Add strtold and wcstold to libmingwex.a

* mingwex/strtold.c: New file.
	* mingwex/wcstold.c: New file.
	* mingwex/ldtoa.c: New file.
	* mingwex/math/cephes_emath.h: New file.
	* mingwex/math/cephes_emath.c: New file.
	* mingwex/Makefile.in (DISTFILES): Add new files.
	(MATH_DISTFILES): Ditto.
	(STDLIB_OBJS): New. Define as strtold.c wcstold.c.
	(MATH_OBJS): Add cephes_emath.o.
	(LIB_OBJS): Add $(STDLIB_OBJS).
	* include/stdlib.h (strtold, wcstold): Add prototypes.
	* include/wchar.h (wcstold): Add prototype.

Add missing ChangeLog entry for 2002-11-09.
This commit is contained in:
Danny Smith 2002-11-26 00:11:06 +00:00
parent 4e85569d11
commit 5362be5926
9 changed files with 3147 additions and 9 deletions

View File

@ -1,6 +1,30 @@
2002-11-26 Danny Smith <dannysmith@users.sourceforge.net>
* mingwex/strtold.c: New file.
* mingwex/wcstold.c: New file.
* mingwex/ldtoa.c: New file.
* mingwex/math/cephes_emath.h: New file.
* mingwex/math/cephes_emath.c: New file.
* mingwex/Makefile.in (DISTFILES): Add new files.
(MATH_DISTFILES): Ditto.
(STDLIB_OBJS): New. Define as strtold.c wcstold.c.
(MATH_OBJS): Add cephes_emath.o.
(LIB_OBJS): Add $(STDLIB_OBJS).
* include/stdlib.h (strtold, wcstold): Add prototypes.
* include/wchar.h (wcstold): Add prototype.
2002-11-09 Danny Smith <dannysmith@users.sourceforge.net>
* include/math.h (sqrt): Remove inline definition.
(sqrtf): Replace inline definition with prototype.
(sqrtl): Likewise.
* mingwex/math/sqrtf.c (sqrtf): Set domain error if
argument less than zero.
* mingwex/math/sqrtf.c (sqrtl): Likewise.
2002-10-30 Guido Serassio <serassio@libero.it>
* include/stdio.h (_getnaxstdio): Add prototype.
* include/stdio.h (_getmaxstdio): Add prototype.
(_setmaxstdio): Likewise.
2002-10-19 Kang Li <rubylith@users.sourceforge.net>

View File

@ -324,6 +324,7 @@ double strtod (const char*, char**);
#if !defined __NO_ISOCEXT /* extern stubs in static libmingwex.a */
extern __inline__ float strtof (const char *nptr, char **endptr)
{ return (strtod (nptr, endptr));}
long double strtold (const char * __restrict__, char ** __restrict__);
#endif /* __NO_ISOCEXT */
long strtol (const char*, char**, int);
@ -335,6 +336,7 @@ double wcstod (const wchar_t*, wchar_t**);
#if !defined __NO_ISOCEXT /* extern stub in static libmingwex.a */
extern __inline__ float wcstof( const wchar_t *nptr, wchar_t **endptr)
{ return (wcstod(nptr, endptr)); }
long double wcstold (const wchar_t * __restrict__, wchar_t ** __restrict__);
#endif /* __NO_ISOCEXT */
long wcstol (const wchar_t*, wchar_t**, int);

View File

@ -250,6 +250,7 @@ double wcstod (const wchar_t*, wchar_t**);
#if !defined __NO_ISOCEXT /* extern stub in static libmingwex.a */
extern __inline__ float wcstof( const wchar_t *nptr, wchar_t **endptr)
{ return (wcstod(nptr, endptr)); }
long double wcstold (const wchar_t * __restrict__, wchar_t ** __restrict__);
#endif /* __NO_ISOCEXT */
#define _WSTDLIB_DEFINED
#endif

View File

@ -29,15 +29,16 @@ DISTFILES = Makefile.in configure configure.in \
_Exit.c atoll.c dirent.c feclearexcept.c fegetenv.c \
fegetexceptflag.c fegetround.c feholdexcept.c feraiseexcept.c \
fesetenv.c fesetexceptflag.c fesetround.c fetestexcept.c \
feupdateenv.c fwide.c imaxabs.c imaxdiv.c lltoa.c lltow.c \
feupdateenv.c fwide.c imaxabs.c imaxdiv.c ldtoa.c lltoa.c lltow.c \
mbsinit.c mingw-fseek.c sitest.c snprintf.c snwprintf.c \
strtof.c strtoimax.c strtoumax.c testwmem.c ulltoa.c ulltow.c \
vsnprintf.c vsnwprintf.c wcstof.c wcstoimax.c wcstoumax.c \
wdirent.c wmemchr.c wmemcmp.c wmemcpy.c wmemmove.c wmemset.c \
wtoll.c
strtof.c strtoimax.c strtold.c strtoumax.c testwmem.c \
ulltoa.c ulltow.c vsnprintf.c vsnwprintf.c wcstof.c \
wcstoimax.c wcstold.c wcstoumax.c wdirent.c wmemchr.c \
wmemcmp.c wmemcpy.c wmemmove.c wmemset.c wtoll.c
MATH_DISTFILES = \
acosf.c acosl.c asinf.c asinl.c atan2f.c atan2l.c \
atanf.c atanl.c cbrt.c cbrtf.c cbrtl.c ceilf.S ceill.S cephes_mconf.h \
atanf.c atanl.c cbrt.c cbrtf.c cbrtl.c ceilf.S ceill.S \
cephes_emath.h cephes_emath.c cephes_mconf.h \
copysign.S copysignf.S copysignl.S cosf.S coshf.c coshl.c cosl.S \
exp2.S exp2f.S exp2l.S expf.c expl.c fabs.c fabsf.c fabsl.c \
fdim.c fdimf.c fdiml.c floorf.S floorl.S fma.S fmaf.S fmal.c \
@ -93,6 +94,8 @@ Q8_OBJS = \
fwide.o imaxabs.o imaxdiv.o mbsinit.o \
strtoimax.o strtoumax.o wcstoimax.o wcstoumax.o \
wmemchr.o wmemcmp.o wmemcpy.o wmemmove.o wmemset.o
STDLIB_OBJS = \
strtold.o wcstold.o
STDLIB_STUB_OBJS = \
lltoa.o ulltoa.o \
lltow.o ulltow.o \
@ -104,6 +107,7 @@ STDIO_STUB_OBJS = \
MATH_OBJS = \
acosf.o acosl.o asinf.o asinl.o atan2f.o atan2l.o \
atanf.o atanl.o cbrt.o cbrtf.o cbrtl.o ceilf.o ceill.o \
cephes_emath.o \
copysign.o copysignf.o copysignl.o cosf.o coshf.o coshl.o cosl.o \
exp2.o exp2f.o exp2l.o expf.o expl.o fabs.o fabsf.o fabsl.o \
fdim.o fdimf.o fdiml.o floorf.o floorl.o fma.o fmaf.o fmal.o \
@ -132,8 +136,8 @@ POSIX_OBJS = \
REPLACE_OBJS = \
mingw-fseek.o
LIB_OBJS = $(Q8_OBJS) $(STDLIB_STUB_OBJS) $(STDIO_STUB_OBJS) \
$(MATH_OBJS) $(FENV_OBJS) $(POSIX_OBJS) \
LIB_OBJS = $(Q8_OBJS) $(STDLIB_OBJS) $(STDLIB_STUB_OBJS) \
$(STDIO_STUB_OBJS) $(MATH_OBJS) $(FENV_OBJS) $(POSIX_OBJS) \
$(REPLACE_OBJS)
LIBS = $(LIBMINGWEX_A)
@ -184,6 +188,8 @@ distclean:
# Dependancies
#
wdirent.o: $(srcdir)/dirent.c $(srcdir)/wdirent.c
strtold.o: $(srcdir)/strtold.c $(srcdir)/math/cephes_emath.h
wcstold.o: $(srcdir)/wcstold.c $(srcdir)/math/cephes_emath.h
dist:

View File

@ -0,0 +1,614 @@
/* This file is extracted from S L Moshier's ioldoubl.c,
* modified for use in MinGW
*
* Extended precision arithmetic functions for long double I/O.
* This program has been placed in the public domain.
*/
/*
* Revision history:
*
* 5 Jan 84 PDP-11 assembly language version
* 6 Dec 86 C language version
* 30 Aug 88 100 digit version, improved rounding
* 15 May 92 80-bit long double support
*
* Author: S. L. Moshier.
*
* 6 Oct 02 Modified for MinGW by inlining utility routines,
* removing global variables and splitting out strtold
* from _IO_ldtoa and _IO_ldtostr.
*
* Danny Smith <dannysmith@users.sourceforge.net>
*
*/
#ifdef USE_LDTOA
#include "math/cephes_emath.h"
#if NE == 10
/* 1.0E0 */
static const unsigned short __eone[NE] =
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,};
#else
static const unsigned short __eone[NE] = {
0, 0000000,0000000,0000000,0100000,0x3fff,};
#endif
#if NE == 10
static const unsigned short __etens[NTEN + 1][NE] =
{
{0x6576, 0x4a92, 0x804a, 0x153f,
0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */
{0x6a32, 0xce52, 0x329a, 0x28ce,
0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */
{0x526c, 0x50ce, 0xf18b, 0x3d28,
0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
{0x9c66, 0x58f8, 0xbc50, 0x5c54,
0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
{0x851e, 0xeab7, 0x98fe, 0x901b,
0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
{0x0235, 0x0137, 0x36b1, 0x336c,
0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
{0x50f8, 0x25fb, 0xc76b, 0x6b71,
0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
{0x0000, 0x0000, 0x0000, 0x0000,
0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */
};
#else
static const unsigned short __etens[NTEN+1][NE] = {
{0xc94c,0x979a,0x8a20,0x5202,0xc460,0x7525,},/* 10**4096 */
{0xa74d,0x5de4,0xc53d,0x3b5d,0x9e8b,0x5a92,},/* 10**2048 */
{0x650d,0x0c17,0x8175,0x7586,0xc976,0x4d48,},
{0xcc65,0x91c6,0xa60e,0xa0ae,0xe319,0x46a3,},
{0xddbc,0xde8d,0x9df9,0xebfb,0xaa7e,0x4351,},
{0xc66f,0x8cdf,0x80e9,0x47c9,0x93ba,0x41a8,},
{0x3cbf,0xa6d5,0xffcf,0x1f49,0xc278,0x40d3,},
{0xf020,0xb59d,0x2b70,0xada8,0x9dc5,0x4069,},
{0x0000,0x0000,0x0400,0xc9bf,0x8e1b,0x4034,},
{0x0000,0x0000,0x0000,0x2000,0xbebc,0x4019,},
{0x0000,0x0000,0x0000,0x0000,0x9c40,0x400c,},
{0x0000,0x0000,0x0000,0x0000,0xc800,0x4005,},
{0x0000,0x0000,0x0000,0x0000,0xa000,0x4002,}, /* 10**1 */
};
#endif
#if NE == 10
static const unsigned short __emtens[NTEN + 1][NE] =
{
{0x2030, 0xcffc, 0xa1c3, 0x8123,
0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */
{0x8264, 0xd2cb, 0xf2ea, 0x12d4,
0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */
{0xf53f, 0xf698, 0x6bd3, 0x0158,
0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
{0xe731, 0x04d4, 0xe3f2, 0xd332,
0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
{0xa23e, 0x5308, 0xfefb, 0x1155,
0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
{0xe26d, 0xdbde, 0xd05d, 0xb3f6,
0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
{0x2a20, 0x6224, 0x47b3, 0x98d7,
0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
{0x0b5b, 0x4af2, 0xa581, 0x18ed,
0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
{0xbf71, 0xa9b3, 0x7989, 0xbe68,
0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
{0x3d4d, 0x7c3d, 0x36ba, 0x0d2b,
0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
{0xc155, 0xa4a8, 0x404e, 0x6113,
0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
{0xd70a, 0x70a3, 0x0a3d, 0xa3d7,
0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
{0xcccd, 0xcccc, 0xcccc, 0xcccc,
0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */
};
#else
static const unsigned short __emtens[NTEN+1][NE] = {
{0x2de4,0x9fde,0xd2ce,0x04c8,0xa6dd,0x0ad8,}, /* 10**-4096 */
{0x4925,0x2de4,0x3436,0x534f,0xceae,0x256b,}, /* 10**-2048 */
{0x87a6,0xc0bd,0xda57,0x82a5,0xa2a6,0x32b5,},
{0x7133,0xd21c,0xdb23,0xee32,0x9049,0x395a,},
{0xfa91,0x1939,0x637a,0x4325,0xc031,0x3cac,},
{0xac7d,0xe4a0,0x64bc,0x467c,0xddd0,0x3e55,},
{0x3f24,0xe9a5,0xa539,0xea27,0xa87f,0x3f2a,},
{0x67de,0x94ba,0x4539,0x1ead,0xcfb1,0x3f94,},
{0x4c2f,0xe15b,0xc44d,0x94be,0xe695,0x3fc9,},
{0xfdc2,0xcefc,0x8461,0x7711,0xabcc,0x3fe4,},
{0xd3c3,0x652b,0xe219,0x1758,0xd1b7,0x3ff1,},
{0x3d71,0xd70a,0x70a3,0x0a3d,0xa3d7,0x3ff8,},
{0xcccd,0xcccc,0xcccc,0xcccc,0xcccc,0x3ffb,}, /* 10**-1 */
};
#endif
/* This routine will not return more than NDEC+1 digits. */
void __etoasc(short unsigned int * __restrict__ x,
char * __restrict__ string,
const int ndigits, const int outformat,
int* outexp)
{
long digit;
unsigned short y[NI], t[NI], u[NI], w[NI], equot[NI];
const unsigned short *r, *p;
const unsigned short *ten;
unsigned short sign;
int i, j, k, expon, ndigs;
char *s, *ss;
unsigned short m;
ndigs = ndigits;
#ifdef NANS
if( __eisnan(x) )
{
sprintf( string, " NaN " );
expon = 9999;
goto bxit;
}
#endif
__emov( x, y ); /* retain external format */
if( y[NE-1] & 0x8000 )
{
sign = 0xffff;
y[NE-1] &= 0x7fff;
}
else
{
sign = 0;
}
expon = 0;
ten = &__etens[NTEN][0];
__emov( __eone, t );
/* Test for zero exponent */
if( y[NE-1] == 0 )
{
for( k=0; k<NE-1; k++ )
{
if( y[k] != 0 )
goto tnzro; /* denormalized number */
}
goto isone; /* legal all zeros */
}
tnzro:
/* Test for infinity.
*/
if( y[NE-1] == 0x7fff )
{
if( sign )
sprintf( string, " -Infinity " );
else
sprintf( string, " Infinity " );
expon = 9999;
goto bxit;
}
/* Test for exponent nonzero but significand denormalized.
* This is an error condition.
*/
if( (y[NE-1] != 0) && ((y[NE-2] & 0x8000) == 0) )
{
mtherr( "etoasc", DOMAIN );
sprintf( string, "NaN" );
expon = 9999;
goto bxit;
}
/* Compare to 1.0 */
i = __ecmp( __eone, y );
if( i == 0 )
goto isone;
if( i < 0 )
{ /* Number is greater than 1 */
/* Convert significand to an integer and strip trailing decimal zeros. */
__emov( y, u );
u[NE-1] = EXONE + NBITS - 1;
p = &__etens[NTEN-4][0];
m = 16;
do
{
__ediv( p, u, t);
__efloor( t, w );
for( j=0; j<NE-1; j++ )
{
if( t[j] != w[j] )
goto noint;
}
__emov( t, u );
expon += (int )m;
noint:
p += NE;
m >>= 1;
}
while( m != 0 );
/* Rescale from integer significand */
u[NE-1] += y[NE-1] - (unsigned int )(EXONE + NBITS - 1);
__emov( u, y );
/* Find power of 10 */
__emov( __eone, t );
m = MAXP;
p = &__etens[0][0];
while( __ecmp( ten, u ) <= 0 )
{
if( __ecmp( p, u ) <= 0 )
{
__ediv( p, u, u );
__emul( p, t, t );
expon += (int )m;
}
m >>= 1;
if( m == 0 )
break;
p += NE;
}
}
else
{ /* Number is less than 1.0 */
/* Pad significand with trailing decimal zeros. */
if( y[NE-1] == 0 )
{
while( (y[NE-2] & 0x8000) == 0 )
{
__emul( ten, y, y );
expon -= 1;
}
}
else
{
__emovi( y, w );
for( i=0; i<NDEC+1; i++ )
{
if( (w[NI-1] & 0x7) != 0 )
break;
/* multiply by 10 */
__emovz( w, u );
__eshdn1( u );
__eshdn1( u );
__eaddm( w, u );
u[1] += 3;
while( u[2] != 0 )
{
__eshdn1(u);
u[1] += 1;
}
if( u[NI-1] != 0 )
break;
if( __eone[NE-1] <= u[1] )
break;
__emovz( u, w );
expon -= 1;
}
__emovo( w, y );
}
k = -MAXP;
p = &__emtens[0][0];
r = &__etens[0][0];
__emov( y, w );
__emov( __eone, t );
while( __ecmp( __eone, w ) > 0 )
{
if( __ecmp( p, w ) >= 0 )
{
__emul( r, w, w );
__emul( r, t, t );
expon += k;
}
k /= 2;
if( k == 0 )
break;
p += NE;
r += NE;
}
__ediv( t, __eone, t );
}
isone:
/* Find the first (leading) digit. */
__emovi( t, w );
__emovz( w, t );
__emovi( y, w );
__emovz( w, y );
__eiremain( t, y, equot);
digit = equot[NI-1];
while( (digit == 0) && (__eiszero(y) == 0) )
{
__eshup1( y );
__emovz( y, u );
__eshup1( u );
__eshup1( u );
__eaddm( u, y );
__eiremain( t, y, equot);
digit = equot[NI-1];
expon -= 1;
}
s = string;
if( sign )
*s++ = '-';
else
*s++ = ' ';
/* Examine number of digits requested by caller. */
if( outformat == 3 )
ndigs += expon;
/*
else if( ndigs < 0 )
ndigs = 0;
*/
if( ndigs > NDEC )
ndigs = NDEC;
if( digit == 10 )
{
*s++ = '1';
*s++ = '.';
if( ndigs > 0 )
{
*s++ = '0';
ndigs -= 1;
}
expon += 1;
if( ndigs < 0 )
{
ss = s;
goto doexp;
}
}
else
{
*s++ = (char )digit + '0';
*s++ = '.';
}
/* Generate digits after the decimal point. */
for( k=0; k<=ndigs; k++ )
{
/* multiply current number by 10, without normalizing */
__eshup1( y );
__emovz( y, u );
__eshup1( u );
__eshup1( u );
__eaddm( u, y );
__eiremain( t, y, equot);
*s++ = (char )equot[NI-1] + '0';
}
digit = equot[NI-1];
--s;
ss = s;
/* round off the ASCII string */
if( digit > 4 )
{
/* Test for critical rounding case in ASCII output. */
if( digit == 5 )
{
if( __eiiszero(y) == 0 )
goto roun; /* round to nearest */
if( (*(s-1) & 1) == 0 )
goto doexp; /* round to even */
}
/* Round up and propagate carry-outs */
roun:
--s;
k = *s & 0x7f;
/* Carry out to most significant digit? */
if( ndigs < 0 )
{
/* This will print like "1E-6". */
*s = '1';
expon += 1;
goto doexp;
}
else if( k == '.' )
{
--s;
k = *s;
k += 1;
*s = (char )k;
/* Most significant digit carries to 10? */
if( k > '9' )
{
expon += 1;
*s = '1';
}
goto doexp;
}
/* Round up and carry out from less significant digits */
k += 1;
*s = (char )k;
if( k > '9' )
{
*s = '0';
goto roun;
}
}
doexp:
#if defined (__GO32__) || defined (__MINGW32__)
if( expon >= 0 )
sprintf( ss, "e+%02d", expon );
else
sprintf( ss, "e-%02d", -expon );
#else
sprintf( ss, "E%d", expon );
#endif
bxit:
if (outexp)
*outexp = expon;
}
/* FIXME: Not thread safe */
static char outstr[128];
char *
_IO_ldtoa(long double d, int mode, int ndigits, int *decpt,
int *sign, char **rve)
{
unsigned short e[NI];
char *s, *p;
int k;
int outexpon = 0;
union
{
unsigned short int us[6];
long double ld;
} xx;
xx.ld = d;
__e64toe(xx.us, e );
if( __eisneg(e) )
*sign = 1;
else
*sign = 0;
/* Mode 3 is "f" format. */
if( mode != 3 )
ndigits -= 1;
/* Mode 0 is for %.999 format, which is supposed to give a
minimum length string that will convert back to the same binary value.
For now, just ask for 20 digits which is enough but sometimes too many. */
if( mode == 0 )
ndigits = 20;
/* This sanity limit must agree with the corresponding one in etoasc, to
keep straight the returned value of outexpon. */
if( ndigits > NDEC )
ndigits = NDEC;
__etoasc( e, outstr, ndigits, mode, &outexpon );
s = outstr;
if( __eisinf(e) || __eisnan(e) )
{
*decpt = 9999;
goto stripspaces;
}
*decpt = outexpon + 1;
/* Transform the string returned by etoasc into what the caller wants. */
/* Look for decimal point and delete it from the string. */
s = outstr;
while( *s != '\0' )
{
if( *s == '.' )
goto yesdecpt;
++s;
}
goto nodecpt;
yesdecpt:
/* Delete the decimal point. */
while( *s != '\0' )
{
*s = *(s+1);
++s;
}
nodecpt:
/* Back up over the exponent field. */
while( *s != 'E' && *s != 'e' && s > outstr)
--s;
*s = '\0';
stripspaces:
/* Strip leading spaces and sign. */
p = outstr;
while( *p == ' ' || *p == '-')
++p;
/* Find new end of string. */
s = outstr;
while( (*s++ = *p++) != '\0' )
;
--s;
/* Strip trailing zeros. */
if( mode == 2 )
k = 1;
else if( ndigits > outexpon )
k = ndigits;
else
k = outexpon;
while( *(s-1) == '0' && ((s - outstr) > k))
*(--s) = '\0';
/* In f format, flush small off-scale values to zero.
Rounding has been taken care of by etoasc. */
if( mode == 3 && ((ndigits + outexpon) < 0))
{
s = outstr;
*s = '\0';
*decpt = 0;
}
if( rve )
*rve = s;
return outstr;
}
void
_IO_ldtostr(long double *x, char *string, int ndigs, int flags, char fmt)
{
unsigned short w[NI];
char *t, *u;
int outexpon = 0;
int outformat = -1;
char dec_sym = *(localeconv()->decimal_point);
__e64toe( (unsigned short *)x, w );
__etoasc( w, string, ndigs, outformat, &outexpon );
if( ndigs == 0 && flags == 0 )
{
/* Delete the decimal point unless alternate format. */
t = string;
while( *t != '.' )
++t;
u = t + 1;
while( *t != '\0' )
*t++ = *u++;
}
if (*string == ' ')
{
t = string;
u = t + 1;
while( *t != '\0' )
*t++ = *u++;
}
if (fmt == 'E')
{
t = string;
while( *t != 'e' )
++t;
*t = 'E';
}
if (dec_sym != '.')
{
t = string;
while (*t != '.')
++t;
*t = dec_sym;
}
}
#endif /* USE_LDTOA */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,713 @@
#ifndef _CEPHES_EMATH_H
#define _CEPHES_EMATH_H
/* This file is extracted from S L Moshier's ioldoubl.c,
* modified for use in MinGW
*
* Extended precision arithmetic functions for long double I/O.
* This program has been placed in the public domain.
*/
/*
* Revision history:
*
* 5 Jan 84 PDP-11 assembly language version
* 6 Dec 86 C language version
* 30 Aug 88 100 digit version, improved rounding
* 15 May 92 80-bit long double support
*
* Author: S. L. Moshier.
*
* 6 Oct 02 Modified for MinGW by inlining utility routines,
* removing global variables, and splitting out strtold
* from _IO_ldtoa and _IO_ldtostr.
*
* Danny Smith <dannysmith@users.sourceforge.net>
*
*/
/* ieee.c
*
* Extended precision IEEE binary floating point arithmetic routines
*
* Numbers are stored in C language as arrays of 16-bit unsigned
* short integers. The arguments of the routines are pointers to
* the arrays.
*
*
* External e type data structure, simulates Intel 8087 chip
* temporary real format but possibly with a larger significand:
*
* NE-1 significand words (least significant word first,
* most significant bit is normally set)
* exponent (value = EXONE for 1.0,
* top bit is the sign)
*
*
* Internal data structure of a number (a "word" is 16 bits):
*
* ei[0] sign word (0 for positive, 0xffff for negative)
* ei[1] biased __exponent (value = EXONE for the number 1.0)
* ei[2] high guard word (always zero after normalization)
* ei[3]
* to ei[NI-2] significand (NI-4 significand words,
* most significant word first,
* most significant bit is set)
* ei[NI-1] low guard word (0x8000 bit is rounding place)
*
*
*
* Routines for external format numbers
*
* __asctoe64( string, &d ) ASCII string to long double
* __asctoeg( string, e, prec ) ASCII string to specified precision
* __e64toe( &d, e ) IEEE long double precision to e type
* __eadd( a, b, c ) c = b + a
* __eclear(e) e = 0
* __ecmp (a, b) Returns 1 if a > b, 0 if a == b,
* -1 if a < b, -2 if either a or b is a NaN.
* __ediv( a, b, c ) c = b / a
* __efloor( a, b ) truncate to integer, toward -infinity
* __efrexp( a, exp, s ) extract exponent and significand
* __eifrac( e, &l, frac ) e to long integer and e type fraction
* __euifrac( e, &l, frac ) e to unsigned long integer and e type fraction
* __einfin( e ) set e to infinity, leaving its sign alone
* __eldexp( a, n, b ) multiply by 2**n
* __emov( a, b ) b = a
* __emul( a, b, c ) c = b * a
* __eneg(e) e = -e
* __eround( a, b ) b = nearest integer value to a
* __esub( a, b, c ) c = b - a
* __e24toasc( &f, str, n ) single to ASCII string, n digits after decimal
* __e53toasc( &d, str, n ) double to ASCII string, n digits after decimal
* __e64toasc( &d, str, n ) long double to ASCII string
* __etoasc( e, str, n ) e to ASCII string, n digits after decimal
* __etoe24( e, &f ) convert e type to IEEE single precision
* __etoe53( e, &d ) convert e type to IEEE double precision
* __etoe64( e, &d ) convert e type to IEEE long double precision
* __eisneg( e ) 1 if sign bit of e != 0, else 0
* __eisinf( e ) 1 if e has maximum exponent (non-IEEE)
* or is infinite (IEEE)
* __eisnan( e ) 1 if e is a NaN
* __esqrt( a, b ) b = square root of a
*
*
* Routines for internal format numbers
*
* __eaddm( ai, bi ) add significands, bi = bi + ai
* __ecleaz(ei) ei = 0
* __ecleazs(ei) set ei = 0 but leave its sign alone
* __ecmpm( ai, bi ) compare significands, return 1, 0, or -1
* __edivm( ai, bi ) divide significands, bi = bi / ai
* __emdnorm(ai,l,s,exp) normalize and round off
* __emovi( a, ai ) convert external a to internal ai
* __emovo( ai, a ) convert internal ai to external a
* __emovz( ai, bi ) bi = ai, low guard word of bi = 0
* __emulm( ai, bi ) multiply significands, bi = bi * ai
* __enormlz(ei) left-justify the significand
* __eshdn1( ai ) shift significand and guards down 1 bit
* __eshdn8( ai ) shift down 8 bits
* __eshdn6( ai ) shift down 16 bits
* __eshift( ai, n ) shift ai n bits up (or down if n < 0)
* __eshup1( ai ) shift significand and guards up 1 bit
* __eshup8( ai ) shift up 8 bits
* __eshup6( ai ) shift up 16 bits
* __esubm( ai, bi ) subtract significands, bi = bi - ai
*
*
* The result is always normalized and rounded to NI-4 word precision
* after each arithmetic operation.
*
* Exception flags are NOT fully supported.
*
* Define INFINITY in mconf.h for support of infinity; otherwise a
* saturation arithmetic is implemented.
*
* Define NANS for support of Not-a-Number items; otherwise the
* arithmetic will never produce a NaN output, and might be confused
* by a NaN input.
* If NaN's are supported, the output of ecmp(a,b) is -2 if
* either a or b is a NaN. This means asking if(ecmp(a,b) < 0)
* may not be legitimate. Use if(ecmp(a,b) == -1) for less-than
* if in doubt.
* Signaling NaN's are NOT supported; they are treated the same
* as quiet NaN's.
*
* Denormals are always supported here where appropriate (e.g., not
* for conversion to DEC numbers).
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <locale.h>
#include <ctype.h>
#define alloca __builtin_alloca
/* Don't build non-ANSI _IO_ldtoa. It is not thread safe. */
#ifndef USE_LDTOA
#define USE_LDTOA 0
#endif
/* Number of 16 bit words in external x type format */
#define NE 6
/* Number of 16 bit words in internal format */
#define NI (NE+3)
/* Array offset to exponent */
#define E 1
/* Array offset to high guard word */
#define M 2
/* Number of bits of precision */
#define NBITS ((NI-4)*16)
/* Maximum number of decimal digits in ASCII conversion
* = NBITS*log10(2)
*/
#define NDEC (NBITS*8/27)
/* The exponent of 1.0 */
#define EXONE (0x3fff)
#define mtherr(x,y)
extern long double strtold (const char * __restrict__ s, char ** __restrict__ se);
extern int __asctoe64(const char * __restrict__ ss,
short unsigned int * __restrict__ y);
extern void __emul(const short unsigned int * a,
const short unsigned int * b,
short unsigned int * c);
extern int __ecmp(const short unsigned int * __restrict__ a,
const short unsigned int * __restrict__ b);
extern int __enormlz(short unsigned int *x);
extern int __eshift(short unsigned int *x, int sc);
extern void __eaddm(const short unsigned int * __restrict__ x,
short unsigned int * __restrict__ y);
extern void __esubm(const short unsigned int * __restrict__ x,
short unsigned int * __restrict__ y);
extern void __emdnorm(short unsigned int *s, int lost, int subflg,
long int exp, int rcntrl, const int rndprc);
extern void __toe64(short unsigned int * __restrict__ a,
short unsigned int * __restrict__ b);
extern int __edivm(short unsigned int * __restrict__ den,
short unsigned int * __restrict__ num);
extern int __emulm(const short unsigned int * __restrict__ a,
short unsigned int * __restrict__ b);
extern void __emovi(const short unsigned int * __restrict__ a,
short unsigned int * __restrict__ b);
extern void __emovo(const short unsigned int * __restrict__ a,
short unsigned int * __restrict__ b);
#if USE_LDTOA
extern char * _IO_ldtoa(long double, int, int, int *, int *, char **);
extern void _IO_ldtostr(long double *x, char *string, int ndigs,
int flags, char fmt);
extern void __eiremain(short unsigned int * __restrict__ den,
short unsigned int *__restrict__ num,
short unsigned int *__restrict__ equot);
extern void __efloor(short unsigned int *x, short unsigned int *y);
extern void __eadd1(const short unsigned int * __restrict__ a,
const short unsigned int * __restrict__ b,
short unsigned int * __restrict__ c,
int subflg);
extern void __esub(const short unsigned int *a, const short unsigned int *b,
short unsigned int *c);
extern void __ediv(const short unsigned int *a, const short unsigned int *b,
short unsigned int *c);
extern void __e64toe(short unsigned int *pe, short unsigned int *y);
#endif
static __inline__ int __eisneg(const short unsigned int *x);
static __inline__ int __eisinf(const short unsigned int *x);
static __inline__ int __eisnan(const short unsigned int *x);
static __inline__ int __eiszero(const short unsigned int *a);
static __inline__ void __emovz(register const short unsigned int * __restrict__ a,
register short unsigned int * __restrict__ b);
static __inline__ void __eclear(register short unsigned int *x);
static __inline__ void __ecleaz(register short unsigned int *xi);
static __inline__ void __ecleazs(register short unsigned int *xi);
static __inline__ int __eiisinf(const short unsigned int *x);
static __inline__ int __eiisnan(const short unsigned int *x);
static __inline__ int __eiiszero(const short unsigned int *x);
static __inline__ void __enan_64(short unsigned int *nan);
static __inline__ void __enan_NBITS (short unsigned int *nan);
static __inline__ void __enan_NI16 (short unsigned int *nan);
static __inline__ void __einfin(register short unsigned int *x);
static __inline__ void __eneg(short unsigned int *x);
static __inline__ void __eshup1(register short unsigned int *x);
static __inline__ void __eshup8(register short unsigned int *x);
static __inline__ void __eshup6(register short unsigned int *x);
static __inline__ void __eshdn1(register short unsigned int *x);
static __inline__ void __eshdn8(register short unsigned int *x);
static __inline__ void __eshdn6(register short unsigned int *x);
/* Intel IEEE, low order words come first:
*/
#define IBMPC 1
/* Define 1 for ANSI C atan2() function
* See atan.c and clog.c.
*/
#define ANSIC 1
/*define VOLATILE volatile*/
#define VOLATILE
/* For 12-byte long doubles on an i386, pad a 16-bit short 0
* to the end of real constants initialized by integer arrays.
*
* #define XPD 0,
*
* Otherwise, the type is 10 bytes long and XPD should be
* defined blank.
*
* #define XPD
*/
#define XPD 0,
/* #define XPD */
#define NANS
#define INFINITY
/* NaN's require infinity support. */
#ifdef NANS
#ifndef INFINITY
#define INFINITY
#endif
#endif
/* This handles 64-bit long ints. */
#define LONGBITS (8 * sizeof(long))
#define NTEN 12
#define MAXP 4096
extern const unsigned short __etens[NTEN + 1][NE];
/*
; Clear out entire external format number.
;
; unsigned short x[];
; eclear( x );
*/
static __inline__ void __eclear(register short unsigned int *x)
{
memset(x, 0, NE * sizeof(unsigned short));
}
/* Move external format number from a to b.
*
* emov( a, b );
*/
static __inline__ void __emov(register const short unsigned int * __restrict__ a,
register short unsigned int * __restrict__ b)
{
memcpy(b, a, NE * sizeof(unsigned short));
}
/*
; Negate external format number
;
; unsigned short x[NE];
; eneg( x );
*/
static __inline__ void __eneg(short unsigned int *x)
{
#ifdef NANS
if( __eisnan(x) )
return;
#endif
x[NE-1] ^= 0x8000; /* Toggle the sign bit */
}
/* Return 1 if external format number is negative,
* else return zero.
*/
static __inline__ int __eisneg(const short unsigned int *x)
{
#ifdef NANS
if( __eisnan(x) )
return( 0 );
#endif
if( x[NE-1] & 0x8000 )
return( 1 );
else
return( 0 );
}
/* Return 1 if external format number has maximum possible exponent,
* else return zero.
*/
static __inline__ int __eisinf(const short unsigned int *x)
{
if( (x[NE-1] & 0x7fff) == 0x7fff )
{
#ifdef NANS
if( __eisnan(x) )
return( 0 );
#endif
return( 1 );
}
else
return( 0 );
}
/* Check if e-type number is not a number.
*/
static __inline__ int __eisnan(const short unsigned int *x)
{
#ifdef NANS
int i;
/* NaN has maximum __exponent */
if( (x[NE-1] & 0x7fff) == 0x7fff )
/* ... and non-zero significand field. */
for( i=0; i<NE-1; i++ )
{
if( *x++ != 0 )
return (1);
}
#endif
return (0);
}
/*
; Fill __entire number, including __exponent and significand, with
; largest possible number. These programs implement a saturation
; value that is an ordinary, legal number. A special value
; "infinity" may also be implemented; this would require tests
; for that value and implementation of special rules for arithmetic
; operations involving inifinity.
*/
static __inline__ void __einfin(register short unsigned int *x)
{
register int i;
#ifdef INFINITY
for( i=0; i<NE-1; i++ )
*x++ = 0;
*x |= 32767;
#else
for( i=0; i<NE-1; i++ )
*x++ = 0xffff;
*x |= 32766;
*(x-5) = 0;
#endif
}
/* Clear out internal format number.
*/
static __inline__ void __ecleaz(register short unsigned int *xi)
{
memset(xi, 0, NI * sizeof(unsigned short));
}
/* same, but don't touch the sign. */
static __inline__ void __ecleazs(register short unsigned int *xi)
{
++xi;
memset(xi, 0, (NI-1) * sizeof(unsigned short));
}
/* Move internal format number from a to b.
*/
static __inline__ void __emovz(register const short unsigned int * __restrict__ a,
register short unsigned int * __restrict__ b)
{
memcpy(b, a, (NI-1) * sizeof(unsigned short));
b[NI-1]=0;
}
/* Return nonzero if internal format number is a NaN.
*/
static __inline__ int __eiisnan (const short unsigned int *x)
{
int i;
if( (x[E] & 0x7fff) == 0x7fff )
{
for( i=M+1; i<NI; i++ )
{
if( x[i] != 0 )
return(1);
}
}
return(0);
}
/* Return nonzero if external format number is zero. */
static __inline__ int
__eiszero(const short unsigned int * a)
{
if (*((long double*) a) == 0)
return (1);
return (0);
}
/* Return nonzero if internal format number is zero. */
static __inline__ int
__eiiszero(const short unsigned int * ai)
{
int i;
/* skip the sign word */
for( i=1; i<NI-1; i++ )
{
if( ai[i] != 0 )
return (0);
}
return (1);
}
/* Return nonzero if internal format number is infinite. */
static __inline__ int
__eiisinf (const unsigned short *x)
{
#ifdef NANS
if (__eiisnan (x))
return (0);
#endif
if ((x[E] & 0x7fff) == 0x7fff)
return (1);
return (0);
}
/*
; Compare significands of numbers in internal format.
; Guard words are included in the comparison.
;
; unsigned short a[NI], b[NI];
; cmpm( a, b );
;
; for the significands:
; returns +1 if a > b
; 0 if a == b
; -1 if a < b
*/
static __inline__ int __ecmpm(register const short unsigned int * __restrict__ a,
register const short unsigned int * __restrict__ b)
{
int i;
a += M; /* skip up to significand area */
b += M;
for( i=M; i<NI; i++ )
{
if( *a++ != *b++ )
goto difrnt;
}
return(0);
difrnt:
if( *(--a) > *(--b) )
return(1);
else
return(-1);
}
/*
; Shift significand down by 1 bit
*/
static __inline__ void __eshdn1(register short unsigned int *x)
{
register unsigned short bits;
int i;
x += M; /* point to significand area */
bits = 0;
for( i=M; i<NI; i++ )
{
if( *x & 1 )
bits |= 1;
*x >>= 1;
if( bits & 2 )
*x |= 0x8000;
bits <<= 1;
++x;
}
}
/*
; Shift significand up by 1 bit
*/
static __inline__ void __eshup1(register short unsigned int *x)
{
register unsigned short bits;
int i;
x += NI-1;
bits = 0;
for( i=M; i<NI; i++ )
{
if( *x & 0x8000 )
bits |= 1;
*x <<= 1;
if( bits & 2 )
*x |= 1;
bits <<= 1;
--x;
}
}
/*
; Shift significand down by 8 bits
*/
static __inline__ void __eshdn8(register short unsigned int *x)
{
register unsigned short newbyt, oldbyt;
int i;
x += M;
oldbyt = 0;
for( i=M; i<NI; i++ )
{
newbyt = *x << 8;
*x >>= 8;
*x |= oldbyt;
oldbyt = newbyt;
++x;
}
}
/*
; Shift significand up by 8 bits
*/
static __inline__ void __eshup8(register short unsigned int *x)
{
int i;
register unsigned short newbyt, oldbyt;
x += NI-1;
oldbyt = 0;
for( i=M; i<NI; i++ )
{
newbyt = *x >> 8;
*x <<= 8;
*x |= oldbyt;
oldbyt = newbyt;
--x;
}
}
/*
; Shift significand up by 16 bits
*/
static __inline__ void __eshup6(register short unsigned int *x)
{
int i;
register unsigned short *p;
p = x + M;
x += M + 1;
for( i=M; i<NI-1; i++ )
*p++ = *x++;
*p = 0;
}
/*
; Shift significand down by 16 bits
*/
static __inline__ void __eshdn6(register short unsigned int *x)
{
int i;
register unsigned short *p;
x += NI-1;
p = x + 1;
for( i=M; i<NI-1; i++ )
*(--p) = *(--x);
*(--p) = 0;
}
/*
; Add significands
; x + y replaces y
*/
static __inline__ void __enan_64(unsigned short* nan)
{
static const unsigned short nan64[6]
= {0, 0, 0, 0xc000, 0xffff, 0};
nan = (unsigned short*) nan64;
return;
}
static __inline__ void __enan_NBITS(unsigned short* nan)
{
int i;
for( i=0; i<NE-2; i++ )
*nan++ = 0;
*nan++ = 0xc000;
*nan++ = 0x7fff;
return;
}
static __inline__ void __enan_NI16(unsigned short* nan)
{
int i;
*nan++ = 0;
*nan = 0x7fff;
*nan = 0;
*nan = 0xc000;
for( i=4; i<NI; i++ )
*nan++ = 0;
return;
}
#endif /* _CEPHES_EMATH_H */

View File

@ -0,0 +1,384 @@
/* This file is extracted from S L Moshier's ioldoubl.c,
* modified for use in MinGW
*
* Extended precision arithmetic functions for long double I/O.
* This program has been placed in the public domain.
*/
/*
* Revision history:
*
* 5 Jan 84 PDP-11 assembly language version
* 6 Dec 86 C language version
* 30 Aug 88 100 digit version, improved rounding
* 15 May 92 80-bit long double support
*
* Author: S. L. Moshier.
*
* 6 Oct 02 Modified for MinGW by inlining utility routines,
* removing global variables and splitting out strtold
* from _IO_ldtoa and _IO_ldtostr.
*
* Danny Smith <dannysmith@users.sourceforge.net>
*/
#include "math/cephes_emath.h"
#if NE == 10
/* 1.0E0 */
static const unsigned short __eone[NE] =
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,};
#else
static const unsigned short __eone[NE] = {
0, 0000000,0000000,0000000,0100000,0x3fff,};
#endif
#if NE == 10
static const unsigned short __etens[NTEN + 1][NE] =
{
{0x6576, 0x4a92, 0x804a, 0x153f,
0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */
{0x6a32, 0xce52, 0x329a, 0x28ce,
0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */
{0x526c, 0x50ce, 0xf18b, 0x3d28,
0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
{0x9c66, 0x58f8, 0xbc50, 0x5c54,
0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
{0x851e, 0xeab7, 0x98fe, 0x901b,
0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
{0x0235, 0x0137, 0x36b1, 0x336c,
0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
{0x50f8, 0x25fb, 0xc76b, 0x6b71,
0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
{0x0000, 0x0000, 0x0000, 0x0000,
0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
{0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */
};
#else
static const unsigned short __etens[NTEN+1][NE] = {
{0xc94c,0x979a,0x8a20,0x5202,0xc460,0x7525,},/* 10**4096 */
{0xa74d,0x5de4,0xc53d,0x3b5d,0x9e8b,0x5a92,},/* 10**2048 */
{0x650d,0x0c17,0x8175,0x7586,0xc976,0x4d48,},
{0xcc65,0x91c6,0xa60e,0xa0ae,0xe319,0x46a3,},
{0xddbc,0xde8d,0x9df9,0xebfb,0xaa7e,0x4351,},
{0xc66f,0x8cdf,0x80e9,0x47c9,0x93ba,0x41a8,},
{0x3cbf,0xa6d5,0xffcf,0x1f49,0xc278,0x40d3,},
{0xf020,0xb59d,0x2b70,0xada8,0x9dc5,0x4069,},
{0x0000,0x0000,0x0400,0xc9bf,0x8e1b,0x4034,},
{0x0000,0x0000,0x0000,0x2000,0xbebc,0x4019,},
{0x0000,0x0000,0x0000,0x0000,0x9c40,0x400c,},
{0x0000,0x0000,0x0000,0x0000,0xc800,0x4005,},
{0x0000,0x0000,0x0000,0x0000,0xa000,0x4002,}, /* 10**1 */
};
#endif
int __asctoe64(const char * __restrict__ ss, short unsigned int * __restrict__ y)
{
unsigned short yy[NI], xt[NI], tt[NI];
int esign, decflg, sgnflg, nexp, exp, prec, lost;
int k, trail, c;
long lexp;
unsigned short nsign;
const unsigned short *p;
char *sp, *lstr;
char *s;
char dec_sym = *(localeconv ()->decimal_point);
int lenldstr = 0;
/* Copy the input string. */
c = strlen (ss) + 2;
lstr = (char *) alloca (c);
s = (char *) ss;
while( isspace ((int)(unsigned char)*s)) /* skip leading spaces */
{
++s;
++lenldstr;
}
sp = lstr;
for( k=0; k<c; k++ )
{
if( (*sp++ = *s++) == '\0' )
break;
}
*sp = '\0';
s = lstr;
lost = 0;
nsign = 0;
decflg = 0;
sgnflg = 0;
nexp = 0;
exp = 0;
prec = 0;
__ecleaz( yy );
trail = 0;
nxtcom:
k = *s - '0';
if( (k >= 0) && (k <= 9) )
{
/* Ignore leading zeros */
if( (prec == 0) && (decflg == 0) && (k == 0) )
goto donchr;
/* Identify and strip trailing zeros after the decimal point. */
if( (trail == 0) && (decflg != 0) )
{
sp = s;
while( (*sp >= '0') && (*sp <= '9') )
++sp;
--sp;
while( *sp == '0' )
*sp-- = 'z';
trail = 1;
if( *s == 'z' )
goto donchr;
}
/* If enough digits were given to more than fill up the yy register,
* continuing until overflow into the high guard word yy[2]
* guarantees that there will be a roundoff bit at the top
* of the low guard word after normalization.
*/
if( yy[2] == 0 )
{
if( decflg )
nexp += 1; /* count digits after decimal point */
__eshup1( yy ); /* multiply current number by 10 */
__emovz( yy, xt );
__eshup1( xt );
__eshup1( xt );
__eaddm( xt, yy );
__ecleaz( xt );
xt[NI-2] = (unsigned short )k;
__eaddm( xt, yy );
}
else
{
/* Mark any lost non-zero digit. */
lost |= k;
/* Count lost digits before the decimal point. */
if (decflg == 0)
nexp -= 1;
}
prec += 1;
goto donchr;
}
if (*s == dec_sym)
{
if( decflg )
goto daldone;
++decflg;
}
else
switch( *s )
{
case 'z':
break;
case 'E':
case 'e':
goto expnt;
case '-':
nsign = 0xffff;
if( sgnflg )
goto daldone;
++sgnflg;
break;
case '+':
if( sgnflg )
goto daldone;
++sgnflg;
break;
case 'i':
case 'I':
{
s++;
if (*s != 'n' && *s != 'N')
goto zero;
s++;
if (*s != 'f' && *s != 'F')
goto zero;
s++;
if ((*s == 'i' || *s == 'I') && (s[1] == 'n' || s[1] == 'N')
&& (s[2] == 'i' || s[2] == 'I')
&& (s[3] == 't' || s[3] == 'T')
&& (s[4] == 'y' || s[4] == 'Y'))
s += 5;
goto infinite;
}
case 'n':
case 'N':
{
s++;
if (*s != 'a' && *s != 'A')
goto zero;
s++;
if (*s != 'n' && *s != 'N')
goto zero;
s++;
__enan_NI16( yy );
goto aexit;
}
default:
goto daldone;
}
donchr:
++s;
goto nxtcom;
/* Exponent interpretation */
expnt:
esign = 1;
exp = 0;
++s;
/* check for + or - */
if( *s == '-' )
{
esign = -1;
++s;
}
if( *s == '+' )
++s;
while( (*s >= '0') && (*s <= '9') && exp < 4978)
{
exp *= 10;
exp += *s++ - '0';
}
if( esign < 0 )
exp = -exp;
if( exp > 4932 )
{
errno = ERANGE;
infinite:
__ecleaz(yy);
yy[E] = 0x7fff; /* infinity */
goto aexit;
}
if( exp < -4977 )
{
errno = ERANGE;
zero:
__ecleaz(yy);
goto aexit;
}
daldone:
nexp = exp - nexp;
/* Pad trailing zeros to minimize power of 10, per IEEE spec. */
while( (nexp > 0) && (yy[2] == 0) )
{
__emovz( yy, xt );
__eshup1( xt );
__eshup1( xt );
__eaddm( yy, xt );
__eshup1( xt );
if( xt[2] != 0 )
break;
nexp -= 1;
__emovz( xt, yy );
}
if( (k = __enormlz(yy)) > NBITS )
{
__ecleaz(yy);
goto aexit;
}
lexp = (EXONE - 1 + NBITS) - k;
__emdnorm( yy, lost, 0, lexp, 64, NBITS );
/* convert to external format */
/* Multiply by 10**nexp. If precision is 64 bits,
* the maximum relative error incurred in forming 10**n
* for 0 <= n <= 324 is 8.2e-20, at 10**180.
* For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947.
* For 0 >= n >= -999, it is -1.55e-19 at 10**-435.
*/
lexp = yy[E];
if( nexp == 0 )
{
k = 0;
goto expdon;
}
esign = 1;
if( nexp < 0 )
{
nexp = -nexp;
esign = -1;
if( nexp > 4096 )
{ /* Punt. Can't handle this without 2 divides. */
__emovi( __etens[0], tt );
lexp -= tt[E];
k = __edivm( tt, yy );
lexp += EXONE;
nexp -= 4096;
}
}
p = &__etens[NTEN][0];
__emov( __eone, xt );
exp = 1;
do
{
if( exp & nexp )
__emul( p, xt, xt );
p -= NE;
exp = exp + exp;
}
while( exp <= MAXP );
__emovi( xt, tt );
if( esign < 0 )
{
lexp -= tt[E];
k = __edivm( tt, yy );
lexp += EXONE;
}
else
{
lexp += tt[E];
k = __emulm( tt, yy );
lexp -= EXONE - 1;
}
expdon:
/* Round and convert directly to the destination type */
__emdnorm( yy, k, 0, lexp, 64, 64 );
aexit:
yy[0] = nsign;
__toe64( yy, y );
return (lenldstr + s - lstr);
}
long double strtold (const char * __restrict__ s, char ** __restrict__ se)
{
int lenldstr;
union
{
unsigned short int us[6];
long double ld;
} xx = {{0}};
lenldstr = __asctoe64( s, xx.us);
if (se)
*se = (char*)s + lenldstr;
return xx.ld;
}

View File

@ -0,0 +1,76 @@
/* Wide char wrapper for strtold
* Revision history:
* 6 Nov 2002 Initial version.
*
* Contributor: Danny Smith <dannysmith@users.sourceforege.net>
*/
/* This routine has been placed in the public domain.*/
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <locale.h>
#include <wchar.h>
#include <stdlib.h>
#include <string.h>
extern int __asctoe64(const char * __restrict__ ss,
short unsigned int * __restrict__ y);
static __inline__ unsigned int get_codepage (void)
{
char* cp;
/*
locale :: "lang[_country[.code_page]]"
| ".code_page"
*/
if ((cp = strchr(setlocale(LC_CTYPE, NULL), '.')))
return atoi( cp + 1);
else
return 0;
}
long double wcstold (const wchar_t * __restrict__ wcs, wchar_t ** __restrict__ wcse)
{
char * cs;
int i;
int lenldstr;
union
{
unsigned short int us[6];
long double ld;
} xx;
unsigned int cp = get_codepage ();
/* Allocate enough room for (possibly) mb chars */
cs = (char *) malloc ((wcslen(wcs)+1) * MB_CUR_MAX);
if (cp == 0) /* C locale */
{
for (i = 0; (wcs[i] != 0) && wcs[i] <= 255; i++)
cs[i] = (char) wcs[i];
cs[i] = '\0';
}
else
{
int nbytes = -1;
int mb_len = 0;
/* loop through till we hit null or invalid character */
for (i = 0; (wcs[i] != 0) && (nbytes != 0); i++)
{
nbytes = WideCharToMultiByte(cp, WC_COMPOSITECHECK | WC_SEPCHARS,
wcs + i, 1, cs + mb_len, MB_CUR_MAX,
NULL, NULL);
mb_len += nbytes;
}
cs[mb_len] = '\0';
}
lenldstr = __asctoe64( cs, xx.us);
free (cs);
if (wcse)
*wcse = (wchar_t*) wcs + lenldstr;
return xx.ld;
}