- Remove CefRequestContextHandler::OnBeforePluginLoad and
CefRequestContext::PurgePluginListCache (fixes issue #3047). These methods
stopped being relevant after the removal of Flash support in January 2021.
The last remaining PPAPI plugin (PDF viewer) will switch to a non-plugin
implementation in the near future (see https://crbug.com/702993#c58) and
functionality related to plugin filtering has already been removed in
https://crrev.com/343ae351c9.
This CL removes the following deprecated APIs:
- base::Bind()
- base::Callback
- base::Closure
- base::CancelableCallback
- base::CancelableClosure
The behavior that these APIs provided is still available using the *Repeating*
variants. However, consider strongly whether using these variants is actually
necessary in your case or whether the *Once* variants will suffice: unless your
callback *objects* (note: not variables!) need to be called multiple times,
they most likely can and should be the Once variants.
This applies the same changes as https://crrev.com/6cc94b5339.
This removes CefSettings.ignore_certificate_errors and
CefBrowserSettings.ignore_certificate_errors. Due to NetworkService
requirements these values must now be configured globally via the
"ignore-certificate-errors" command-line flag.
This removes CefBrowserSettings.universal_access_from_file_urls and
CefBrowserSettings.file_access_from_file_urls. Due to NetworkService
requirements these values must now be configured globally via command-line
flags ("allow-universal-access-from-files" and "allow-file-access-from-files"
respectively).
Also remove the kAllowFileAccessFromFileUrls switch in CEF which duplicates
the existing kAllowFileAccessFromFiles switch in Chromium (see issue #1785).
AppCache is deprecated in favor of Service Workers and support will be
fully removed soon (~M95). See https://web.dev/appcache-removal/.
Also add missing "allow-file-access-from-files" command-line switch for
CefBrowserSettings.file_access_from_file_urls.
When BackForwardCache is enabled and the user navigates the main frame
back/forward a new RFH may be created for an existing main frame GlobalId value
and CefFrameHostImpl (e.g. an object that was previously Detach()ed after main
frame navigation called SetMainFrame, but for which RenderFrameDeleted was not
subsequently called due to insertion in the BackForwardCache). In this case we
can re-attach the new RFH to the existing main frame CefFrameHostImpl in
RenderFrameHostStateChanged and resume processing of messages.
Swapping back/forward to an existing (already loaded) renderer does not trigger
new notifications for draggable regions (e.g. RenderFrameObserver::
DraggableRegionsChanged is not called by default). We therefore explicitly
request an update of draggable regions by sending the DidStopLoading message to
the renderer.
A new |reattached| parameter is added to CefFrameHandler::OnFrameAttached to
support identification of BackForwardCache usage by the client.
To test with unit tests:
Run `ceftests --gtest_filter=DraggableRegionsTest.DraggableRegionsCrossOrigin
--enable-features=BackForwardCache`
To test manually:
1. Run `cefclient --enable-features=BackForwardCache --use-views
--url=http://tests/draggable`, note that draggable regions work.
2. Load https://www.google.com via the address bar, note that draggable regions
are removed.
3. Go back to http://tests/draggable, note that draggable regions work.
4. Go forward to https://www.google.com, note that draggable regions are
removed.
To test:
Run `cefclient.exe --use-views --hide-frame --hide-controls`
Add `--enable-chrome-runtime` for the same behavior using the Chrome location
bar instead of a text field.
Widevine CDM binaries will be downloaded on supported platforms shortly after
application startup. Widevine support will then become available within a few
seconds after successful installation on Windows or after the next application
restart on other platforms. The CDM files will be downloaded to a "WidevineCdm"
directory inside the `CefSettings.user_data_path` directory.
Pass the `--disable-component-update` command-line flag to disable Widevine
download and installation. Pass the `--component-updater=fast-update` command-
line flag to force Widevine download immediately after application startup.
See the related issue for additional usage details.
- Convert scoped_ptr to std::unique_ptr from <memory>
- Convert arraysize to base::size from include/base/cef_cxx17_backports.h
- Convert NULL to nullptr
- Include include/base/cef_callback.h instead of include/base/cef_bind.h
- Implicit conversion of CefRefPtr<T> or scoped_refptr<T> to T* is gone;
use .get() instead
See the issue for additional details.
ClientAppRenderer::Delegate callbacks are executed for all tests. In this case
CorsTest.IframeAllowScriptsCustomNonStandardSchemeToServer was crashing on Linux
because CefBrowser::GetMainFrame() returns nullptr in the renderer process when
called from a cross-origin sub-frame.
See the new cef_frame_handler.h for complete usage documentation.
This change includes the following related enhancements:
- The newly added CefBrowser::IsValid method will return false (in the browser
process) after CefLifeSpanHandler::OnBeforeClose is called.
- CefBrowser::GetMainFrame will return a valid object (in the browser process)
until after CefLifeSpanHandler::OnBeforeClose is called.
- The main frame object will change during cross-origin navigation or
re-navigation after renderer process termination. During that time,
GetMainFrame will return the new/pending frame (in the browser process) and
any messages that arrive for the new/pending frame will be correctly
attributed in OnProcessMessageReceived.
- Commands to be executed in the renderer process that may fail during early
frame initialization (ExecuteJavaScript, LoadRequest, etc.) will now be
queued until after the JavaScript context for the frame has been created.
- Logging has been added for any commands that are dropped because they arrived
after frame detachment.
A reference to a received CefProcessMessage object and/or associated argument
list can now be kept outside of the OnProcessMessageReceived callback. The
argument list is no longer explicitly owned by the CefProcessMessage object
and can be individually assigned to other CefValue types as needed (e.g. by
passing to SetList, etc). Depending on client usage this could reduce the
potential for unnecessary copies of the list contents.
Received messages can also be sent back using SendProcessMessage (after which
the CefProcessMessage would become invalid as discussed in issue #3123). This
is not new behavior but we have now added explicit unit test coverage for it.
This also no longer requires a copy of the argument list contents.
Note that a received argument list is initially read-only for logical
consistency. Assignment to another CefValue object could potentially remove
the read-only status because it is not an intrinsic property of the underlying
Chromium data type. This is fine because, at that point, ownership has been
transfered to the new CefValue object and the original logical context (as
part of the CefProcessMessage) no longer applies.
This change introduces a few minor CEF API behavior changes:
- A CefProcessMessage object cannot be reused after being passed to
SendProcessMessage.
- The |extra_info| argument to CefRenderProcessHandler::OnBrowserCreated may
now be NULL.
Where appropriate, we now utilize the default UTF string encoding format and
shared memory to reduce copies and conversions for the cross-process
transfer of arbitrary-length strings. For example, CefFrame::GetSource/GetText
now involves zero UTF conversions and zero copies in the browser process for
the CefString delivered to CefStringVisitor::Visit().
With the Chrome runtime, Profile initialization may be asynchronous. Code that
waited on CefBrowserContext creation now needs to wait on CefBrowserContext
initialization instead.
The Chrome runtime requires that cookieable scheme information be available
at Profile initialization time because it also triggers NetworkContext creation
at the same time. To make this possible, and to avoid various race conditions
when setting state, the cookieable scheme configuration has been added as
|cookieable_schemes_list| and |cookieable_schemes_exclude_defaults| in
CefSettings and CefBrowserContextSettings. The CefCookieManager::
SetSupportedSchemes and CefBrowserProcessHandler::GetCookieableSchemes methods
are no longer required and have been removed.
This change also modifies chrome to delay OffTheRecordProfileImpl initialization
so that |ChromeBrowserContext::profile_| can be set before
ChromeContentBrowserClientCef::ConfigureNetworkContextParams calls
CefBrowserContext::FromBrowserContext to retrieve the ChromeBrowserContext
and associated cookieable scheme information. Otherwise, the
ChromeBrowserContext will not be matched and the NetworkContext will not be
configured correctly.
The CookieTest suite now passes with the Chrome runtime enabled.
Chrome currently uses chrome_100_percent.pak, chrome_200_percent.pak,
resources.pak and locales/<locale>.pak files. This change adds CEF
resources to those existing pak files and updates the Alloy runtime to
use them instead of the previous CEF-specific pak files (cef.pak,
cef_100_percent.pak, cef_200_percent.pak, cef_extensions.pak,
devtools_resources.pak) which are no longer generated.
The addition of Chrome resources results in an ~16% (~4.1MB) increase in total
combined pak file size vs. the previous CEF-specific pak files. While a size
increase is not ideal for the Alloy runtime, it seems preferable to the
alternative of distributing separate (and partially duplicated) pak files for
each runtime, which would have added ~9.8MB to the total binary distribution
size.
If a WeakPtr references an already-destroyed object, operator-> and
operator* end up simply dereferencing nullptr. However, dereferencing
nullptr is undefined behavior and can be optimized in surprising ways
by compilers. To prevent this from happening, add a defence of last
resort and CHECK that the WeakPtr is still valid.
Based on https://crrev.com/bbb64b5c69
The cursor change can now be handled by the client with both windowed and
off-screen rendering.
Returning true from OnCursorChange will disable the default cursor change
behavior. This is functionally equivalent to the
CefBrowserHost::SetMouseCursorChangeDisabled method, so that method has been
removed.
This change adds support for:
- Protocol and request handling.
- Loading and navigation events.
- Display and focus events.
- Mouse/keyboard events.
- Popup browsers.
- Callbacks in the renderer process.
- Misc. functionality required for ceftests.
This change also adds a new CefBrowserProcessHandler::GetCookieableSchemes
callback for configuring global state that will be applied to all
CefCookieManagers by default. This global callback is currently required by the
chrome runtime because the primary ProfileImpl is created via
ChromeBrowserMainParts::PreMainMessageLoopRun (CreatePrimaryProfile) before
OnContextCreated can be called.
ProfileImpl will use the "C:\Users\[user]\AppData\Local\CEF\User Data\Default"
directory by default (on Windows). Cookies may persist in this directory when
running ceftests and may need to be manually deleted if those tests fail.
Remaining work includes:
- Support for client-created request contexts.
- Embedding the browser in a Views hierarchy (cefclient support).
- TryCloseBrowser and DoClose support.
- Most of the CefSettings configuration.
- DevTools protocol and window control (ShowDevTools, ExecuteDevToolsMethod).
- CEF-specific WebUI pages (about, license, webui-hosts).
- Context menu customization (CefContextMenuHandler).
- Auto resize (SetAutoResizeEnabled).
- Zoom settings (SetZoomLevel).
- File dialog runner (RunFileDialog).
- File and JS dialog handlers (CefDialogHandler, CefJSDialogHandler).
- Extension loading (LoadExtension, etc).
- Plugin loading (OnBeforePluginLoad).
- Widevine loading (CefRegisterWidevineCdm).
- PDF and print preview does not display.
- Crash reporting is untested.
- Mac: Web content loads but does not display.
The following ceftests are now passing when run with the
"--enable-chrome-runtime" command-line flag:
CorsTest.*
DisplayTest.*:-DisplayTest.AutoResize
DOMTest.*
DraggableRegionsTest.*
ImageTest.*
MessageRouterTest.*
NavigationTest.*
ParserTest.*
RequestContextTest.*Global*
RequestTest.*
ResourceManagerTest.*
ResourceRequestHandlerTest.*
ResponseTest.*
SchemeHandlerTest.*
ServerTest.*
StreamResourceHandlerTest.*
StreamTest.*
StringTest.*
TaskTest.*
TestServerTest.*
ThreadTest.*
URLRequestTest.*Global*
V8Test.*:-V8Test.OnUncaughtExceptionDevTools
ValuesTest.*
WaitableEventTest.*
XmlReaderTest.*
ZipReaderTest.*
The Browser object represents the top-level Chrome browser window. One or more
tabs (WebContents) are then owned by the Browser object via TabStripModel. A
new Browser object can be created programmatically using "new Browser" or
Browser::Create, or as a result of user action such as dragging a tab out of an
existing window. New or existing tabs can also be added to an already existing
Browser object.
The Browser object acts as the WebContentsDelegate for all attached tabs. CEF
integration requires WebContentsDelegate callbacks and notification of tab
attach/detach. To support this integration we add a cef::BrowserDelegate
(ChromeBrowserDelegate) member that is created in the Browser constructor and
receives delegation for the Browser callbacks. ChromeBrowserDelegate creates a
new ChromeBrowserHostImpl when a tab is added to a Browser for the first time,
and that ChromeBrowserHostImpl continues to exist until the tab's WebContents
is destroyed. The associated WebContents object does not change, but the
Browser object will change when the tab is dragged between windows.
CEF callback logic is shared between the chrome and alloy runtimes where
possible. This shared logic has been extracted from CefBrowserHostImpl to
create new CefBrowserHostBase and CefBrowserContentsDelegate classes. The
CefBrowserHostImpl class is now only used with the alloy runtime and will be
renamed to AlloyBrowserHostImpl in a future commit.
- CefURLRequest::Create is no longer supported in the renderer process
(see https://crbug.com/891872). Use CefFrame::CreateURLRequest instead.
- Mac platform definitions have been changed from `MACOSX` to `MAC`
(see https://crbug.com/1105907) and related CMake macro names have
been updated. The old `OS_MACOSX` define is still set in code and CMake
for backwards compatibility.
- Linux ARM build is currently broken (see https://crbug.com/1123214).
With site-per-process enabled a spare renderer process will be created
for use with a future browser or navigation. Consequently the
|extra_info| parameter populated in OnRenderProcessThreadCreated will no
longer be delivered to OnRenderThreadCreated in the expected renderer
process. To avoid confusion these callbacks have been removed completely.
After this change CefRenderProcessHandler::OnWebKitInitialized should
be used for startup tasks in the render process, and OnBrowserCreated
should be used in the render process to recieve |extra_info| passed from
CefBrowserHost::CreateBrowser or CefLifeSpanHandler::OnBeforePopup.
- Windows: 10.0.19041 SDK is now required.
- macOS: 10.15.1 SDK (at least Xcode 11.2) is now required.
- Remove CefMediaSource::IsValid and CefMediaSink::IsValid which would
always return true.
Running `cefsimple --enable-chrome-runtime` will create and run a
Chrome browser window using the CEF app methods, and call
CefApp::OnContextInitialized as expected. CEF task methods also
work as expected in the main process. No browser-related methods or
callbacks are currently supported for the Chrome window, and the
application will exit when the last Chrome window closes.
The Chrome runtime requires resources.pak, chrome_100_percent.pak
and chrome_200_percent.pak files which were not previously built
with CEF. It shares the existing locales pak files which have been
updated to include additional Chrome-specific strings.
On Linux, the Chrome runtime requires GTK so use_gtk=true must be
specified via GN_DEFINES when building.
This change also refactors the CEF runtime, which can be tested in
the various supported modes by running:
$ cefclient
$ cefclient --multi-threaded-message-loop
$ cefclient --external-message-pump
This change allows the client to directly send and receive DevTools
protocol messages (send method calls, and receive method results and
events) without requiring a DevTools front-end or remote-debugging
session.
This change includes additional supporting changes:
- Add a new CefRequestHandler::OnDocumentAvailableInMainFrame
callback (see issue #1454).
- Add a CefParseJSON variant that accepts a UTF8-encoded buffer.
- Add a `--devtools-protocol-log-file=<path>` command-line flag for
logging protocol messages sent to/from the DevTools front-end
while it is displayed. This is useful for understanding existing
DevTools protocol usage.
- Add a new "libcef_static_unittests" executable target to support
light-weight unit tests of libcef_static internals (e.g. without
requiring exposure via the CEF API). Files to be unittested are
placed in the new "libcef_static_unittested" source_set which is
then included by both the existing libcef_static library and the
new unittests executable target.
- Linux: Remove use_bundled_fontconfig=false, which is no longer
required and causes unittest build errors (see issue #2424).
This change also adds a cefclient demo for configuring offline mode
using the DevTools protocol (fixes issue #245). This is controlled
by the "Offline mode" context menu option and the `--offline`
command-line switch which will launch cefclient in offline mode. When
cefclient is offline all network requests will fail with
ERR_INTERNET_DISCONNECTED and navigator.onLine will return false when
called from JavaScript in any frame. This mode is per-browser so
newly created browser windows will have the default mode. Note that
configuring offline mode in this way will not update the Network tab
UI ("Throtting" option) in a displayed DevTools front-end instance.
The cef_api_hash.h file was previously only updated when the translator tool
was run manually. Forgetting to run the translator tool after changing
include/internal/cef_types*.h files would result in cef_parser.py
incorrectly computing the CEF minor version number for future builds. By
updating this file automatically at build time the number of errors should be
reduced.
This attribute is useful for identifying different classes of cast devices
without first requiring a connection (CAST, CAST_AUDIO, CAST_AUDIO_GROUP, etc).
This change also restores the Chromium default values for the
SameSiteByDefaultCookies and CookiesWithoutSameSiteMustBeSecure features. See
https://www.chromium.org/updates/same-site for feature details and rollout
timeline.
Chromium supports communication with media devices on the local network via
the Cast and DIAL protocols. This takes two primary forms:
1. Messaging, where strings representing state information are passed between
the client and a dedicated receiver app on the media device. The receiver
app communicates directly with an app-specific backend service to retrieve
and possibly control media playback.
2. Tab/desktop mirroring, where the media contents are streamed directly from
the browser to a generic streaming app on the media device and playback is
controlled by the browser.
This change adds support for device discovery and messaging (but not
mirroring) with functionality exposed via the new CefMediaRouter interface.
To test: Navigate to http://tests/media_router in cefclient and follow the
on-screen instructions.