cef/include/base/cef_scoped_refptr.h

421 lines
13 KiB
C
Raw Normal View History

// Copyright (c) 2017 Marshall A. Greenblatt. Portions copyright (c) 2011
// Google Inc. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the name Chromium Embedded
// Framework nor the names of its contributors may be used to endorse
// or promote products derived from this software without specific prior
// written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
#define CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
#pragma once
#if defined(USING_CHROMIUM_INCLUDES)
// When building CEF include the Chromium header directly.
#include "base/memory/scoped_refptr.h"
#else // !USING_CHROMIUM_INCLUDES
// The following is substantially similar to the Chromium implementation.
// If the Chromium implementation diverges the below implementation should be
// updated to match.
#include <stddef.h>
#include <iosfwd>
#include <type_traits>
#include <utility>
#include "include/base/cef_logging.h"
template <class T>
class scoped_refptr;
namespace base {
template <class, typename>
class RefCounted;
template <class, typename>
class RefCountedThreadSafe;
class SequencedTaskRunner;
class WrappedPromise;
template <typename T>
scoped_refptr<T> AdoptRef(T* t);
namespace internal {
class BasePromise;
} // namespace internal
namespace cef_subtle {
enum AdoptRefTag { kAdoptRefTag };
enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
enum StartRefCountFromOneTag { kStartRefCountFromOneTag };
template <typename T, typename U, typename V>
constexpr bool IsRefCountPreferenceOverridden(const T*,
const RefCounted<U, V>*) {
return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
std::decay_t<decltype(U::kRefCountPreference)>>::value;
}
template <typename T, typename U, typename V>
constexpr bool IsRefCountPreferenceOverridden(
const T*,
const RefCountedThreadSafe<U, V>*) {
return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
std::decay_t<decltype(U::kRefCountPreference)>>::value;
}
constexpr bool IsRefCountPreferenceOverridden(...) {
return false;
}
} // namespace cef_subtle
// Creates a scoped_refptr from a raw pointer without incrementing the reference
// count. Use this only for a newly created object whose reference count starts
// from 1 instead of 0.
template <typename T>
scoped_refptr<T> AdoptRef(T* obj) {
using Tag = std::decay_t<decltype(T::kRefCountPreference)>;
static_assert(std::is_same<cef_subtle::StartRefCountFromOneTag, Tag>::value,
"Use AdoptRef only if the reference count starts from one.");
DCHECK(obj);
DCHECK(obj->HasOneRef());
obj->Adopted();
return scoped_refptr<T>(obj, cef_subtle::kAdoptRefTag);
}
namespace cef_subtle {
template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
return scoped_refptr<T>(obj);
}
template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
return AdoptRef(obj);
}
} // namespace cef_subtle
// Constructs an instance of T, which is a ref counted type, and wraps the
// object into a scoped_refptr<T>.
template <typename T, typename... Args>
scoped_refptr<T> MakeRefCounted(Args&&... args) {
T* obj = new T(std::forward<Args>(args)...);
return cef_subtle::AdoptRefIfNeeded(obj, T::kRefCountPreference);
}
// Takes an instance of T, which is a ref counted type, and wraps the object
// into a scoped_refptr<T>.
template <typename T>
scoped_refptr<T> WrapRefCounted(T* t) {
return scoped_refptr<T>(t);
}
} // namespace base
///
/// A smart pointer class for reference counted objects. Use this class instead
/// of calling AddRef and Release manually on a reference counted object to
/// avoid common memory leaks caused by forgetting to Release an object
/// reference. Sample usage:
///
/// <pre>
/// class MyFoo : public RefCounted<MyFoo> {
/// ...
/// private:
/// friend class RefCounted<MyFoo>; // Allow destruction by RefCounted<>.
/// ~MyFoo(); // Destructor must be
/// private/protected.
/// };
///
/// void some_function() {
/// scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
/// foo->Method(param);
/// // |foo| is released when this function returns
/// }
///
/// void some_other_function() {
/// scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
/// ...
/// foo.reset(); // explicitly releases |foo|
/// ...
/// if (foo)
/// foo->Method(param);
/// }
/// </pre>
///
/// The above examples show how scoped_refptr<T> acts like a pointer to T.
/// Given two scoped_refptr<T> classes, it is also possible to exchange
/// references between the two objects, like so:
///
/// <pre>
/// {
/// scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
/// scoped_refptr<MyFoo> b;
///
/// b.swap(a);
/// // now, |b| references the MyFoo object, and |a| references nullptr.
/// }
/// </pre>
///
/// To make both |a| and |b| in the above example reference the same MyFoo
/// object, simply use the assignment operator:
///
/// <pre>
/// {
/// scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
/// scoped_refptr<MyFoo> b;
///
/// b = a;
/// // now, |a| and |b| each own a reference to the same MyFoo object.
/// }
/// </pre>
///
/// Also see Chromium's ownership and calling conventions:
/// https://chromium.googlesource.com/chromium/src/+/lkgr/styleguide/c++/c++.md#object-ownership-and-calling-conventions
/// Specifically:
/// If the function (at least sometimes) takes a ref on a refcounted object,
/// declare the param as scoped_refptr<T>. The caller can decide whether it
/// wishes to transfer ownership (by calling std::move(t) when passing t) or
/// retain its ref (by simply passing t directly).
/// In other words, use scoped_refptr like you would a std::unique_ptr except
/// in the odd case where it's required to hold on to a ref while handing one
/// to another component (if a component merely needs to use t on the stack
/// without keeping a ref: pass t as a raw T*).
///
template <class T>
class TRIVIAL_ABI scoped_refptr {
public:
typedef T element_type;
constexpr scoped_refptr() = default;
// Allow implicit construction from nullptr.
constexpr scoped_refptr(std::nullptr_t) {}
// Constructs from a raw pointer. Note that this constructor allows implicit
// conversion from T* to scoped_refptr<T> which is strongly discouraged. If
// you are creating a new ref-counted object please use
// base::MakeRefCounted<T>() or base::WrapRefCounted<T>(). Otherwise you
// should move or copy construct from an existing scoped_refptr<T> to the
// ref-counted object.
scoped_refptr(T* p) : ptr_(p) {
2023-01-05 00:12:54 +01:00
if (ptr_) {
AddRef(ptr_);
2023-01-05 00:12:54 +01:00
}
}
// Copy constructor. This is required in addition to the copy conversion
// constructor below.
scoped_refptr(const scoped_refptr& r) : scoped_refptr(r.ptr_) {}
// Copy conversion constructor.
template <typename U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
scoped_refptr(const scoped_refptr<U>& r) : scoped_refptr(r.ptr_) {}
// Move constructor. This is required in addition to the move conversion
// constructor below.
scoped_refptr(scoped_refptr&& r) noexcept : ptr_(r.ptr_) { r.ptr_ = nullptr; }
// Move conversion constructor.
template <typename U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
scoped_refptr(scoped_refptr<U>&& r) noexcept : ptr_(r.ptr_) {
r.ptr_ = nullptr;
}
~scoped_refptr() {
static_assert(!base::cef_subtle::IsRefCountPreferenceOverridden(
static_cast<T*>(nullptr), static_cast<T*>(nullptr)),
"It's unsafe to override the ref count preference."
" Please remove REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE"
" from subclasses.");
2023-01-05 00:12:54 +01:00
if (ptr_) {
Release(ptr_);
2023-01-05 00:12:54 +01:00
}
}
T* get() const { return ptr_; }
T& operator*() const {
DCHECK(ptr_);
return *ptr_;
}
T* operator->() const {
DCHECK(ptr_);
return ptr_;
}
scoped_refptr& operator=(std::nullptr_t) {
reset();
return *this;
}
scoped_refptr& operator=(T* p) { return *this = scoped_refptr(p); }
// Unified assignment operator.
scoped_refptr& operator=(scoped_refptr r) noexcept {
swap(r);
return *this;
}
// Sets managed object to null and releases reference to the previous managed
// object, if it existed.
void reset() { scoped_refptr().swap(*this); }
// Returns the owned pointer (if any), releasing ownership to the caller. The
// caller is responsible for managing the lifetime of the reference.
[[nodiscard]] T* release();
void swap(scoped_refptr& r) noexcept { std::swap(ptr_, r.ptr_); }
explicit operator bool() const { return ptr_ != nullptr; }
template <typename U>
bool operator==(const scoped_refptr<U>& rhs) const {
return ptr_ == rhs.get();
}
template <typename U>
bool operator!=(const scoped_refptr<U>& rhs) const {
return !operator==(rhs);
}
template <typename U>
bool operator<(const scoped_refptr<U>& rhs) const {
return ptr_ < rhs.get();
}
protected:
T* ptr_ = nullptr;
private:
template <typename U>
friend scoped_refptr<U> base::AdoptRef(U*);
friend class ::base::SequencedTaskRunner;
// Friend access so these classes can use the constructor below as part of a
// binary size optimization.
friend class ::base::internal::BasePromise;
friend class ::base::WrappedPromise;
scoped_refptr(T* p, base::cef_subtle::AdoptRefTag) : ptr_(p) {}
// Friend required for move constructors that set r.ptr_ to null.
template <typename U>
friend class scoped_refptr;
// Non-inline helpers to allow:
// class Opaque;
// extern template class scoped_refptr<Opaque>;
// Otherwise the compiler will complain that Opaque is an incomplete type.
static void AddRef(T* ptr);
static void Release(T* ptr);
};
template <typename T>
T* scoped_refptr<T>::release() {
T* ptr = ptr_;
ptr_ = nullptr;
return ptr;
}
// static
template <typename T>
void scoped_refptr<T>::AddRef(T* ptr) {
ptr->AddRef();
}
// static
template <typename T>
void scoped_refptr<T>::Release(T* ptr) {
ptr->Release();
}
template <typename T, typename U>
bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
return lhs.get() == rhs;
}
template <typename T, typename U>
bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
return lhs == rhs.get();
}
template <typename T>
bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
return !static_cast<bool>(lhs);
}
template <typename T>
bool operator==(std::nullptr_t null, const scoped_refptr<T>& rhs) {
return !static_cast<bool>(rhs);
}
template <typename T, typename U>
bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
return !operator==(lhs, rhs);
}
template <typename T, typename U>
bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
return !operator==(lhs, rhs);
}
template <typename T>
bool operator!=(const scoped_refptr<T>& lhs, std::nullptr_t null) {
return !operator==(lhs, null);
}
template <typename T>
bool operator!=(std::nullptr_t null, const scoped_refptr<T>& rhs) {
return !operator==(null, rhs);
}
template <typename T>
std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
return out << p.get();
}
template <typename T>
void swap(scoped_refptr<T>& lhs, scoped_refptr<T>& rhs) noexcept {
lhs.swap(rhs);
}
#endif // !USING_CHROMIUM_INCLUDES
#endif // CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_