
||||
|
||||
namespace base {
|
||||
namespace subtle {
|
||||
|
||||
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 prev_value;
|
||||
do {
|
||||
if (OSAtomicCompareAndSwap32(old_value, new_value,
|
||||
const_cast<Atomic32*>(ptr))) {
|
||||
return old_value;
|
||||
}
|
||||
prev_value = *ptr;
|
||||
} while (prev_value == old_value);
|
||||
return prev_value;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 old_value;
|
||||
do {
|
||||
old_value = *ptr;
|
||||
} while (!OSAtomicCompareAndSwap32(old_value, new_value,
|
||||
const_cast<Atomic32*>(ptr)));
|
||||
return old_value;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
return OSAtomicAdd32(increment, const_cast<Atomic32*>(ptr));
|
||||
}
|
||||
|
||||
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
return OSAtomicAdd32Barrier(increment, const_cast<Atomic32*>(ptr));
|
||||
}
|
||||
|
||||
inline void MemoryBarrier() {
|
||||
OSMemoryBarrier();
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 prev_value;
|
||||
do {
|
||||
if (OSAtomicCompareAndSwap32Barrier(old_value, new_value,
|
||||
const_cast<Atomic32*>(ptr))) {
|
||||
return old_value;
|
||||
}
|
||||
prev_value = *ptr;
|
||||
} while (prev_value == old_value);
|
||||
return prev_value;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
return Acquire_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
MemoryBarrier();
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
MemoryBarrier();
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
|
||||
Atomic32 value = *ptr;
|
||||
MemoryBarrier();
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
#ifdef __LP64__
|
||||
|
||||
// 64-bit implementation on 64-bit platform
|
||||
|
||||
inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
Atomic64 prev_value;
|
||||
do {
|
||||
if (OSAtomicCompareAndSwap64(old_value, new_value,
|
||||
reinterpret_cast<volatile int64_t*>(ptr))) {
|
||||
return old_value;
|
||||
}
|
||||
prev_value = *ptr;
|
||||
} while (prev_value == old_value);
|
||||
return prev_value;
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
|
||||
Atomic64 new_value) {
|
||||
Atomic64 old_value;
|
||||
do {
|
||||
old_value = *ptr;
|
||||
} while (!OSAtomicCompareAndSwap64(old_value, new_value,
|
||||
reinterpret_cast<volatile int64_t*>(ptr)));
|
||||
return old_value;
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
return OSAtomicAdd64(increment, reinterpret_cast<volatile int64_t*>(ptr));
|
||||
}
|
||||
|
||||
inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
return OSAtomicAdd64Barrier(increment,
|
||||
reinterpret_cast<volatile int64_t*>(ptr));
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
Atomic64 prev_value;
|
||||
do {
|
||||
if (OSAtomicCompareAndSwap64Barrier(
|
||||
old_value, new_value, reinterpret_cast<volatile int64_t*>(ptr))) {
|
||||
return old_value;
|
||||
}
|
||||
prev_value = *ptr;
|
||||
} while (prev_value == old_value);
|
||||
return prev_value;
|
||||
}
|
||||
|
||||
inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
// The lib kern interface does not distinguish between
|
||||
// Acquire and Release memory barriers; they are equivalent.
|
||||
return Acquire_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value;
|
||||
MemoryBarrier();
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
MemoryBarrier();
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
|
||||
Atomic64 value = *ptr;
|
||||
MemoryBarrier();
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
#endif // defined(__LP64__)
|
||||
|
||||
} // namespace base::subtle
|
||||
} // namespace base
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_MAC_H_
|
@ -1,268 +0,0 @@
|
||||
// Copyright (c) 2011 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Do not include this header file directly. Use base/cef_atomicops.h
|
||||
// instead.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_X86_GCC_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_X86_GCC_H_
|
||||
|
||||
// This struct is not part of the public API of this module; clients may not
|
||||
// use it.
|
||||
// Features of this x86. Values may not be correct before main() is run,
|
||||
// but are set conservatively.
|
||||
struct AtomicOps_x86CPUFeatureStruct {
|
||||
bool has_amd_lock_mb_bug; // Processor has AMD memory-barrier bug; do lfence
|
||||
// after acquire compare-and-swap.
|
||||
};
|
||||
extern struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures;
|
||||
|
||||
#define ATOMICOPS_COMPILER_BARRIER() __asm__ __volatile__("" : : : "memory")
|
||||
|
||||
namespace base {
|
||||
namespace subtle {
|
||||
|
||||
// 32-bit low-level operations on any platform.
|
||||
|
||||
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 prev;
|
||||
__asm__ __volatile__("lock; cmpxchgl %1,%2"
|
||||
: "=a"(prev)
|
||||
: "q"(new_value), "m"(*ptr), "0"(old_value)
|
||||
: "memory");
|
||||
return prev;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
||||
Atomic32 new_value) {
|
||||
__asm__ __volatile__("xchgl %1,%0" // The lock prefix is implicit for xchg.
|
||||
: "=r"(new_value)
|
||||
: "m"(*ptr), "0"(new_value)
|
||||
: "memory");
|
||||
return new_value; // Now it's the previous value.
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
Atomic32 temp = increment;
|
||||
__asm__ __volatile__("lock; xaddl %0,%1"
|
||||
: "+r"(temp), "+m"(*ptr)
|
||||
:
|
||||
: "memory");
|
||||
// temp now holds the old value of *ptr
|
||||
return temp + increment;
|
||||
}
|
||||
|
||||
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
Atomic32 temp = increment;
|
||||
__asm__ __volatile__("lock; xaddl %0,%1"
|
||||
: "+r"(temp), "+m"(*ptr)
|
||||
:
|
||||
: "memory");
|
||||
// temp now holds the old value of *ptr
|
||||
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
|
||||
__asm__ __volatile__("lfence" : : : "memory");
|
||||
}
|
||||
return temp + increment;
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
Atomic32 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
|
||||
__asm__ __volatile__("lfence" : : : "memory");
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void MemoryBarrier() {
|
||||
__asm__ __volatile__("mfence" : : : "memory");
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
MemoryBarrier();
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
ATOMICOPS_COMPILER_BARRIER();
|
||||
*ptr = value; // An x86 store acts as a release barrier.
|
||||
// See comments in Atomic64 version of Release_Store(), below.
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
|
||||
Atomic32 value = *ptr; // An x86 load acts as a acquire barrier.
|
||||
// See comments in Atomic64 version of Release_Store(), below.
|
||||
ATOMICOPS_COMPILER_BARRIER();
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
#if defined(__x86_64__)
|
||||
|
||||
// 64-bit low-level operations on 64-bit platform.
|
||||
|
||||
inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
Atomic64 prev;
|
||||
__asm__ __volatile__("lock; cmpxchgq %1,%2"
|
||||
: "=a"(prev)
|
||||
: "q"(new_value), "m"(*ptr), "0"(old_value)
|
||||
: "memory");
|
||||
return prev;
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
|
||||
Atomic64 new_value) {
|
||||
__asm__ __volatile__("xchgq %1,%0" // The lock prefix is implicit for xchg.
|
||||
: "=r"(new_value)
|
||||
: "m"(*ptr), "0"(new_value)
|
||||
: "memory");
|
||||
return new_value; // Now it's the previous value.
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
Atomic64 temp = increment;
|
||||
__asm__ __volatile__("lock; xaddq %0,%1"
|
||||
: "+r"(temp), "+m"(*ptr)
|
||||
:
|
||||
: "memory");
|
||||
// temp now contains the previous value of *ptr
|
||||
return temp + increment;
|
||||
}
|
||||
|
||||
inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
Atomic64 temp = increment;
|
||||
__asm__ __volatile__("lock; xaddq %0,%1"
|
||||
: "+r"(temp), "+m"(*ptr)
|
||||
:
|
||||
: "memory");
|
||||
// temp now contains the previous value of *ptr
|
||||
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
|
||||
__asm__ __volatile__("lfence" : : : "memory");
|
||||
}
|
||||
return temp + increment;
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value;
|
||||
MemoryBarrier();
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
ATOMICOPS_COMPILER_BARRIER();
|
||||
|
||||
*ptr = value; // An x86 store acts as a release barrier
|
||||
// for current AMD/Intel chips as of Jan 2008.
|
||||
// See also Acquire_Load(), below.
|
||||
|
||||
// When new chips come out, check:
|
||||
// IA-32 Intel Architecture Software Developer's Manual, Volume 3:
|
||||
// System Programming Guide, Chatper 7: Multiple-processor management,
|
||||
// Section 7.2, Memory Ordering.
|
||||
// Last seen at:
|
||||
// http://developer.intel.com/design/pentium4/manuals/index_new.htm
|
||||
//
|
||||
// x86 stores/loads fail to act as barriers for a few instructions (clflush
|
||||
// maskmovdqu maskmovq movntdq movnti movntpd movntps movntq) but these are
|
||||
// not generated by the compiler, and are rare. Users of these instructions
|
||||
// need to know about cache behaviour in any case since all of these involve
|
||||
// either flushing cache lines or non-temporal cache hints.
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
|
||||
Atomic64 value = *ptr; // An x86 load acts as a acquire barrier,
|
||||
// for current AMD/Intel chips as of Jan 2008.
|
||||
// See also Release_Store(), above.
|
||||
ATOMICOPS_COMPILER_BARRIER();
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
Atomic64 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
|
||||
__asm__ __volatile__("lfence" : : : "memory");
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
#endif // defined(__x86_64__)
|
||||
|
||||
} // namespace base::subtle
|
||||
} // namespace base
|
||||
|
||||
#undef ATOMICOPS_COMPILER_BARRIER
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_X86_GCC_H_
|
@ -1,221 +0,0 @@
|
||||
// Copyright (c) 2008 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Do not include this header file directly. Use base/cef_atomicops.h
|
||||
// instead.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_X86_MSVC_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_X86_MSVC_H_
|
||||
|
||||
#include <windows.h>
|
||||
|
||||
#include <intrin.h>
|
||||
|
||||
#include "include/base/cef_macros.h"
|
||||
|
||||
#if defined(ARCH_CPU_64_BITS)
|
||||
// windows.h #defines this (only on x64). This causes problems because the
|
||||
// public API also uses MemoryBarrier at the public name for this fence. So, on
|
||||
// X64, undef it, and call its documented
|
||||
// (http://msdn.microsoft.com/en-us/library/windows/desktop/ms684208.aspx)
|
||||
// implementation directly.
|
||||
#undef MemoryBarrier
|
||||
#endif
|
||||
|
||||
namespace base {
|
||||
namespace subtle {
|
||||
|
||||
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
LONG result = _InterlockedCompareExchange(
|
||||
reinterpret_cast<volatile LONG*>(ptr), static_cast<LONG>(new_value),
|
||||
static_cast<LONG>(old_value));
|
||||
return static_cast<Atomic32>(result);
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
||||
Atomic32 new_value) {
|
||||
LONG result = _InterlockedExchange(reinterpret_cast<volatile LONG*>(ptr),
|
||||
static_cast<LONG>(new_value));
|
||||
return static_cast<Atomic32>(result);
|
||||
}
|
||||
|
||||
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
return _InterlockedExchangeAdd(reinterpret_cast<volatile LONG*>(ptr),
|
||||
static_cast<LONG>(increment)) +
|
||||
increment;
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
||||
Atomic32 increment) {
|
||||
return Barrier_AtomicIncrement(ptr, increment);
|
||||
}
|
||||
|
||||
#if !(defined(_MSC_VER) && _MSC_VER >= 1400)
|
||||
#error "We require at least vs2005 for MemoryBarrier"
|
||||
#endif
|
||||
inline void MemoryBarrier() {
|
||||
#if defined(ARCH_CPU_64_BITS)
|
||||
// See #undef and note at the top of this file.
|
||||
__faststorefence();
|
||||
#else
|
||||
// We use MemoryBarrier from WinNT.h
|
||||
::MemoryBarrier();
|
||||
#endif
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
||||
Atomic32 old_value,
|
||||
Atomic32 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
NoBarrier_AtomicExchange(ptr, value);
|
||||
// acts as a barrier in this implementation
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
|
||||
*ptr = value; // works w/o barrier for current Intel chips as of June 2005
|
||||
// See comments in Atomic64 version of Release_Store() below.
|
||||
}
|
||||
|
||||
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
|
||||
Atomic32 value = *ptr;
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
#if defined(_WIN64)
|
||||
|
||||
// 64-bit low-level operations on 64-bit platform.
|
||||
|
||||
COMPILE_ASSERT(sizeof(Atomic64) == sizeof(PVOID), atomic_word_is_atomic);
|
||||
|
||||
inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
PVOID result = InterlockedCompareExchangePointer(
|
||||
reinterpret_cast<volatile PVOID*>(ptr),
|
||||
reinterpret_cast<PVOID>(new_value), reinterpret_cast<PVOID>(old_value));
|
||||
return reinterpret_cast<Atomic64>(result);
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
|
||||
Atomic64 new_value) {
|
||||
PVOID result =
|
||||
InterlockedExchangePointer(reinterpret_cast<volatile PVOID*>(ptr),
|
||||
reinterpret_cast<PVOID>(new_value));
|
||||
return reinterpret_cast<Atomic64>(result);
|
||||
}
|
||||
|
||||
inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
return InterlockedExchangeAdd64(reinterpret_cast<volatile LONGLONG*>(ptr),
|
||||
static_cast<LONGLONG>(increment)) +
|
||||
increment;
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
|
||||
Atomic64 increment) {
|
||||
return Barrier_AtomicIncrement(ptr, increment);
|
||||
}
|
||||
|
||||
inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value;
|
||||
}
|
||||
|
||||
inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
NoBarrier_AtomicExchange(ptr, value);
|
||||
// acts as a barrier in this implementation
|
||||
}
|
||||
|
||||
inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
|
||||
*ptr = value; // works w/o barrier for current Intel chips as of June 2005
|
||||
|
||||
// When new chips come out, check:
|
||||
// IA-32 Intel Architecture Software Developer's Manual, Volume 3:
|
||||
// System Programming Guide, Chatper 7: Multiple-processor management,
|
||||
// Section 7.2, Memory Ordering.
|
||||
// Last seen at:
|
||||
// http://developer.intel.com/design/pentium4/manuals/index_new.htm
|
||||
}
|
||||
|
||||
inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
|
||||
Atomic64 value = *ptr;
|
||||
return value;
|
||||
}
|
||||
|
||||
inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
|
||||
MemoryBarrier();
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
|
||||
Atomic64 old_value,
|
||||
Atomic64 new_value) {
|
||||
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
||||
}
|
||||
|
||||
#endif // defined(_WIN64)
|
||||
|
||||
} // namespace base::subtle
|
||||
} // namespace base
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_X86_MSVC_H_
|
File diff suppressed because it is too large
Load Diff
@ -1,398 +0,0 @@
|
||||
// Copyright (c) 2011 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Do not include this header file directly. Use base/cef_bind.h instead.
|
||||
|
||||
// Specializations of RunnableAdapter<> for Windows specific calling
|
||||
// conventions. Please see base/bind_internal.h for more info.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_BIND_INTERNAL_WIN_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_BIND_INTERNAL_WIN_H_
|
||||
|
||||
// In the x64 architecture in Windows, __fastcall, __stdcall, etc, are all
|
||||
// the same as __cdecl which would turn the following specializations into
|
||||
// multiple definitions.
|
||||
#if defined(ARCH_CPU_X86_FAMILY)
|
||||
#if defined(ARCH_CPU_32_BITS)
|
||||
|
||||
namespace base {
|
||||
namespace cef_internal {
|
||||
|
||||
template <typename Functor>
|
||||
class RunnableAdapter;
|
||||
|
||||
// __stdcall Function: Arity 0.
|
||||
template <typename R>
|
||||
class RunnableAdapter<R(__stdcall*)()> {
|
||||
public:
|
||||
typedef R(RunType)();
|
||||
|
||||
explicit RunnableAdapter(R(__stdcall* function)()) : function_(function) {}
|
||||
|
||||
R Run() { return function_(); }
|
||||
|
||||
private:
|
||||
R(__stdcall* function_)();
|
||||
};
|
||||
|
||||
// __fastcall Function: Arity 0.
|
||||
template <typename R>
|
||||
class RunnableAdapter<R(__fastcall*)()> {
|
||||
public:
|
||||
typedef R(RunType)();
|
||||
|
||||
explicit RunnableAdapter(R(__fastcall* function)()) : function_(function) {}
|
||||
|
||||
R Run() { return function_(); }
|
||||
|
||||
private:
|
||||
R(__fastcall* function_)();
|
||||
};
|
||||
|
||||
// __stdcall Function: Arity 1.
|
||||
template <typename R, typename A1>
|
||||
class RunnableAdapter<R(__stdcall*)(A1)> {
|
||||
public:
|
||||
typedef R(RunType)(A1);
|
||||
|
||||
explicit RunnableAdapter(R(__stdcall* function)(A1)) : function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1) {
|
||||
return function_(a1);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__stdcall* function_)(A1);
|
||||
};
|
||||
|
||||
// __fastcall Function: Arity 1.
|
||||
template <typename R, typename A1>
|
||||
class RunnableAdapter<R(__fastcall*)(A1)> {
|
||||
public:
|
||||
typedef R(RunType)(A1);
|
||||
|
||||
explicit RunnableAdapter(R(__fastcall* function)(A1)) : function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1) {
|
||||
return function_(a1);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__fastcall* function_)(A1);
|
||||
};
|
||||
|
||||
// __stdcall Function: Arity 2.
|
||||
template <typename R, typename A1, typename A2>
|
||||
class RunnableAdapter<R(__stdcall*)(A1, A2)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2);
|
||||
|
||||
explicit RunnableAdapter(R(__stdcall* function)(A1, A2))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2) {
|
||||
return function_(a1, a2);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__stdcall* function_)(A1, A2);
|
||||
};
|
||||
|
||||
// __fastcall Function: Arity 2.
|
||||
template <typename R, typename A1, typename A2>
|
||||
class RunnableAdapter<R(__fastcall*)(A1, A2)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2);
|
||||
|
||||
explicit RunnableAdapter(R(__fastcall* function)(A1, A2))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2) {
|
||||
return function_(a1, a2);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__fastcall* function_)(A1, A2);
|
||||
};
|
||||
|
||||
// __stdcall Function: Arity 3.
|
||||
template <typename R, typename A1, typename A2, typename A3>
|
||||
class RunnableAdapter<R(__stdcall*)(A1, A2, A3)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3);
|
||||
|
||||
explicit RunnableAdapter(R(__stdcall* function)(A1, A2, A3))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3) {
|
||||
return function_(a1, a2, a3);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__stdcall* function_)(A1, A2, A3);
|
||||
};
|
||||
|
||||
// __fastcall Function: Arity 3.
|
||||
template <typename R, typename A1, typename A2, typename A3>
|
||||
class RunnableAdapter<R(__fastcall*)(A1, A2, A3)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3);
|
||||
|
||||
explicit RunnableAdapter(R(__fastcall* function)(A1, A2, A3))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3) {
|
||||
return function_(a1, a2, a3);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__fastcall* function_)(A1, A2, A3);
|
||||
};
|
||||
|
||||
// __stdcall Function: Arity 4.
|
||||
template <typename R, typename A1, typename A2, typename A3, typename A4>
|
||||
class RunnableAdapter<R(__stdcall*)(A1, A2, A3, A4)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4);
|
||||
|
||||
explicit RunnableAdapter(R(__stdcall* function)(A1, A2, A3, A4))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename CallbackParamTraits<A4>::ForwardType a4) {
|
||||
return function_(a1, a2, a3, a4);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__stdcall* function_)(A1, A2, A3, A4);
|
||||
};
|
||||
|
||||
// __fastcall Function: Arity 4.
|
||||
template <typename R, typename A1, typename A2, typename A3, typename A4>
|
||||
class RunnableAdapter<R(__fastcall*)(A1, A2, A3, A4)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4);
|
||||
|
||||
explicit RunnableAdapter(R(__fastcall* function)(A1, A2, A3, A4))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename CallbackParamTraits<A4>::ForwardType a4) {
|
||||
return function_(a1, a2, a3, a4);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__fastcall* function_)(A1, A2, A3, A4);
|
||||
};
|
||||
|
||||
// __stdcall Function: Arity 5.
|
||||
template <typename R,
|
||||
typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5>
|
||||
class RunnableAdapter<R(__stdcall*)(A1, A2, A3, A4, A5)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4, A5);
|
||||
|
||||
explicit RunnableAdapter(R(__stdcall* function)(A1, A2, A3, A4, A5))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename CallbackParamTraits<A5>::ForwardType a5) {
|
||||
return function_(a1, a2, a3, a4, a5);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__stdcall* function_)(A1, A2, A3, A4, A5);
|
||||
};
|
||||
|
||||
// __fastcall Function: Arity 5.
|
||||
template <typename R,
|
||||
typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5>
|
||||
class RunnableAdapter<R(__fastcall*)(A1, A2, A3, A4, A5)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4, A5);
|
||||
|
||||
explicit RunnableAdapter(R(__fastcall* function)(A1, A2, A3, A4, A5))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename CallbackParamTraits<A5>::ForwardType a5) {
|
||||
return function_(a1, a2, a3, a4, a5);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__fastcall* function_)(A1, A2, A3, A4, A5);
|
||||
};
|
||||
|
||||
// __stdcall Function: Arity 6.
|
||||
template <typename R,
|
||||
typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5,
|
||||
typename A6>
|
||||
class RunnableAdapter<R(__stdcall*)(A1, A2, A3, A4, A5, A6)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4, A5, A6);
|
||||
|
||||
explicit RunnableAdapter(R(__stdcall* function)(A1, A2, A3, A4, A5, A6))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename CallbackParamTraits<A5>::ForwardType a5,
|
||||
typename CallbackParamTraits<A6>::ForwardType a6) {
|
||||
return function_(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__stdcall* function_)(A1, A2, A3, A4, A5, A6);
|
||||
};
|
||||
|
||||
// __fastcall Function: Arity 6.
|
||||
template <typename R,
|
||||
typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5,
|
||||
typename A6>
|
||||
class RunnableAdapter<R(__fastcall*)(A1, A2, A3, A4, A5, A6)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4, A5, A6);
|
||||
|
||||
explicit RunnableAdapter(R(__fastcall* function)(A1, A2, A3, A4, A5, A6))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename CallbackParamTraits<A5>::ForwardType a5,
|
||||
typename CallbackParamTraits<A6>::ForwardType a6) {
|
||||
return function_(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__fastcall* function_)(A1, A2, A3, A4, A5, A6);
|
||||
};
|
||||
|
||||
// __stdcall Function: Arity 7.
|
||||
template <typename R,
|
||||
typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5,
|
||||
typename A6,
|
||||
typename A7>
|
||||
class RunnableAdapter<R(__stdcall*)(A1, A2, A3, A4, A5, A6, A7)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4, A5, A6, A7);
|
||||
|
||||
explicit RunnableAdapter(R(__stdcall* function)(A1, A2, A3, A4, A5, A6, A7))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename CallbackParamTraits<A5>::ForwardType a5,
|
||||
typename CallbackParamTraits<A6>::ForwardType a6,
|
||||
typename CallbackParamTraits<A7>::ForwardType a7) {
|
||||
return function_(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__stdcall* function_)(A1, A2, A3, A4, A5, A6, A7);
|
||||
};
|
||||
|
||||
// __fastcall Function: Arity 7.
|
||||
template <typename R,
|
||||
typename A1,
|
||||
typename A2,
|
||||
typename A3,
|
||||
typename A4,
|
||||
typename A5,
|
||||
typename A6,
|
||||
typename A7>
|
||||
class RunnableAdapter<R(__fastcall*)(A1, A2, A3, A4, A5, A6, A7)> {
|
||||
public:
|
||||
typedef R(RunType)(A1, A2, A3, A4, A5, A6, A7);
|
||||
|
||||
explicit RunnableAdapter(R(__fastcall* function)(A1, A2, A3, A4, A5, A6, A7))
|
||||
: function_(function) {}
|
||||
|
||||
R Run(typename CallbackParamTraits<A1>::ForwardType a1,
|
||||
typename CallbackParamTraits<A2>::ForwardType a2,
|
||||
typename CallbackParamTraits<A3>::ForwardType a3,
|
||||
typename CallbackParamTraits<A4>::ForwardType a4,
|
||||
typename CallbackParamTraits<A5>::ForwardType a5,
|
||||
typename CallbackParamTraits<A6>::ForwardType a6,
|
||||
typename CallbackParamTraits<A7>::ForwardType a7) {
|
||||
return function_(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
|
||||
private:
|
||||
R(__fastcall* function_)(A1, A2, A3, A4, A5, A6, A7);
|
||||
};
|
||||
|
||||
} // namespace cef_internal
|
||||
} // namespace base
|
||||
|
||||
#endif // defined(ARCH_CPU_32_BITS)
|
||||
#endif // defined(ARCH_CPU_X86_FAMILY)
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_BIND_INTERNAL_WIN_H_
|
@ -36,72 +36,156 @@
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_CALLBACK_INTERNAL_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_CALLBACK_INTERNAL_H_
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include "include/base/cef_atomic_ref_count.h"
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/base/cef_callback_forward.h"
|
||||
#include "include/base/cef_ref_counted.h"
|
||||
#include "include/base/cef_scoped_ptr.h"
|
||||
#include "include/base/cef_template_util.h"
|
||||
|
||||
template <typename T>
|
||||
class ScopedVector;
|
||||
|
||||
namespace base {
|
||||
namespace cef_internal {
|
||||
class CallbackBase;
|
||||
|
||||
// At the base level, the only task is to add reference counting data. Don't use
|
||||
// RefCountedThreadSafe since it requires the destructor to be a virtual method.
|
||||
// Creating a vtable for every BindState template instantiation results in a lot
|
||||
// of bloat. Its only task is to call the destructor which can be done with a
|
||||
// function pointer.
|
||||
class BindStateBase {
|
||||
protected:
|
||||
explicit BindStateBase(void (*destructor)(BindStateBase*))
|
||||
: ref_count_(0), destructor_(destructor) {}
|
||||
~BindStateBase() {}
|
||||
struct FakeBindState;
|
||||
|
||||
namespace internal {
|
||||
|
||||
class BindStateBase;
|
||||
class FinallyExecutorCommon;
|
||||
class ThenAndCatchExecutorCommon;
|
||||
|
||||
template <typename ReturnType>
|
||||
class PostTaskExecutor;
|
||||
|
||||
template <typename Functor, typename... BoundArgs>
|
||||
struct BindState;
|
||||
|
||||
class CallbackBase;
|
||||
class CallbackBaseCopyable;
|
||||
|
||||
struct BindStateBaseRefCountTraits {
|
||||
static void Destruct(const BindStateBase*);
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
using PassingType = std::conditional_t<std::is_scalar<T>::value, T, T&&>;
|
||||
|
||||
// BindStateBase is used to provide an opaque handle that the Callback
|
||||
// class can use to represent a function object with bound arguments. It
|
||||
// behaves as an existential type that is used by a corresponding
|
||||
// DoInvoke function to perform the function execution. This allows
|
||||
// us to shield the Callback class from the types of the bound argument via
|
||||
// "type erasure."
|
||||
// At the base level, the only task is to add reference counting data. Avoid
|
||||
// using or inheriting any virtual functions. Creating a vtable for every
|
||||
// BindState template instantiation results in a lot of bloat. Its only task is
|
||||
// to call the destructor which can be done with a function pointer.
|
||||
class BindStateBase
|
||||
: public RefCountedThreadSafe<BindStateBase, BindStateBaseRefCountTraits> {
|
||||
public:
|
||||
REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE();
|
||||
|
||||
enum CancellationQueryMode {
|
||||
IS_CANCELLED,
|
||||
MAYBE_VALID,
|
||||
};
|
||||
|
||||
using InvokeFuncStorage = void (*)();
|
||||
|
||||
BindStateBase(const BindStateBase&) = delete;
|
||||
BindStateBase& operator=(const BindStateBase&) = delete;
|
||||
|
||||
private:
|
||||
friend class scoped_refptr<BindStateBase>;
|
||||
BindStateBase(InvokeFuncStorage polymorphic_invoke,
|
||||
void (*destructor)(const BindStateBase*));
|
||||
BindStateBase(InvokeFuncStorage polymorphic_invoke,
|
||||
void (*destructor)(const BindStateBase*),
|
||||
bool (*query_cancellation_traits)(const BindStateBase*,
|
||||
CancellationQueryMode mode));
|
||||
|
||||
~BindStateBase() = default;
|
||||
|
||||
friend struct BindStateBaseRefCountTraits;
|
||||
friend class RefCountedThreadSafe<BindStateBase, BindStateBaseRefCountTraits>;
|
||||
|
||||
friend class CallbackBase;
|
||||
friend class CallbackBaseCopyable;
|
||||
|
||||
void AddRef();
|
||||
void Release();
|
||||
// Allowlist subclasses that access the destructor of BindStateBase.
|
||||
template <typename Functor, typename... BoundArgs>
|
||||
friend struct BindState;
|
||||
friend struct ::base::FakeBindState;
|
||||
|
||||
AtomicRefCount ref_count_;
|
||||
bool IsCancelled() const {
|
||||
return query_cancellation_traits_(this, IS_CANCELLED);
|
||||
}
|
||||
|
||||
bool MaybeValid() const {
|
||||
return query_cancellation_traits_(this, MAYBE_VALID);
|
||||
}
|
||||
|
||||
// In C++, it is safe to cast function pointers to function pointers of
|
||||
// another type. It is not okay to use void*. We create a InvokeFuncStorage
|
||||
// that that can store our function pointer, and then cast it back to
|
||||
// the original type on usage.
|
||||
InvokeFuncStorage polymorphic_invoke_;
|
||||
|
||||
// Pointer to a function that will properly destroy |this|.
|
||||
void (*destructor_)(BindStateBase*);
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(BindStateBase);
|
||||
void (*destructor_)(const BindStateBase*);
|
||||
bool (*query_cancellation_traits_)(const BindStateBase*,
|
||||
CancellationQueryMode mode);
|
||||
};
|
||||
|
||||
// Holds the Callback methods that don't require specialization to reduce
|
||||
// template bloat.
|
||||
// CallbackBase<MoveOnly> is a direct base class of MoveOnly callbacks, and
|
||||
// CallbackBase<Copyable> uses CallbackBase<MoveOnly> for its implementation.
|
||||
class CallbackBase {
|
||||
public:
|
||||
inline CallbackBase(CallbackBase&& c) noexcept;
|
||||
CallbackBase& operator=(CallbackBase&& c) noexcept;
|
||||
|
||||
explicit CallbackBase(const CallbackBaseCopyable& c);
|
||||
CallbackBase& operator=(const CallbackBaseCopyable& c);
|
||||
|
||||
explicit CallbackBase(CallbackBaseCopyable&& c) noexcept;
|
||||
CallbackBase& operator=(CallbackBaseCopyable&& c) noexcept;
|
||||
|
||||
// Returns true if Callback is null (doesn't refer to anything).
|
||||
bool is_null() const { return bind_state_.get() == NULL; }
|
||||
bool is_null() const { return !bind_state_; }
|
||||
explicit operator bool() const { return !is_null(); }
|
||||
|
||||
// Returns true if the callback invocation will be nop due to an cancellation.
|
||||
// It's invalid to call this on uninitialized callback.
|
||||
//
|
||||
// Must be called on the Callback's destination sequence.
|
||||
bool IsCancelled() const;
|
||||
|
||||
// If this returns false, the callback invocation will be a nop due to a
|
||||
// cancellation. This may(!) still return true, even on a cancelled callback.
|
||||
//
|
||||
// This function is thread-safe.
|
||||
bool MaybeValid() const;
|
||||
|
||||
// Returns the Callback into an uninitialized state.
|
||||
void Reset();
|
||||
|
||||
protected:
|
||||
// In C++, it is safe to cast function pointers to function pointers of
|
||||
// another type. It is not okay to use void*. We create a InvokeFuncStorage
|
||||
// that that can store our function pointer, and then cast it back to
|
||||
// the original type on usage.
|
||||
typedef void (*InvokeFuncStorage)(void);
|
||||
friend class FinallyExecutorCommon;
|
||||
friend class ThenAndCatchExecutorCommon;
|
||||
|
||||
template <typename ReturnType>
|
||||
friend class PostTaskExecutor;
|
||||
|
||||
using InvokeFuncStorage = BindStateBase::InvokeFuncStorage;
|
||||
|
||||
// Returns true if this callback equals |other|. |other| may be null.
|
||||
bool Equals(const CallbackBase& other) const;
|
||||
bool EqualsInternal(const CallbackBase& other) const;
|
||||
|
||||
constexpr inline CallbackBase();
|
||||
|
||||
// Allow initializing of |bind_state_| via the constructor to avoid default
|
||||
// initialization of the scoped_refptr. We do not also initialize
|
||||
// |polymorphic_invoke_| here because doing a normal assignment in the
|
||||
// derived Callback templates makes for much nicer compiler errors.
|
||||
explicit CallbackBase(BindStateBase* bind_state);
|
||||
// initialization of the scoped_refptr.
|
||||
explicit inline CallbackBase(BindStateBase* bind_state);
|
||||
|
||||
InvokeFuncStorage polymorphic_invoke() const {
|
||||
return bind_state_->polymorphic_invoke_;
|
||||
}
|
||||
|
||||
// Force the destructor to be instantiated inside this translation unit so
|
||||
// that our subclasses will not get inlined versions. Avoids more template
|
||||
@ -109,116 +193,83 @@ class CallbackBase {
|
||||
~CallbackBase();
|
||||
|
||||
scoped_refptr<BindStateBase> bind_state_;
|
||||
InvokeFuncStorage polymorphic_invoke_;
|
||||
};
|
||||
|
||||
// A helper template to determine if given type is non-const move-only-type,
|
||||
// i.e. if a value of the given type should be passed via .Pass() in a
|
||||
// destructive way.
|
||||
template <typename T>
|
||||
struct IsMoveOnlyType {
|
||||
template <typename U>
|
||||
static YesType Test(const typename U::MoveOnlyTypeForCPP03*);
|
||||
constexpr CallbackBase::CallbackBase() = default;
|
||||
CallbackBase::CallbackBase(CallbackBase&&) noexcept = default;
|
||||
CallbackBase::CallbackBase(BindStateBase* bind_state)
|
||||
: bind_state_(AdoptRef(bind_state)) {}
|
||||
|
||||
template <typename U>
|
||||
static NoType Test(...);
|
||||
// CallbackBase<Copyable> is a direct base class of Copyable Callbacks.
|
||||
class CallbackBaseCopyable : public CallbackBase {
|
||||
public:
|
||||
CallbackBaseCopyable(const CallbackBaseCopyable& c);
|
||||
CallbackBaseCopyable(CallbackBaseCopyable&& c) noexcept = default;
|
||||
CallbackBaseCopyable& operator=(const CallbackBaseCopyable& c);
|
||||
CallbackBaseCopyable& operator=(CallbackBaseCopyable&& c) noexcept;
|
||||
|
||||
static const bool value =
|
||||
sizeof(Test<T>(0)) == sizeof(YesType) && !is_const<T>::value;
|
||||
protected:
|
||||
constexpr CallbackBaseCopyable() = default;
|
||||
explicit CallbackBaseCopyable(BindStateBase* bind_state)
|
||||
: CallbackBase(bind_state) {}
|
||||
~CallbackBaseCopyable() = default;
|
||||
};
|
||||
|
||||
// This is a typetraits object that's used to take an argument type, and
|
||||
// extract a suitable type for storing and forwarding arguments.
|
||||
//
|
||||
// In particular, it strips off references, and converts arrays to
|
||||
// pointers for storage; and it avoids accidentally trying to create a
|
||||
// "reference of a reference" if the argument is a reference type.
|
||||
//
|
||||
// This array type becomes an issue for storage because we are passing bound
|
||||
// parameters by const reference. In this case, we end up passing an actual
|
||||
// array type in the initializer list which C++ does not allow. This will
|
||||
// break passing of C-string literals.
|
||||
template <typename T, bool is_move_only = IsMoveOnlyType<T>::value>
|
||||
struct CallbackParamTraits {
|
||||
typedef const T& ForwardType;
|
||||
typedef T StorageType;
|
||||
// Helpers for the `Then()` implementation.
|
||||
template <typename OriginalCallback, typename ThenCallback>
|
||||
struct ThenHelper;
|
||||
|
||||
// Specialization when original callback returns `void`.
|
||||
template <template <typename> class OriginalCallback,
|
||||
template <typename>
|
||||
class ThenCallback,
|
||||
typename... OriginalArgs,
|
||||
typename ThenR,
|
||||
typename... ThenArgs>
|
||||
struct ThenHelper<OriginalCallback<void(OriginalArgs...)>,
|
||||
ThenCallback<ThenR(ThenArgs...)>> {
|
||||
static_assert(sizeof...(ThenArgs) == 0,
|
||||
"|then| callback cannot accept parameters if |this| has a "
|
||||
"void return type.");
|
||||
|
||||
static auto CreateTrampoline() {
|
||||
return [](OriginalCallback<void(OriginalArgs...)> c1,
|
||||
ThenCallback<ThenR(ThenArgs...)> c2, OriginalArgs... c1_args) {
|
||||
std::move(c1).Run(std::forward<OriginalArgs>(c1_args)...);
|
||||
return std::move(c2).Run();
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
// The Storage should almost be impossible to trigger unless someone manually
|
||||
// specifies type of the bind parameters. However, in case they do,
|
||||
// this will guard against us accidentally storing a reference parameter.
|
||||
//
|
||||
// The ForwardType should only be used for unbound arguments.
|
||||
template <typename T>
|
||||
struct CallbackParamTraits<T&, false> {
|
||||
typedef T& ForwardType;
|
||||
typedef T StorageType;
|
||||
// Specialization when original callback returns a non-void type.
|
||||
template <template <typename> class OriginalCallback,
|
||||
template <typename>
|
||||
class ThenCallback,
|
||||
typename OriginalR,
|
||||
typename... OriginalArgs,
|
||||
typename ThenR,
|
||||
typename... ThenArgs>
|
||||
struct ThenHelper<OriginalCallback<OriginalR(OriginalArgs...)>,
|
||||
ThenCallback<ThenR(ThenArgs...)>> {
|
||||
static_assert(sizeof...(ThenArgs) == 1,
|
||||
"|then| callback must accept exactly one parameter if |this| "
|
||||
"has a non-void return type.");
|
||||
// TODO(dcheng): This should probably check is_convertible as well (same with
|
||||
// `AssertBindArgsValidity`).
|
||||
static_assert(std::is_constructible<ThenArgs..., OriginalR&&>::value,
|
||||
"|then| callback's parameter must be constructible from "
|
||||
"return type of |this|.");
|
||||
|
||||
static auto CreateTrampoline() {
|
||||
return [](OriginalCallback<OriginalR(OriginalArgs...)> c1,
|
||||
ThenCallback<ThenR(ThenArgs...)> c2, OriginalArgs... c1_args) {
|
||||
return std::move(c2).Run(
|
||||
std::move(c1).Run(std::forward<OriginalArgs>(c1_args)...));
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
// Note that for array types, we implicitly add a const in the conversion. This
|
||||
// means that it is not possible to bind array arguments to functions that take
|
||||
// a non-const pointer. Trying to specialize the template based on a "const
|
||||
// T[n]" does not seem to match correctly, so we are stuck with this
|
||||
// restriction.
|
||||
template <typename T, size_t n>
|
||||
struct CallbackParamTraits<T[n], false> {
|
||||
typedef const T* ForwardType;
|
||||
typedef const T* StorageType;
|
||||
};
|
||||
|
||||
// See comment for CallbackParamTraits<T[n]>.
|
||||
template <typename T>
|
||||
struct CallbackParamTraits<T[], false> {
|
||||
typedef const T* ForwardType;
|
||||
typedef const T* StorageType;
|
||||
};
|
||||
|
||||
// Parameter traits for movable-but-not-copyable scopers.
|
||||
//
|
||||
// Callback<>/Bind() understands movable-but-not-copyable semantics where
|
||||
// the type cannot be copied but can still have its state destructively
|
||||
// transferred (aka. moved) to another instance of the same type by calling a
|
||||
// helper function. When used with Bind(), this signifies transferal of the
|
||||
// object's state to the target function.
|
||||
//
|
||||
// For these types, the ForwardType must not be a const reference, or a
|
||||
// reference. A const reference is inappropriate, and would break const
|
||||
// correctness, because we are implementing a destructive move. A non-const
|
||||
// reference cannot be used with temporaries which means the result of a
|
||||
// function or a cast would not be usable with Callback<> or Bind().
|
||||
template <typename T>
|
||||
struct CallbackParamTraits<T, true> {
|
||||
typedef T ForwardType;
|
||||
typedef T StorageType;
|
||||
};
|
||||
|
||||
// CallbackForward() is a very limited simulation of C++11's std::forward()
|
||||
// used by the Callback/Bind system for a set of movable-but-not-copyable
|
||||
// types. It is needed because forwarding a movable-but-not-copyable
|
||||
// argument to another function requires us to invoke the proper move
|
||||
// operator to create a rvalue version of the type. The supported types are
|
||||
// whitelisted below as overloads of the CallbackForward() function. The
|
||||
// default template compiles out to be a no-op.
|
||||
//
|
||||
// In C++11, std::forward would replace all uses of this function. However, it
|
||||
// is impossible to implement a general std::forward with C++11 due to a lack
|
||||
// of rvalue references.
|
||||
//
|
||||
// In addition to Callback/Bind, this is used by PostTaskAndReplyWithResult to
|
||||
// simulate std::forward() and forward the result of one Callback as a
|
||||
// parameter to another callback. This is to support Callbacks that return
|
||||
// the movable-but-not-copyable types whitelisted above.
|
||||
template <typename T>
|
||||
typename enable_if<!IsMoveOnlyType<T>::value, T>::type& CallbackForward(T& t) {
|
||||
return t;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
typename enable_if<IsMoveOnlyType<T>::value, T>::type CallbackForward(T& t) {
|
||||
return t.Pass();
|
||||
}
|
||||
|
||||
} // namespace cef_internal
|
||||
} // namespace internal
|
||||
} // namespace base
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_CALLBACK_INTERNAL_H_
|
||||
|
@ -32,10 +32,9 @@
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_RAW_SCOPED_REFPTR_MISMATCH_CHECKER_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_RAW_SCOPED_REFPTR_MISMATCH_CHECKER_H_
|
||||
|
||||
#include "include/base/cef_build.h"
|
||||
#include "include/base/cef_ref_counted.h"
|
||||
#include <type_traits>
|
||||
|
||||
#include "include/base/cef_template_util.h"
|
||||
#include "include/base/cef_tuple.h"
|
||||
|
||||
// It is dangerous to post a task with a T* argument where T is a subtype of
|
||||
// RefCounted(Base|ThreadSafeBase), since by the time the parameter is used, the
|
||||
@ -46,135 +45,30 @@
|
||||
|
||||
namespace base {
|
||||
|
||||
namespace cef_internal {
|
||||
// This is a base internal implementation file used by task.h and callback.h.
|
||||
// Not for public consumption, so we wrap it in namespace internal.
|
||||
namespace internal {
|
||||
|
||||
template <typename T, typename = void>
|
||||
struct IsRefCountedType : std::false_type {};
|
||||
|
||||
template <typename T>
|
||||
struct NeedsScopedRefptrButGetsRawPtr {
|
||||
#if defined(OS_WIN)
|
||||
enum { value = base::false_type::value };
|
||||
#else
|
||||
enum {
|
||||
// Human readable translation: you needed to be a scoped_refptr if you are a
|
||||
// raw pointer type and are convertible to a RefCounted(Base|ThreadSafeBase)
|
||||
// type.
|
||||
value = (is_pointer<T>::value &&
|
||||
(is_convertible<T, subtle::RefCountedBase*>::value ||
|
||||
is_convertible<T, subtle::RefCountedThreadSafeBase*>::value))
|
||||
};
|
||||
#endif
|
||||
struct IsRefCountedType<T,
|
||||
void_t<decltype(std::declval<T*>()->AddRef()),
|
||||
decltype(std::declval<T*>()->Release())>>
|
||||
: std::true_type {};
|
||||
|
||||
// Human readable translation: you needed to be a scoped_refptr if you are a raw
|
||||
// pointer type and are convertible to a RefCounted(Base|ThreadSafeBase) type.
|
||||
template <typename T>
|
||||
struct NeedsScopedRefptrButGetsRawPtr
|
||||
: conjunction<std::is_pointer<T>,
|
||||
IsRefCountedType<std::remove_pointer_t<T>>> {
|
||||
static_assert(!std::is_reference<T>::value,
|
||||
"NeedsScopedRefptrButGetsRawPtr requires non-reference type.");
|
||||
};
|
||||
|
||||
template <typename Params>
|
||||
struct ParamsUseScopedRefptrCorrectly {
|
||||
enum { value = 0 };
|
||||
};
|
||||
|
||||
template <>
|
||||
struct ParamsUseScopedRefptrCorrectly<Tuple0> {
|
||||
enum { value = 1 };
|
||||
};
|
||||
|
||||
template <typename A>
|
||||
struct ParamsUseScopedRefptrCorrectly<Tuple1<A>> {
|
||||
enum { value = !NeedsScopedRefptrButGetsRawPtr<A>::value };
|
||||
};
|
||||
|
||||
template <typename A, typename B>
|
||||
struct ParamsUseScopedRefptrCorrectly<Tuple2<A, B>> {
|
||||
enum {
|
||||
value = !(NeedsScopedRefptrButGetsRawPtr<A>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<B>::value)
|
||||
};
|
||||
};
|
||||
|
||||
template <typename A, typename B, typename C>
|
||||
struct ParamsUseScopedRefptrCorrectly<Tuple3<A, B, C>> {
|
||||
enum {
|
||||
value = !(NeedsScopedRefptrButGetsRawPtr<A>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<B>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<C>::value)
|
||||
};
|
||||
};
|
||||
|
||||
template <typename A, typename B, typename C, typename D>
|
||||
struct ParamsUseScopedRefptrCorrectly<Tuple4<A, B, C, D>> {
|
||||
enum {
|
||||
value = !(NeedsScopedRefptrButGetsRawPtr<A>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<B>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<C>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<D>::value)
|
||||
};
|
||||
};
|
||||
|
||||
template <typename A, typename B, typename C, typename D, typename E>
|
||||
struct ParamsUseScopedRefptrCorrectly<Tuple5<A, B, C, D, E>> {
|
||||
enum {
|
||||
value = !(NeedsScopedRefptrButGetsRawPtr<A>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<B>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<C>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<D>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<E>::value)
|
||||
};
|
||||
};
|
||||
|
||||
template <typename A,
|
||||
typename B,
|
||||
typename C,
|
||||
typename D,
|
||||
typename E,
|
||||
typename F>
|
||||
struct ParamsUseScopedRefptrCorrectly<Tuple6<A, B, C, D, E, F>> {
|
||||
enum {
|
||||
value = !(NeedsScopedRefptrButGetsRawPtr<A>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<B>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<C>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<D>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<E>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<F>::value)
|
||||
};
|
||||
};
|
||||
|
||||
template <typename A,
|
||||
typename B,
|
||||
typename C,
|
||||
typename D,
|
||||
typename E,
|
||||
typename F,
|
||||
typename G>
|
||||
struct ParamsUseScopedRefptrCorrectly<Tuple7<A, B, C, D, E, F, G>> {
|
||||
enum {
|
||||
value = !(NeedsScopedRefptrButGetsRawPtr<A>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<B>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<C>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<D>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<E>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<F>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<G>::value)
|
||||
};
|
||||
};
|
||||
|
||||
template <typename A,
|
||||
typename B,
|
||||
typename C,
|
||||
typename D,
|
||||
typename E,
|
||||
typename F,
|
||||
typename G,
|
||||
typename H>
|
||||
struct ParamsUseScopedRefptrCorrectly<Tuple8<A, B, C, D, E, F, G, H>> {
|
||||
enum {
|
||||
value = !(NeedsScopedRefptrButGetsRawPtr<A>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<B>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<C>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<D>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<E>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<F>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<G>::value ||
|
||||
NeedsScopedRefptrButGetsRawPtr<H>::value)
|
||||
};
|
||||
};
|
||||
|
||||
} // namespace cef_internal
|
||||
} // namespace internal
|
||||
|
||||
} // namespace base
|
||||
|
||||
|
66
include/base/internal/cef_scoped_block_mac.h
Normal file
66
include/base/internal/cef_scoped_block_mac.h
Normal file
@ -0,0 +1,66 @@
|
||||
// Copyright (c) 2013 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Do not include this header file directly. Use base/mac/scoped_block.h
|
||||
// instead.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_SCOPED_BLOCK_MAC_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_SCOPED_BLOCK_MAC_H_
|
||||
|
||||
#include <Block.h>
|
||||
|
||||
#include "include/base/cef_scoped_typeref_mac.h"
|
||||
|
||||
#if defined(__has_feature) && __has_feature(objc_arc)
|
||||
#error "Cannot include include/base/internal/cef_scoped_block_mac.h in file built with ARC."
|
||||
#endif
|
||||
|
||||
namespace base {
|
||||
namespace mac {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename B>
|
||||
struct ScopedBlockTraits {
|
||||
static B InvalidValue() { return nullptr; }
|
||||
static B Retain(B block) { return Block_copy(block); }
|
||||
static void Release(B block) { Block_release(block); }
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// ScopedBlock<> is patterned after ScopedCFTypeRef<>, but uses Block_copy() and
|
||||
// Block_release() instead of CFRetain() and CFRelease().
|
||||
template <typename B>
|
||||
using ScopedBlock = ScopedTypeRef<B, internal::ScopedBlockTraits<B>>;
|
||||
|
||||
} // namespace mac
|
||||
} // namespace base
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_SCOPED_BLOCK_MAC_H_
|
53
include/base/internal/cef_scoped_policy.h
Normal file
53
include/base/internal/cef_scoped_policy.h
Normal file
@ -0,0 +1,53 @@
|
||||
// Copyright (c) 2012 Google Inc. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
||||
// Framework nor the names of its contributors may be used to endorse
|
||||
// or promote products derived from this software without specific prior
|
||||
// written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Do not include this header file directly. Use base/memory/scoped_policy.h
|
||||
// instead.
|
||||
|
||||
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_SCOPED_POLICY_H_
|
||||
#define CEF_INCLUDE_BASE_INTERNAL_CEF_SCOPED_POLICY_H_
|
||||
|
||||
namespace base {
|
||||
namespace scoped_policy {
|
||||
|
||||
// Defines the ownership policy for a scoped object.
|
||||
enum OwnershipPolicy {
|
||||
// The scoped object takes ownership of an object by taking over an existing
|
||||
// ownership claim.
|
||||
ASSUME,
|
||||
|
||||
// The scoped object will retain the object and any initial ownership is
|
||||
// not changed.
|
||||
RETAIN
|
||||
};
|
||||
|
||||
} // namespace scoped_policy
|
||||
} // namespace base
|
||||
|
||||
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_SCOPED_POLICY_H_
|
@ -90,32 +90,30 @@ class CefBaseScoped {
|
||||
///
|
||||
class CefRefCount {
|
||||
public:
|
||||
CefRefCount() : ref_count_(0) {}
|
||||
CefRefCount() {}
|
||||
|
||||
///
|
||||
// Increment the reference count.
|
||||
///
|
||||
void AddRef() const { base::AtomicRefCountInc(&ref_count_); }
|
||||
void AddRef() const { ref_count_.Increment(); }
|
||||
|
||||
///
|
||||
// Decrement the reference count. Returns true if the reference count is 0.
|
||||
///
|
||||
bool Release() const { return !base::AtomicRefCountDec(&ref_count_); }
|
||||
bool Release() const { return !ref_count_.Decrement(); }
|
||||
|
||||
///
|
||||
// Returns true if the reference count is 1.
|
||||
///
|
||||
bool HasOneRef() const { return base::AtomicRefCountIsOne(&ref_count_); }
|
||||
bool HasOneRef() const { return ref_count_.IsOne(); }
|
||||
|
||||
///
|
||||
// Returns true if the reference count is at least 1.
|
||||
///
|
||||
bool HasAtLeastOneRef() const {
|
||||
return !base::AtomicRefCountIsZero(&ref_count_);
|
||||
}
|
||||
bool HasAtLeastOneRef() const { return !ref_count_.IsZero(); }
|
||||
|
||||
private:
|
||||
mutable base::AtomicRefCount ref_count_;
|
||||
mutable base::AtomicRefCount ref_count_{0};
|
||||
DISALLOW_COPY_AND_ASSIGN(CefRefCount);
|
||||
};
|
||||
|
||||
@ -125,70 +123,20 @@ class CefRefCount {
|
||||
///
|
||||
#define IMPLEMENT_REFCOUNTING(ClassName) \
|
||||
public: \
|
||||
void AddRef() const OVERRIDE { ref_count_.AddRef(); } \
|
||||
bool Release() const OVERRIDE { \
|
||||
void AddRef() const override { ref_count_.AddRef(); } \
|
||||
bool Release() const override { \
|
||||
if (ref_count_.Release()) { \
|
||||
delete static_cast<const ClassName*>(this); \
|
||||
return true; \
|
||||
} \
|
||||
return false; \
|
||||
} \
|
||||
bool HasOneRef() const OVERRIDE { return ref_count_.HasOneRef(); } \
|
||||
bool HasAtLeastOneRef() const OVERRIDE { \
|
||||
bool HasOneRef() const override { return ref_count_.HasOneRef(); } \
|
||||
bool HasAtLeastOneRef() const override { \
|
||||
return ref_count_.HasAtLeastOneRef(); \
|
||||
} \
|
||||
\
|
||||
private: \
|
||||
CefRefCount ref_count_
|
||||
|
||||
///
|
||||
// Macro that provides a locking implementation. Use the Lock() and Unlock()
|
||||
// methods to protect a section of code from simultaneous access by multiple
|
||||
// threads. The AutoLock class is a helper that will hold the lock while in
|
||||
// scope.
|
||||
//
|
||||
// THIS MACRO IS DEPRECATED. Use an explicit base::Lock member variable and
|
||||
// base::AutoLock instead. For example:
|
||||
//
|
||||
// #include "include/base/cef_lock.h"
|
||||
//
|
||||
// // Class declaration.
|
||||
// class MyClass : public CefBaseRefCounted {
|
||||
// public:
|
||||
// MyClass() : value_(0) {}
|
||||
// // Method that may be called on multiple threads.
|
||||
// void IncrementValue();
|
||||
// private:
|
||||
// // Value that may be accessed on multiple theads.
|
||||
// int value_;
|
||||
// // Lock used to protect access to |value_|.
|
||||
// base::Lock lock_;
|
||||
// IMPLEMENT_REFCOUNTING(MyClass);
|
||||
// };
|
||||
//
|
||||
// // Class implementation.
|
||||
// void MyClass::IncrementValue() {
|
||||
// // Acquire the lock for the scope of this method.
|
||||
// base::AutoLock lock_scope(lock_);
|
||||
// // |value_| can now be modified safely.
|
||||
// value_++;
|
||||
// }
|
||||
///
|
||||
#define IMPLEMENT_LOCKING(ClassName) \
|
||||
public: \
|
||||
class AutoLock { \
|
||||
public: \
|
||||
explicit AutoLock(ClassName* base) : base_(base) { base_->Lock(); } \
|
||||
~AutoLock() { base_->Unlock(); } \
|
||||
\
|
||||
private: \
|
||||
ClassName* base_; \
|
||||
DISALLOW_COPY_AND_ASSIGN(AutoLock); \
|
||||
}; \
|
||||
void Lock() { lock_.Acquire(); } \
|
||||
void Unlock() { lock_.Release(); } \
|
||||
\
|
||||
private: \
|
||||
base::Lock lock_;
|
||||
|
||||
#endif // CEF_INCLUDE_CEF_BASE_H_
|
||||
|
@ -31,15 +31,11 @@
|
||||
#define CEF_INCLUDE_INTERNAL_CEF_PTR_H_
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "include/base/cef_build.h"
|
||||
#include "include/base/cef_ref_counted.h"
|
||||
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
#include <memory> // For std::unique_ptr.
|
||||
#else
|
||||
#include "include/base/cef_scoped_ptr.h"
|
||||
#endif
|
||||
|
||||
///
|
||||
// Smart pointer implementation that is an alias of scoped_refptr from
|
||||
// include/base/cef_ref_counted.h.
|
||||
@ -149,14 +145,8 @@
|
||||
// </pre>
|
||||
// </p>
|
||||
///
|
||||
#if defined(HAS_CPP11_TEMPLATE_ALIAS_SUPPORT)
|
||||
template <class T>
|
||||
using CefRefPtr = scoped_refptr<T>;
|
||||
#else
|
||||
// When template aliases are not supported use a define instead of subclassing
|
||||
// because it's otherwise hard to get the constructors to behave correctly.
|
||||
#define CefRefPtr scoped_refptr
|
||||
#endif
|
||||
|
||||
///
|
||||
// A CefOwnPtr<T> is like a T*, except that the destructor of CefOwnPtr<T>
|
||||
@ -166,65 +156,13 @@ using CefRefPtr = scoped_refptr<T>;
|
||||
// thread-compatible, and once you dereference it, you get the thread safety
|
||||
// guarantees of T.
|
||||
///
|
||||
#if defined(USING_CHROMIUM_INCLUDES)
|
||||
// Implementation-side code uses std::unique_ptr instead of scoped_ptr.
|
||||
template <class T, class D = std::default_delete<T>>
|
||||
using CefOwnPtr = std::unique_ptr<T, D>;
|
||||
#elif defined(HAS_CPP11_TEMPLATE_ALIAS_SUPPORT)
|
||||
template <class T, class D = base::DefaultDeleter<T>>
|
||||
using CefOwnPtr = scoped_ptr<T, D>;
|
||||
#else
|
||||
// When template aliases are not supported use a define instead of subclassing
|
||||
// because it's otherwise hard to get the constructors to behave correctly.
|
||||
#define CefOwnPtr scoped_ptr
|
||||
#endif
|
||||
|
||||
///
|
||||
// A CefRawPtr<T> is the same as T*
|
||||
///
|
||||
#if defined(HAS_CPP11_TEMPLATE_ALIAS_SUPPORT)
|
||||
#define CEF_RAW_PTR_GET(r) r
|
||||
template <class T>
|
||||
using CefRawPtr = T*;
|
||||
#else
|
||||
// Simple wrapper implementation that behaves as much like T* as possible.
|
||||
// CEF_RAW_PTR_GET is required for VS2008 compatibility (Issue #2155).
|
||||
#define CEF_RAW_PTR_GET(r) r.get()
|
||||
template <class T>
|
||||
class CefRawPtr {
|
||||
public:
|
||||
CefRawPtr() : ptr_(nullptr) {}
|
||||
CefRawPtr(T* p) : ptr_(p) {}
|
||||
CefRawPtr(const CefRawPtr& r) : ptr_(r.ptr_) {}
|
||||
|
||||
template <typename U>
|
||||
CefRawPtr(const CefRawPtr<U>& r) : ptr_(r.get()) {}
|
||||
|
||||
T* get() const { return ptr_; }
|
||||
|
||||
// Allow CefRawPtr to be used in boolean expression and comparison operations.
|
||||
operator T*() const { return ptr_; }
|
||||
|
||||
T* operator->() const {
|
||||
assert(ptr_ != NULL);
|
||||
return ptr_;
|
||||
}
|
||||
|
||||
CefRawPtr<T>& operator=(T* p) {
|
||||
ptr_ = p;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CefRawPtr<T>& operator=(const CefRawPtr<T>& r) { return *this = r.ptr_; }
|
||||
|
||||
template <typename U>
|
||||
CefRawPtr<T>& operator=(const CefRawPtr<U>& r) {
|
||||
return *this = r.get();
|
||||
}
|
||||
|
||||
private:
|
||||
T* ptr_;
|
||||
};
|
||||
#endif
|
||||
|
||||
#endif // CEF_INCLUDE_INTERNAL_CEF_PTR_H_
|
||||
|
@ -58,11 +58,11 @@ class CefByteReadHandler : public CefReadHandler {
|
||||
CefRefPtr<CefBaseRefCounted> source);
|
||||
|
||||
// CefReadHandler methods.
|
||||
virtual size_t Read(void* ptr, size_t size, size_t n) OVERRIDE;
|
||||
virtual int Seek(int64 offset, int whence) OVERRIDE;
|
||||
virtual int64 Tell() OVERRIDE;
|
||||
virtual int Eof() OVERRIDE;
|
||||
virtual bool MayBlock() OVERRIDE { return false; }
|
||||
virtual size_t Read(void* ptr, size_t size, size_t n) override;
|
||||
virtual int Seek(int64 offset, int whence) override;
|
||||
virtual int64 Tell() override;
|
||||
virtual int Eof() override;
|
||||
virtual bool MayBlock() override { return false; }
|
||||
|
||||
private:
|
||||
const unsigned char* bytes_;
|
||||
|
@ -83,8 +83,8 @@ struct CefDeleteOnThread {
|
||||
if (CefCurrentlyOn(thread)) {
|
||||
delete x;
|
||||
} else {
|
||||
CefPostTask(thread,
|
||||
base::Bind(&CefDeleteOnThread<thread>::Destruct<T>, x));
|
||||
CefPostTask(thread, base::Bind(&CefDeleteOnThread<thread>::Destruct<T>,
|
||||
base::Unretained(x)));
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -102,16 +102,16 @@ struct CefDeleteOnRendererThread : public CefDeleteOnThread<TID_RENDERER> {};
|
||||
// Same as IMPLEMENT_REFCOUNTING() but using the specified Destructor.
|
||||
#define IMPLEMENT_REFCOUNTING_EX(ClassName, Destructor) \
|
||||
public: \
|
||||
void AddRef() const OVERRIDE { ref_count_.AddRef(); } \
|
||||
bool Release() const OVERRIDE { \
|
||||
void AddRef() const override { ref_count_.AddRef(); } \
|
||||
bool Release() const override { \
|
||||
if (ref_count_.Release()) { \
|
||||
Destructor::Destruct(this); \
|
||||
return true; \
|
||||
} \
|
||||
return false; \
|
||||
} \
|
||||
bool HasOneRef() const OVERRIDE { return ref_count_.HasOneRef(); } \
|
||||
bool HasAtLeastOneRef() const OVERRIDE { \
|
||||
bool HasOneRef() const override { return ref_count_.HasOneRef(); } \
|
||||
bool HasAtLeastOneRef() const override { \
|
||||
return ref_count_.HasAtLeastOneRef(); \
|
||||
} \
|
||||
\
|
||||
|
@ -39,6 +39,7 @@
|
||||
|
||||
#include <list>
|
||||
|
||||
#include "include/base/cef_callback.h"
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/base/cef_ref_counted.h"
|
||||
#include "include/base/cef_scoped_ptr.h"
|
||||
|
@ -64,15 +64,15 @@ class CefStreamResourceHandler : public CefResourceHandler {
|
||||
// CefResourceHandler methods.
|
||||
bool Open(CefRefPtr<CefRequest> request,
|
||||
bool& handle_request,
|
||||
CefRefPtr<CefCallback> callback) OVERRIDE;
|
||||
CefRefPtr<CefCallback> callback) override;
|
||||
void GetResponseHeaders(CefRefPtr<CefResponse> response,
|
||||
int64& response_length,
|
||||
CefString& redirectUrl) OVERRIDE;
|
||||
CefString& redirectUrl) override;
|
||||
bool Read(void* data_out,
|
||||
int bytes_to_read,
|
||||
int& bytes_read,
|
||||
CefRefPtr<CefResourceReadCallback> callback) OVERRIDE;
|
||||
void Cancel() OVERRIDE;
|
||||
CefRefPtr<CefResourceReadCallback> callback) override;
|
||||
void Cancel() override;
|
||||
|
||||
private:
|
||||
const int status_code_;
|
||||
|
31
libcef_dll/base/cef_atomic_flag.cc
Normal file
31
libcef_dll/base/cef_atomic_flag.cc
Normal file
@ -0,0 +1,31 @@
|
||||
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "include/base/cef_atomic_flag.h"
|
||||
|
||||
#include "include/base/cef_logging.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
AtomicFlag::AtomicFlag() {
|
||||
// It doesn't matter where the AtomicFlag is built so long as it's always
|
||||
// Set() from the same sequence after. Note: the sequencing requirements are
|
||||
// necessary for IsSet()'s callers to know which sequence's memory operations
|
||||
// they are synchronized with.
|
||||
set_thread_checker_.DetachFromThread();
|
||||
}
|
||||
|
||||
AtomicFlag::~AtomicFlag() = default;
|
||||
|
||||
void AtomicFlag::Set() {
|
||||
DCHECK(set_thread_checker_.CalledOnValidThread());
|
||||
flag_.store(1, std::memory_order_release);
|
||||
}
|
||||
|
||||
void AtomicFlag::UnsafeResetForTesting() {
|
||||
set_thread_checker_.DetachFromThread();
|
||||
flag_.store(0, std::memory_order_release);
|
||||
}
|
||||
|
||||
} // namespace base
|
@ -1,99 +0,0 @@
|
||||
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
// This module gets enough CPU information to optimize the
|
||||
// atomicops module on x86.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "include/base/cef_atomicops.h"
|
||||
|
||||
// This file only makes sense with atomicops_internals_x86_gcc.h -- it
|
||||
// depends on structs that are defined in that file. If atomicops.h
|
||||
// doesn't sub-include that file, then we aren't needed, and shouldn't
|
||||
// try to do anything.
|
||||
#ifdef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_X86_GCC_H_
|
||||
|
||||
// Inline cpuid instruction. In PIC compilations, %ebx contains the address
|
||||
// of the global offset table. To avoid breaking such executables, this code
|
||||
// must preserve that register's value across cpuid instructions.
|
||||
#if defined(__i386__)
|
||||
#define cpuid(a, b, c, d, inp) \
|
||||
asm("mov %%ebx, %%edi\n" \
|
||||
"cpuid\n" \
|
||||
"xchg %%edi, %%ebx\n" \
|
||||
: "=a"(a), "=D"(b), "=c"(c), "=d"(d) \
|
||||
: "a"(inp))
|
||||
#elif defined(__x86_64__)
|
||||
#define cpuid(a, b, c, d, inp) \
|
||||
asm("mov %%rbx, %%rdi\n" \
|
||||
"cpuid\n" \
|
||||
"xchg %%rdi, %%rbx\n" \
|
||||
: "=a"(a), "=D"(b), "=c"(c), "=d"(d) \
|
||||
: "a"(inp))
|
||||
#endif
|
||||
|
||||
#if defined(cpuid) // initialize the struct only on x86
|
||||
|
||||
// Set the flags so that code will run correctly and conservatively, so even
|
||||
// if we haven't been initialized yet, we're probably single threaded, and our
|
||||
// default values should hopefully be pretty safe.
|
||||
struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures = {
|
||||
false, // bug can't exist before process spawns multiple threads
|
||||
};
|
||||
|
||||
namespace {
|
||||
|
||||
// Initialize the AtomicOps_Internalx86CPUFeatures struct.
|
||||
void AtomicOps_Internalx86CPUFeaturesInit() {
|
||||
uint32_t eax;
|
||||
uint32_t ebx;
|
||||
uint32_t ecx;
|
||||
uint32_t edx;
|
||||
|
||||
// Get vendor string (issue CPUID with eax = 0)
|
||||
cpuid(eax, ebx, ecx, edx, 0);
|
||||
char vendor[13];
|
||||
memcpy(vendor, &ebx, 4);
|
||||
memcpy(vendor + 4, &edx, 4);
|
||||
memcpy(vendor + 8, &ecx, 4);
|
||||
vendor[12] = 0;
|
||||
|
||||
// get feature flags in ecx/edx, and family/model in eax
|
||||
cpuid(eax, ebx, ecx, edx, 1);
|
||||
|
||||
int family = (eax >> 8) & 0xf; // family and model fields
|
||||
int model = (eax >> 4) & 0xf;
|
||||
if (family == 0xf) { // use extended family and model fields
|
||||
family += (eax >> 20) & 0xff;
|
||||
model += ((eax >> 16) & 0xf) << 4;
|
||||
}
|
||||
|
||||
// Opteron Rev E has a bug in which on very rare occasions a locked
|
||||
// instruction doesn't act as a read-acquire barrier if followed by a
|
||||
// non-locked read-modify-write instruction. Rev F has this bug in
|
||||
// pre-release versions, but not in versions released to customers,
|
||||
// so we test only for Rev E, which is family 15, model 32..63 inclusive.
|
||||
if (strcmp(vendor, "AuthenticAMD") == 0 && // AMD
|
||||
family == 15 && 32 <= model && model <= 63) {
|
||||
AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug = true;
|
||||
} else {
|
||||
AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug = false;
|
||||
}
|
||||
}
|
||||
|
||||
class AtomicOpsx86Initializer {
|
||||
public:
|
||||
AtomicOpsx86Initializer() { AtomicOps_Internalx86CPUFeaturesInit(); }
|
||||
};
|
||||
|
||||
// A global to get use initialized on startup via static initialization :/
|
||||
AtomicOpsx86Initializer g_initer;
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // if x86
|
||||
|
||||
#endif // ifdef CEF_INCLUDE_BASE_CEF_ATOMICOPS_INTERNALS_X86_GCC_H_
|
@ -1,13 +0,0 @@
|
||||
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "include/base/cef_bind_helpers.h"
|
||||
|
||||
#include "include/base/cef_callback.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
void DoNothing() {}
|
||||
|
||||
} // namespace base
|
43
libcef_dll/base/cef_callback_helpers.cc
Normal file
43
libcef_dll/base/cef_callback_helpers.cc
Normal file
@ -0,0 +1,43 @@
|
||||
// Copyright 2013 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "include/base/cef_callback_helpers.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
ScopedClosureRunner::ScopedClosureRunner() = default;
|
||||
|
||||
ScopedClosureRunner::ScopedClosureRunner(OnceClosure closure)
|
||||
: closure_(std::move(closure)) {}
|
||||
|
||||
ScopedClosureRunner::ScopedClosureRunner(ScopedClosureRunner&& other)
|
||||
: closure_(other.Release()) {}
|
||||
|
||||
ScopedClosureRunner& ScopedClosureRunner::operator=(
|
||||
ScopedClosureRunner&& other) {
|
||||
if (this != &other) {
|
||||
RunAndReset();
|
||||
ReplaceClosure(other.Release());
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
ScopedClosureRunner::~ScopedClosureRunner() {
|
||||
RunAndReset();
|
||||
}
|
||||
|
||||
void ScopedClosureRunner::RunAndReset() {
|
||||
if (closure_)
|
||||
std::move(closure_).Run();
|
||||
}
|
||||
|
||||
void ScopedClosureRunner::ReplaceClosure(OnceClosure closure) {
|
||||
closure_ = std::move(closure);
|
||||
}
|
||||
|
||||
OnceClosure ScopedClosureRunner::Release() {
|
||||
return std::move(closure_);
|
||||
}
|
||||
|
||||
} // namespace base
|
@ -7,35 +7,94 @@
|
||||
#include "include/base/cef_logging.h"
|
||||
|
||||
namespace base {
|
||||
namespace cef_internal {
|
||||
namespace internal {
|
||||
|
||||
void BindStateBase::AddRef() {
|
||||
AtomicRefCountInc(&ref_count_);
|
||||
namespace {
|
||||
|
||||
bool QueryCancellationTraitsForNonCancellables(
|
||||
const BindStateBase*,
|
||||
BindStateBase::CancellationQueryMode mode) {
|
||||
switch (mode) {
|
||||
case BindStateBase::IS_CANCELLED:
|
||||
return false;
|
||||
case BindStateBase::MAYBE_VALID:
|
||||
return true;
|
||||
}
|
||||
NOTREACHED();
|
||||
}
|
||||
|
||||
void BindStateBase::Release() {
|
||||
if (!AtomicRefCountDec(&ref_count_))
|
||||
destructor_(this);
|
||||
} // namespace
|
||||
|
||||
void BindStateBaseRefCountTraits::Destruct(const BindStateBase* bind_state) {
|
||||
bind_state->destructor_(bind_state);
|
||||
}
|
||||
|
||||
BindStateBase::BindStateBase(InvokeFuncStorage polymorphic_invoke,
|
||||
void (*destructor)(const BindStateBase*))
|
||||
: BindStateBase(polymorphic_invoke,
|
||||
destructor,
|
||||
&QueryCancellationTraitsForNonCancellables) {}
|
||||
|
||||
BindStateBase::BindStateBase(
|
||||
InvokeFuncStorage polymorphic_invoke,
|
||||
void (*destructor)(const BindStateBase*),
|
||||
bool (*query_cancellation_traits)(const BindStateBase*,
|
||||
CancellationQueryMode))
|
||||
: polymorphic_invoke_(polymorphic_invoke),
|
||||
destructor_(destructor),
|
||||
query_cancellation_traits_(query_cancellation_traits) {}
|
||||
|
||||
CallbackBase& CallbackBase::operator=(CallbackBase&& c) noexcept = default;
|
||||
CallbackBase::CallbackBase(const CallbackBaseCopyable& c)
|
||||
: bind_state_(c.bind_state_) {}
|
||||
|
||||
CallbackBase& CallbackBase::operator=(const CallbackBaseCopyable& c) {
|
||||
bind_state_ = c.bind_state_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CallbackBase::CallbackBase(CallbackBaseCopyable&& c) noexcept
|
||||
: bind_state_(std::move(c.bind_state_)) {}
|
||||
|
||||
CallbackBase& CallbackBase::operator=(CallbackBaseCopyable&& c) noexcept {
|
||||
bind_state_ = std::move(c.bind_state_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void CallbackBase::Reset() {
|
||||
polymorphic_invoke_ = NULL;
|
||||
// NULL the bind_state_ last, since it may be holding the last ref to whatever
|
||||
// object owns us, and we may be deleted after that.
|
||||
bind_state_ = NULL;
|
||||
bind_state_ = nullptr;
|
||||
}
|
||||
|
||||
bool CallbackBase::Equals(const CallbackBase& other) const {
|
||||
return bind_state_.get() == other.bind_state_.get() &&
|
||||
polymorphic_invoke_ == other.polymorphic_invoke_;
|
||||
bool CallbackBase::IsCancelled() const {
|
||||
DCHECK(bind_state_);
|
||||
return bind_state_->IsCancelled();
|
||||
}
|
||||
|
||||
CallbackBase::CallbackBase(BindStateBase* bind_state)
|
||||
: bind_state_(bind_state), polymorphic_invoke_(NULL) {
|
||||
DCHECK(!bind_state_.get() || bind_state_->ref_count_ == 1);
|
||||
bool CallbackBase::MaybeValid() const {
|
||||
DCHECK(bind_state_);
|
||||
return bind_state_->MaybeValid();
|
||||
}
|
||||
|
||||
CallbackBase::~CallbackBase() {}
|
||||
bool CallbackBase::EqualsInternal(const CallbackBase& other) const {
|
||||
return bind_state_ == other.bind_state_;
|
||||
}
|
||||
|
||||
} // namespace cef_internal
|
||||
CallbackBase::~CallbackBase() = default;
|
||||
|
||||
CallbackBaseCopyable::CallbackBaseCopyable(const CallbackBaseCopyable& c) {
|
||||
bind_state_ = c.bind_state_;
|
||||
}
|
||||
|
||||
CallbackBaseCopyable& CallbackBaseCopyable::operator=(
|
||||
const CallbackBaseCopyable& c) {
|
||||
bind_state_ = c.bind_state_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CallbackBaseCopyable& CallbackBaseCopyable::operator=(
|
||||
CallbackBaseCopyable&& c) noexcept = default;
|
||||
|
||||
} // namespace internal
|
||||
} // namespace base
|
||||
|
@ -15,6 +15,7 @@
|
||||
#include <string.h>
|
||||
#endif
|
||||
|
||||
#include "include/base/cef_cxx17_backports.h"
|
||||
#include "include/internal/cef_string_types.h"
|
||||
|
||||
namespace cef {
|
||||
@ -209,7 +210,7 @@ std::string SystemErrorCodeToString(SystemErrorCode error_code) {
|
||||
char msgbuf[error_message_buffer_size];
|
||||
DWORD flags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS;
|
||||
DWORD len = FormatMessageA(flags, NULL, error_code, 0, msgbuf,
|
||||
arraysize(msgbuf), NULL);
|
||||
base::size(msgbuf), NULL);
|
||||
std::stringstream ss;
|
||||
if (len) {
|
||||
std::string s(msgbuf);
|
||||
|
@ -4,54 +4,96 @@
|
||||
|
||||
#include "include/base/cef_ref_counted.h"
|
||||
|
||||
namespace base {
|
||||
#include <limits>
|
||||
#include <type_traits>
|
||||
|
||||
namespace cef_subtle {
|
||||
namespace base {
|
||||
namespace {
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
std::atomic_int g_cross_thread_ref_count_access_allow_count(0);
|
||||
#endif
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace subtle {
|
||||
|
||||
bool RefCountedThreadSafeBase::HasOneRef() const {
|
||||
return AtomicRefCountIsOne(
|
||||
&const_cast<RefCountedThreadSafeBase*>(this)->ref_count_);
|
||||
return ref_count_.IsOne();
|
||||
}
|
||||
|
||||
bool RefCountedThreadSafeBase::HasAtLeastOneRef() const {
|
||||
return !AtomicRefCountIsZero(
|
||||
&const_cast<RefCountedThreadSafeBase*>(this)->ref_count_);
|
||||
return !ref_count_.IsZero();
|
||||
}
|
||||
|
||||
RefCountedThreadSafeBase::RefCountedThreadSafeBase() : ref_count_(0) {
|
||||
#if DCHECK_IS_ON()
|
||||
in_dtor_ = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
RefCountedThreadSafeBase::~RefCountedThreadSafeBase() {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(in_dtor_) << "RefCountedThreadSafe object deleted without "
|
||||
"calling Release()";
|
||||
}
|
||||
#endif
|
||||
|
||||
// For security and correctness, we check the arithmetic on ref counts.
|
||||
//
|
||||
// In an attempt to avoid binary bloat (from inlining the `CHECK`), we define
|
||||
// these functions out-of-line. However, compilers are wily. Further testing may
|
||||
// show that `NOINLINE` helps or hurts.
|
||||
//
|
||||
#if defined(ARCH_CPU_64_BITS)
|
||||
void RefCountedBase::AddRefImpl() const {
|
||||
// An attacker could induce use-after-free bugs, and potentially exploit them,
|
||||
// by creating so many references to a ref-counted object that the reference
|
||||
// count overflows. On 32-bit architectures, there is not enough address space
|
||||
// to succeed. But on 64-bit architectures, it might indeed be possible.
|
||||
// Therefore, we can elide the check for arithmetic overflow on 32-bit, but we
|
||||
// must check on 64-bit.
|
||||
//
|
||||
// Make sure the addition didn't wrap back around to 0. This form of check
|
||||
// works because we assert that `ref_count_` is an unsigned integer type.
|
||||
CHECK(++ref_count_ != 0);
|
||||
}
|
||||
|
||||
void RefCountedThreadSafeBase::AddRef() const {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(!in_dtor_);
|
||||
#endif
|
||||
AtomicRefCountInc(&ref_count_);
|
||||
void RefCountedBase::ReleaseImpl() const {
|
||||
// Make sure the subtraction didn't wrap back around from 0 to the max value.
|
||||
// That could cause memory leaks, and may induce application-semantic
|
||||
// correctness or safety bugs. (E.g. what if we really needed that object to
|
||||
// be destroyed at the right time?)
|
||||
//
|
||||
// Note that unlike with overflow, underflow could also happen on 32-bit
|
||||
// architectures. Arguably, we should do this check on32-bit machines too.
|
||||
CHECK(--ref_count_ != std::numeric_limits<decltype(ref_count_)>::max());
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(ARCH_CPU_X86_FAMILY)
|
||||
bool RefCountedThreadSafeBase::Release() const {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(!in_dtor_);
|
||||
DCHECK(!AtomicRefCountIsZero(&ref_count_));
|
||||
return ReleaseImpl();
|
||||
}
|
||||
void RefCountedThreadSafeBase::AddRef() const {
|
||||
AddRefImpl();
|
||||
}
|
||||
void RefCountedThreadSafeBase::AddRefWithCheck() const {
|
||||
AddRefWithCheckImpl();
|
||||
}
|
||||
#endif
|
||||
if (!AtomicRefCountDec(&ref_count_)) {
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
in_dtor_ = true;
|
||||
bool RefCountedBase::CalledOnValidThread() const {
|
||||
return thread_checker_.CalledOnValidThread() ||
|
||||
g_cross_thread_ref_count_access_allow_count.load() != 0;
|
||||
}
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
} // namespace subtle
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
ScopedAllowCrossThreadRefCountAccess::ScopedAllowCrossThreadRefCountAccess() {
|
||||
++g_cross_thread_ref_count_access_allow_count;
|
||||
}
|
||||
|
||||
} // namespace cef_subtle
|
||||
ScopedAllowCrossThreadRefCountAccess::~ScopedAllowCrossThreadRefCountAccess() {
|
||||
--g_cross_thread_ref_count_access_allow_count;
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace base
|
||||
|
@ -5,67 +5,96 @@
|
||||
#include "include/base/cef_weak_ptr.h"
|
||||
|
||||
namespace base {
|
||||
namespace cef_internal {
|
||||
namespace internal {
|
||||
|
||||
WeakReference::Flag::Flag() : is_valid_(true) {
|
||||
WeakReference::Flag::Flag() {
|
||||
// Flags only become bound when checked for validity, or invalidated,
|
||||
// so that we can check that later validity/invalidation operations on
|
||||
// the same Flag take place on the same thread.
|
||||
// the same Flag take place on the same threadd thread.
|
||||
thread_checker_.DetachFromThread();
|
||||
}
|
||||
|
||||
void WeakReference::Flag::Invalidate() {
|
||||
// The flag being invalidated with a single ref implies that there are no
|
||||
// weak pointers in existence. Allow deletion on other thread in this case.
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(thread_checker_.CalledOnValidThread() || HasOneRef())
|
||||
<< "WeakPtrs must be invalidated on the same thread.";
|
||||
is_valid_ = false;
|
||||
<< "WeakPtrs must be invalidated on the same thread as where "
|
||||
<< "they are bound.\n";
|
||||
#endif
|
||||
invalidated_.Set();
|
||||
}
|
||||
|
||||
bool WeakReference::Flag::IsValid() const {
|
||||
DCHECK(thread_checker_.CalledOnValidThread())
|
||||
<< "WeakPtrs must be checked on the same thread.";
|
||||
return is_valid_;
|
||||
// WeakPtrs must be checked on the same threadd thread.
|
||||
DCHECK(thread_checker_.CalledOnValidThread());
|
||||
return !invalidated_.IsSet();
|
||||
}
|
||||
|
||||
WeakReference::Flag::~Flag() {}
|
||||
|
||||
WeakReference::WeakReference() {}
|
||||
|
||||
WeakReference::WeakReference(const Flag* flag) : flag_(flag) {}
|
||||
|
||||
WeakReference::~WeakReference() {}
|
||||
|
||||
bool WeakReference::is_valid() const {
|
||||
return flag_.get() && flag_->IsValid();
|
||||
bool WeakReference::Flag::MaybeValid() const {
|
||||
return !invalidated_.IsSet();
|
||||
}
|
||||
|
||||
WeakReferenceOwner::WeakReferenceOwner() {}
|
||||
void WeakReference::Flag::DetachFromThread() {
|
||||
thread_checker_.DetachFromThread();
|
||||
}
|
||||
|
||||
WeakReference::Flag::~Flag() = default;
|
||||
|
||||
WeakReference::WeakReference() = default;
|
||||
|
||||
WeakReference::WeakReference(const scoped_refptr<Flag>& flag) : flag_(flag) {}
|
||||
|
||||
WeakReference::~WeakReference() = default;
|
||||
|
||||
WeakReference::WeakReference(WeakReference&& other) noexcept = default;
|
||||
|
||||
WeakReference::WeakReference(const WeakReference& other) = default;
|
||||
|
||||
bool WeakReference::IsValid() const {
|
||||
return flag_ && flag_->IsValid();
|
||||
}
|
||||
|
||||
bool WeakReference::MaybeValid() const {
|
||||
return flag_ && flag_->MaybeValid();
|
||||
}
|
||||
|
||||
WeakReferenceOwner::WeakReferenceOwner()
|
||||
: flag_(MakeRefCounted<WeakReference::Flag>()) {}
|
||||
|
||||
WeakReferenceOwner::~WeakReferenceOwner() {
|
||||
Invalidate();
|
||||
flag_->Invalidate();
|
||||
}
|
||||
|
||||
WeakReference WeakReferenceOwner::GetRef() const {
|
||||
// If we hold the last reference to the Flag then create a new one.
|
||||
// If we hold the last reference to the Flag then detach the ThreadChecker.
|
||||
if (!HasRefs())
|
||||
flag_ = new WeakReference::Flag();
|
||||
flag_->DetachFromThread();
|
||||
|
||||
return WeakReference(flag_.get());
|
||||
return WeakReference(flag_);
|
||||
}
|
||||
|
||||
void WeakReferenceOwner::Invalidate() {
|
||||
if (flag_.get()) {
|
||||
flag_->Invalidate();
|
||||
flag_ = NULL;
|
||||
}
|
||||
flag_->Invalidate();
|
||||
flag_ = MakeRefCounted<WeakReference::Flag>();
|
||||
}
|
||||
|
||||
WeakPtrBase::WeakPtrBase() {}
|
||||
WeakPtrBase::WeakPtrBase() : ptr_(0) {}
|
||||
|
||||
WeakPtrBase::~WeakPtrBase() {}
|
||||
WeakPtrBase::~WeakPtrBase() = default;
|
||||
|
||||
WeakPtrBase::WeakPtrBase(const WeakReference& ref) : ref_(ref) {}
|
||||
WeakPtrBase::WeakPtrBase(const WeakReference& ref, uintptr_t ptr)
|
||||
: ref_(ref), ptr_(ptr) {
|
||||
DCHECK(ptr_);
|
||||
}
|
||||
|
||||
} // namespace cef_internal
|
||||
WeakPtrFactoryBase::WeakPtrFactoryBase(uintptr_t ptr) : ptr_(ptr) {
|
||||
DCHECK(ptr_);
|
||||
}
|
||||
|
||||
WeakPtrFactoryBase::~WeakPtrFactoryBase() {
|
||||
ptr_ = 0;
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
} // namespace base
|
||||
|
@ -8,6 +8,7 @@
|
||||
#include <set>
|
||||
|
||||
#include "include/base/cef_bind.h"
|
||||
#include "include/base/cef_callback.h"
|
||||
#include "include/base/cef_macros.h"
|
||||
#include "include/cef_task.h"
|
||||
#include "include/wrapper/cef_closure_task.h"
|
||||
|
Loading…
x
Reference in New Issue
Block a user