Update include/base headers for C++11/14 (see issue #3140)

See the issue for update guidelines.
This commit is contained in:
Marshall Greenblatt
2021-06-17 15:40:57 -04:00
parent 6d80ec69d7
commit 43f9baa23a
57 changed files with 5466 additions and 11523 deletions

View File

@ -43,120 +43,66 @@
// When building CEF include the Chromium header directly.
#include "base/atomic_ref_count.h"
// Used when declaring a base::AtomicRefCount value. This is an object type with
// Chromium headers.
#define ATOMIC_DECLARATION (0)
// Maintaining compatibility with AtompicRefCount* functions that were removed
// from Chromium in http://crrev.com/ee96d561.
namespace base {
// Increment a reference count by 1.
inline void AtomicRefCountInc(volatile AtomicRefCount* ptr) {
const_cast<AtomicRefCount*>(ptr)->Increment();
}
// Decrement a reference count by 1 and return whether the result is non-zero.
// Insert barriers to ensure that state written before the reference count
// became zero will be visible to a thread that has just made the count zero.
inline bool AtomicRefCountDec(volatile AtomicRefCount* ptr) {
return const_cast<AtomicRefCount*>(ptr)->Decrement();
}
// Return whether the reference count is one. If the reference count is used
// in the conventional way, a refrerence count of 1 implies that the current
// thread owns the reference and no other thread shares it. This call performs
// the test for a reference count of one, and performs the memory barrier
// needed for the owning thread to act on the object, knowing that it has
// exclusive access to the object.
inline bool AtomicRefCountIsOne(volatile AtomicRefCount* ptr) {
return const_cast<AtomicRefCount*>(ptr)->IsOne();
}
// Return whether the reference count is zero. With conventional object
// referencing counting, the object will be destroyed, so the reference count
// should never be zero. Hence this is generally used for a debug check.
inline bool AtomicRefCountIsZero(volatile AtomicRefCount* ptr) {
return const_cast<AtomicRefCount*>(ptr)->IsZero();
}
} // namespace base
#else // !USING_CHROMIUM_INCLUDES
// The following is substantially similar to the Chromium implementation.
// If the Chromium implementation diverges the below implementation should be
// updated to match.
#include "include/base/cef_atomicops.h"
// Annotations are not currently supported.
#define ANNOTATE_HAPPENS_BEFORE(obj) /* empty */
#define ANNOTATE_HAPPENS_AFTER(obj) /* empty */
// Used when declaring a base::AtomicRefCount value. This is an integer/ptr type
// with CEF headers.
#define ATOMIC_DECLARATION = 0
#include <atomic>
namespace base {
typedef subtle::Atomic32 AtomicRefCount;
class AtomicRefCount {
public:
constexpr AtomicRefCount() : ref_count_(0) {}
explicit constexpr AtomicRefCount(int initial_value)
: ref_count_(initial_value) {}
// Increment a reference count by "increment", which must exceed 0.
inline void AtomicRefCountIncN(volatile AtomicRefCount* ptr,
AtomicRefCount increment) {
subtle::NoBarrier_AtomicIncrement(ptr, increment);
}
// Increment a reference count.
// Returns the previous value of the count.
int Increment() { return Increment(1); }
// Decrement a reference count by "decrement", which must exceed 0,
// and return whether the result is non-zero.
// Insert barriers to ensure that state written before the reference count
// became zero will be visible to a thread that has just made the count zero.
inline bool AtomicRefCountDecN(volatile AtomicRefCount* ptr,
AtomicRefCount decrement) {
ANNOTATE_HAPPENS_BEFORE(ptr);
bool res = (subtle::Barrier_AtomicIncrement(ptr, -decrement) != 0);
if (!res) {
ANNOTATE_HAPPENS_AFTER(ptr);
// Increment a reference count by "increment", which must exceed 0.
// Returns the previous value of the count.
int Increment(int increment) {
return ref_count_.fetch_add(increment, std::memory_order_relaxed);
}
return res;
}
// Increment a reference count by 1.
inline void AtomicRefCountInc(volatile AtomicRefCount* ptr) {
base::AtomicRefCountIncN(ptr, 1);
}
// Decrement a reference count by 1 and return whether the result is non-zero.
// Insert barriers to ensure that state written before the reference count
// became zero will be visible to a thread that has just made the count zero.
inline bool AtomicRefCountDec(volatile AtomicRefCount* ptr) {
return base::AtomicRefCountDecN(ptr, 1);
}
// Return whether the reference count is one. If the reference count is used
// in the conventional way, a refrerence count of 1 implies that the current
// thread owns the reference and no other thread shares it. This call performs
// the test for a reference count of one, and performs the memory barrier
// needed for the owning thread to act on the object, knowing that it has
// exclusive access to the object.
inline bool AtomicRefCountIsOne(volatile AtomicRefCount* ptr) {
bool res = (subtle::Acquire_Load(ptr) == 1);
if (res) {
ANNOTATE_HAPPENS_AFTER(ptr);
// Decrement a reference count, and return whether the result is non-zero.
// Insert barriers to ensure that state written before the reference count
// became zero will be visible to a thread that has just made the count zero.
bool Decrement() {
// TODO(jbroman): Technically this doesn't need to be an acquire operation
// unless the result is 1 (i.e., the ref count did indeed reach zero).
// However, there are toolchain issues that make that not work as well at
// present (notably TSAN doesn't like it).
return ref_count_.fetch_sub(1, std::memory_order_acq_rel) != 1;
}
return res;
}
// Return whether the reference count is zero. With conventional object
// referencing counting, the object will be destroyed, so the reference count
// should never be zero. Hence this is generally used for a debug check.
inline bool AtomicRefCountIsZero(volatile AtomicRefCount* ptr) {
bool res = (subtle::Acquire_Load(ptr) == 0);
if (res) {
ANNOTATE_HAPPENS_AFTER(ptr);
// Return whether the reference count is one. If the reference count is used
// in the conventional way, a refrerence count of 1 implies that the current
// thread owns the reference and no other thread shares it. This call
// performs the test for a reference count of one, and performs the memory
// barrier needed for the owning thread to act on the object, knowing that it
// has exclusive access to the object.
bool IsOne() const { return ref_count_.load(std::memory_order_acquire) == 1; }
// Return whether the reference count is zero. With conventional object
// referencing counting, the object will be destroyed, so the reference count
// should never be zero. Hence this is generally used for a debug check.
bool IsZero() const {
return ref_count_.load(std::memory_order_acquire) == 0;
}
return res;
}
// Returns the current reference count (with no barriers). This is subtle, and
// should be used only for debugging.
int SubtleRefCountForDebug() const {
return ref_count_.load(std::memory_order_relaxed);
}
private:
std::atomic_int ref_count_;
};
} // namespace base