AMD GCN: Implement circular buffering.

The GCN port outputs stdout and stderr via a shared-memory interface.
Previously the buffer was limited to 1000 write operations, which was enough
for testing purposes, but easy to exhaust.

This patch implements a new circular buffering system allowing a greater
amount of output.  The interface must allow hundreds of hardware threads to
output simultaneously.  The new limit is UINT32_MAX write operations.

Unfortunately, there's no way to tell if the host side has also been updated.
This code will misbehave unless the gcn-run from GCC is also updated (although
it's fine the other way around), but that patch has already been committed.

OK?

Andrew Stubbs
Mentor Graphics / CodeSourcery
This commit is contained in:
Andrew Stubbs 2019-03-18 16:18:09 +00:00 committed by Corinna Vinschen
parent 38322b9bf6
commit 62c66a39bd
1 changed files with 38 additions and 17 deletions

View File

@ -26,10 +26,14 @@
The next_output counter must be atomically incremented for each
print output. Only when the print data is fully written can the
"written" flag be set. */
"written" flag be set.
The buffer is circular; the host increments the consumed counter
and clears the written flag as it goes, opening up slots for reuse.
The counters always use absolute numbers. */
struct output {
int return_value;
int next_output;
unsigned int next_output;
struct printf_data {
int written;
char msg[128];
@ -39,7 +43,8 @@ struct output {
double dvalue;
char text[128];
};
} queue[1000];
} queue[1024];
unsigned int consumed;
};
_READ_WRITE_RETURN_TYPE write (int fd, const void *buf, size_t count)
@ -55,33 +60,49 @@ _READ_WRITE_RETURN_TYPE write (int fd, const void *buf, size_t count)
struct output *data = (struct output *)kernargs[2];
/* Each output slot allows 256 bytes, so reserve as many as we need. */
int slot_count = ((count+1)/256)+1;
int index = __atomic_fetch_add (&data->next_output, slot_count,
__ATOMIC_ACQUIRE);
unsigned int slot_count = ((count+1)/256)+1;
unsigned int index = __atomic_fetch_add (&data->next_output, slot_count,
__ATOMIC_ACQUIRE);
if ((unsigned int)(index + slot_count) < data->consumed)
{
/* Overflow. */
errno = EFBIG;
return 0;
}
for (int c = count;
c >= 0 && index < 1000;
c >= 0;
buf += 256, c -= 256, index++)
{
unsigned int slot = index % 1024;
/* Spinlock while the host catches up. */
if (index >= 1024)
while (__atomic_load_n (&data->consumed, __ATOMIC_ACQUIRE)
<= (index - 1024))
asm ("s_sleep 64");
if (c < 128)
{
memcpy (data->queue[index].msg, buf, c);
data->queue[index].msg[c] = '\0';
data->queue[index].text[0] = '\0';
memcpy (data->queue[slot].msg, buf, c);
data->queue[slot].msg[c] = '\0';
data->queue[slot].text[0] = '\0';
}
else if (c < 256)
{
memcpy (data->queue[index].msg, buf, 128);
memcpy (data->queue[index].text, buf+128, c-128);
data->queue[index].text[c-128] = '\0';
memcpy (data->queue[slot].msg, buf, 128);
memcpy (data->queue[slot].text, buf+128, c-128);
data->queue[slot].text[c-128] = '\0';
}
else
{
memcpy (data->queue[index].msg, buf, 128);
memcpy (data->queue[index].text, buf+128, 128);
memcpy (data->queue[slot].msg, buf, 128);
memcpy (data->queue[slot].text, buf+128, 128);
}
data->queue[index].type = 3; /* Raw. */
__atomic_store_n (&data->queue[index].written, 1, __ATOMIC_RELEASE);
data->queue[slot].type = 3; /* Raw. */
__atomic_store_n (&data->queue[slot].written, 1, __ATOMIC_RELEASE);
}
return count;