Make strstr and strcasestr O(n), not O(n^2); add memmem.
* libc/string/str-two-way.h: New file. * libc/string/memmem.c (memmem): New file. * libc/include/string.h (memmem): Declare for all platforms. * libc/string/strstr.c (strstr): Provide O(n) implementation when not optimizing for space. * libc/string/strcasestr.c (strcasestr): Likewise. * libc/string/Makefile.am (ELIX_SOURCES): Rename to... (ELIX_2_SOURCES): ...this. (ELIX_4_SOURCES): New category, for memmem. (lib_a_SOURCES, libstring_la_SOURCES): Build new file. (CHEWOUT_FILES): Build documentation for memmem. * libc/string/strings.tex: Include new docs.
This commit is contained in:
parent
978e84cf60
commit
40617efc8b
|
@ -1,3 +1,19 @@
|
|||
2008-01-11 Eric Blake <ebb9@byu.net>
|
||||
|
||||
Make strstr and strcasestr O(n), not O(n^2); add memmem.
|
||||
* libc/string/str-two-way.h: New file.
|
||||
* libc/string/memmem.c (memmem): New file.
|
||||
* libc/include/string.h (memmem): Declare for all platforms.
|
||||
* libc/string/strstr.c (strstr): Provide O(n) implementation when
|
||||
not optimizing for space.
|
||||
* libc/string/strcasestr.c (strcasestr): Likewise.
|
||||
* libc/string/Makefile.am (ELIX_SOURCES): Rename to...
|
||||
(ELIX_2_SOURCES): ...this.
|
||||
(ELIX_4_SOURCES): New category, for memmem.
|
||||
(lib_a_SOURCES, libstring_la_SOURCES): Build new file.
|
||||
(CHEWOUT_FILES): Build documentation for memmem.
|
||||
* libc/string/strings.tex: Include new docs.
|
||||
|
||||
2008-01-08 Jeff Johnston <jjohnstn@redhat.com>
|
||||
|
||||
* libc/machine/m68k/memcpy.S: Remove % from register references
|
||||
|
@ -171,7 +187,7 @@
|
|||
2007-11-07 Dave Brolley <brolley@redhat.com>
|
||||
|
||||
* libc/machine/configure: Regenerated to pick up mep-elf changes.
|
||||
|
||||
|
||||
* Contribute mep-elf from Red Hat
|
||||
2006-10-27 DJ Delorie <dj@redhat.com>
|
||||
|
||||
|
|
|
@ -56,9 +56,7 @@ int _EXFUN(ffs,(int));
|
|||
char *_EXFUN(index,(const char *, int));
|
||||
_PTR _EXFUN(memccpy,(_PTR, const _PTR, int, size_t));
|
||||
_PTR _EXFUN(mempcpy,(_PTR, const _PTR, size_t));
|
||||
#ifdef __CYGWIN__
|
||||
extern void *memmem (__const void *, size_t, __const void *, size_t);
|
||||
#endif
|
||||
_PTR _EXFUN(memmem, (const _PTR, size_t, const _PTR, size_t));
|
||||
char *_EXFUN(rindex,(const char *, int));
|
||||
char *_EXFUN(stpcpy,(char *, const char *));
|
||||
char *_EXFUN(stpncpy,(char *, const char *, size_t));
|
||||
|
|
|
@ -72,9 +72,9 @@ GENERAL_SOURCES = \
|
|||
wmemset.c
|
||||
|
||||
if ELIX_LEVEL_1
|
||||
ELIX_SOURCES =
|
||||
ELIX_2_SOURCES =
|
||||
else
|
||||
ELIX_SOURCES = \
|
||||
ELIX_2_SOURCES = \
|
||||
bcmp.c \
|
||||
memccpy.c \
|
||||
mempcpy.c \
|
||||
|
@ -87,15 +87,30 @@ ELIX_SOURCES = \
|
|||
wcpncpy.c \
|
||||
endif
|
||||
|
||||
if ELIX_LEVEL_1
|
||||
ELIX_4_SOURCES =
|
||||
else
|
||||
if ELIX_LEVEL_2
|
||||
ELIX_4_SOURCES =
|
||||
else
|
||||
if ELIX_LEVEL_3
|
||||
ELIX_4_SOURCES =
|
||||
else
|
||||
ELIX_4_SOURCES = \
|
||||
memmem.c
|
||||
endif !ELIX_LEVEL_3
|
||||
endif !ELIX_LEVEL_2
|
||||
endif !ELIX_LEVEL_1
|
||||
|
||||
libstring_la_LDFLAGS = -Xcompiler -nostdlib
|
||||
|
||||
if USE_LIBTOOL
|
||||
noinst_LTLIBRARIES = libstring.la
|
||||
libstring_la_SOURCES = $(GENERAL_SOURCES) $(ELIX_SOURCES)
|
||||
libstring_la_SOURCES = $(GENERAL_SOURCES) $(ELIX_2_SOURCES) $(ELIX_4_SOURCES)
|
||||
noinst_DATA = objectlist.awk.in
|
||||
else
|
||||
noinst_LIBRARIES = lib.a
|
||||
lib_a_SOURCES = $(GENERAL_SOURCES) $(ELIX_SOURCES)
|
||||
lib_a_SOURCES = $(GENERAL_SOURCES) $(ELIX_2_SOURCES) $(ELIX_4_SOURCES)
|
||||
lib_a_CFLAGS = $(AM_CFLAGS)
|
||||
noinst_DATA =
|
||||
endif # USE_LIBTOOL
|
||||
|
@ -117,7 +132,8 @@ wcslcat.def wcslcpy.def wcslen.def wcsncat.def \
|
|||
wcsncmp.def wcsncpy.def wcsnlen.def wcspbrk.def \
|
||||
wcsrchr.def wcsspn.def wcsstr.def \
|
||||
wcswidth.def wcsxfrm.def wcwidth.def wmemchr.def \
|
||||
wmemcmp.def wmemcpy.def wmemmove.def wmemset.def
|
||||
wmemcmp.def wmemcpy.def wmemmove.def wmemset.def \
|
||||
memmem.def
|
||||
|
||||
SUFFIXES = .def
|
||||
|
||||
|
|
|
@ -0,0 +1,102 @@
|
|||
/* Byte-wise substring search, using the Two-Way algorithm.
|
||||
* Copyright (C) 2008 Eric Blake
|
||||
* Permission to use, copy, modify, and distribute this software
|
||||
* is freely granted, provided that this notice is preserved.
|
||||
*/
|
||||
|
||||
/*
|
||||
FUNCTION
|
||||
<<memmem>>---find memory segment
|
||||
|
||||
INDEX
|
||||
memmem
|
||||
|
||||
ANSI_SYNOPSIS
|
||||
#include <string.h>
|
||||
char *memmem(const void *<[s1]>, size_t <[l1]>, const void *<[s2]>,
|
||||
size_t <[l2]>);
|
||||
|
||||
DESCRIPTION
|
||||
|
||||
Locates the first occurrence in the memory region pointed to
|
||||
by <[s1]> with length <[l1]> of the sequence of bytes pointed
|
||||
to by <[s2]> of length <[l2]>. If you already know the
|
||||
lengths of your haystack and needle, <<memmem>> can be much
|
||||
faster than <<strstr>>.
|
||||
|
||||
RETURNS
|
||||
Returns a pointer to the located segment, or a null pointer if
|
||||
<[s2]> is not found. If <[l2]> is 0, <[s1]> is returned.
|
||||
|
||||
PORTABILITY
|
||||
<<memmem>> is a newlib extension.
|
||||
|
||||
<<memmem>> requires no supporting OS subroutines.
|
||||
|
||||
QUICKREF
|
||||
memmem pure
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#if !defined(PREFER_SIZE_OVER_SPEED) && !defined(__OPTIMIZE_SIZE__)
|
||||
# define RETURN_TYPE void *
|
||||
# define AVAILABLE(h, h_l, j, n_l) ((j) <= (h_l) - (n_l))
|
||||
# include "str-two-way.h"
|
||||
#endif
|
||||
|
||||
void *
|
||||
_DEFUN (memmem, (haystack_start, haystack_len, needle_start, needle_len),
|
||||
const void *haystack_start _AND
|
||||
size_t haystack_len _AND
|
||||
const void *needle_start _AND
|
||||
size_t needle_len)
|
||||
{
|
||||
/* Abstract memory is considered to be an array of 'unsigned char' values,
|
||||
not an array of 'char' values. See ISO C 99 section 6.2.6.1. */
|
||||
const unsigned char *haystack = (const unsigned char *) haystack_start;
|
||||
const unsigned char *needle = (const unsigned char *) needle_start;
|
||||
|
||||
if (needle_len == 0)
|
||||
/* The first occurrence of the empty string is deemed to occur at
|
||||
the beginning of the string. */
|
||||
return (void *) haystack;
|
||||
|
||||
#if defined(PREFER_SIZE_OVER_SPEED) || defined(__OPTIMIZE_SIZE__)
|
||||
|
||||
/* Less code size, but quadratic performance in the worst case. */
|
||||
while (needle_len <= haystack_len)
|
||||
{
|
||||
if (!memcmp (haystack, needle, needle_len))
|
||||
return (void *) haystack;
|
||||
haystack++;
|
||||
haystack_len--;
|
||||
}
|
||||
return NULL;
|
||||
|
||||
#else /* compilation for speed */
|
||||
|
||||
/* Larger code size, but guaranteed linear performance. */
|
||||
|
||||
/* Sanity check, otherwise the loop might search through the whole
|
||||
memory. */
|
||||
if (haystack_len < needle_len)
|
||||
return NULL;
|
||||
|
||||
/* Use optimizations in memchr when possible, to reduce the search
|
||||
size of haystack using a linear algorithm with a smaller
|
||||
coefficient. However, avoid memchr for long needles, since we
|
||||
can often achieve sublinear performance. */
|
||||
if (needle_len < LONG_NEEDLE_THRESHOLD)
|
||||
{
|
||||
haystack = memchr (haystack, *needle, haystack_len);
|
||||
if (!haystack || needle_len == 1)
|
||||
return (void *) haystack;
|
||||
haystack_len -= haystack - (const unsigned char *) haystack_start;
|
||||
if (haystack_len < needle_len)
|
||||
return NULL;
|
||||
return two_way_short_needle (haystack, haystack_len, needle, needle_len);
|
||||
}
|
||||
return two_way_long_needle (haystack, haystack_len, needle, needle_len);
|
||||
#endif /* compilation for speed */
|
||||
}
|
|
@ -0,0 +1,415 @@
|
|||
/* Byte-wise substring search, using the Two-Way algorithm.
|
||||
* Copyright (C) 2008 Eric Blake
|
||||
* Permission to use, copy, modify, and distribute this software
|
||||
* is freely granted, provided that this notice is preserved.
|
||||
*/
|
||||
|
||||
|
||||
/* Before including this file, you need to include <string.h>, and define:
|
||||
RESULT_TYPE A macro that expands to the return type.
|
||||
AVAILABLE(h, h_l, j, n_l) A macro that returns nonzero if there are
|
||||
at least N_L bytes left starting at
|
||||
H[J]. H is 'unsigned char *', H_L, J,
|
||||
and N_L are 'size_t'; H_L is an
|
||||
lvalue. For NUL-terminated searches,
|
||||
H_L can be modified each iteration to
|
||||
avoid having to compute the end of H
|
||||
up front.
|
||||
|
||||
For case-insensitivity, you may optionally define:
|
||||
CMP_FUNC(p1, p2, l) A macro that returns 0 iff the first L
|
||||
characters of P1 and P2 are equal.
|
||||
CANON_ELEMENT(c) A macro that canonicalizes an element
|
||||
right after it has been fetched from
|
||||
one of the two strings. The argument
|
||||
is an 'unsigned char'; the result must
|
||||
be an 'unsigned char' as well.
|
||||
|
||||
This file undefines the macros documented above, and defines
|
||||
LONG_NEEDLE_THRESHOLD.
|
||||
*/
|
||||
|
||||
#include <limits.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/* We use the Two-Way string matching algorithm, which guarantees
|
||||
linear complexity with constant space. Additionally, for long
|
||||
needles, we also use a bad character shift table similar to the
|
||||
Boyer-Moore algorithm to achieve improved (potentially sub-linear)
|
||||
performance.
|
||||
|
||||
See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
|
||||
and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
|
||||
*/
|
||||
|
||||
/* Point at which computing a bad-byte shift table is likely to be
|
||||
worthwhile. Small needles should not compute a table, since it
|
||||
adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
|
||||
speedup no greater than a factor of NEEDLE_LEN. The larger the
|
||||
needle, the better the potential performance gain. On the other
|
||||
hand, on non-POSIX systems with CHAR_BIT larger than eight, the
|
||||
memory required for the table is prohibitive. */
|
||||
#if CHAR_BIT < 10
|
||||
# define LONG_NEEDLE_THRESHOLD 32U
|
||||
#else
|
||||
# define LONG_NEEDLE_THRESHOLD SIZE_MAX
|
||||
#endif
|
||||
|
||||
#define MAX(a, b) ((a < b) ? (b) : (a))
|
||||
|
||||
#ifndef CANON_ELEMENT
|
||||
# define CANON_ELEMENT(c) c
|
||||
#endif
|
||||
#ifndef CMP_FUNC
|
||||
# define CMP_FUNC memcmp
|
||||
#endif
|
||||
|
||||
/* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
|
||||
Return the index of the first byte in the right half, and set
|
||||
*PERIOD to the global period of the right half.
|
||||
|
||||
The global period of a string is the smallest index (possibly its
|
||||
length) at which all remaining bytes in the string are repetitions
|
||||
of the prefix (the last repetition may be a subset of the prefix).
|
||||
|
||||
When NEEDLE is factored into two halves, a local period is the
|
||||
length of the smallest word that shares a suffix with the left half
|
||||
and shares a prefix with the right half. All factorizations of a
|
||||
non-empty NEEDLE have a local period of at least 1 and no greater
|
||||
than NEEDLE_LEN.
|
||||
|
||||
A critical factorization has the property that the local period
|
||||
equals the global period. All strings have at least one critical
|
||||
factorization with the left half smaller than the global period.
|
||||
|
||||
Given an ordered alphabet, a critical factorization can be computed
|
||||
in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
|
||||
larger of two ordered maximal suffixes. The ordered maximal
|
||||
suffixes are determined by lexicographic comparison of
|
||||
periodicity. */
|
||||
static size_t
|
||||
critical_factorization (const unsigned char *needle, size_t needle_len,
|
||||
size_t *period)
|
||||
{
|
||||
/* Index of last byte of left half, or SIZE_MAX. */
|
||||
size_t max_suffix, max_suffix_rev;
|
||||
size_t j; /* Index into NEEDLE for current candidate suffix. */
|
||||
size_t k; /* Offset into current period. */
|
||||
size_t p; /* Intermediate period. */
|
||||
unsigned char a, b; /* Current comparison bytes. */
|
||||
|
||||
/* Invariants:
|
||||
0 <= j < NEEDLE_LEN - 1
|
||||
-1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
|
||||
min(max_suffix, max_suffix_rev) < global period of NEEDLE
|
||||
1 <= p <= global period of NEEDLE
|
||||
p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
|
||||
1 <= k <= p
|
||||
*/
|
||||
|
||||
/* Perform lexicographic search. */
|
||||
max_suffix = SIZE_MAX;
|
||||
j = 0;
|
||||
k = p = 1;
|
||||
while (j + k < needle_len)
|
||||
{
|
||||
a = CANON_ELEMENT (needle[j + k]);
|
||||
b = CANON_ELEMENT (needle[max_suffix + k]);
|
||||
if (a < b)
|
||||
{
|
||||
/* Suffix is smaller, period is entire prefix so far. */
|
||||
j += k;
|
||||
k = 1;
|
||||
p = j - max_suffix;
|
||||
}
|
||||
else if (a == b)
|
||||
{
|
||||
/* Advance through repetition of the current period. */
|
||||
if (k != p)
|
||||
++k;
|
||||
else
|
||||
{
|
||||
j += p;
|
||||
k = 1;
|
||||
}
|
||||
}
|
||||
else /* b < a */
|
||||
{
|
||||
/* Suffix is larger, start over from current location. */
|
||||
max_suffix = j++;
|
||||
k = p = 1;
|
||||
}
|
||||
}
|
||||
*period = p;
|
||||
|
||||
/* Perform reverse lexicographic search. */
|
||||
max_suffix_rev = SIZE_MAX;
|
||||
j = 0;
|
||||
k = p = 1;
|
||||
while (j + k < needle_len)
|
||||
{
|
||||
a = CANON_ELEMENT (needle[j + k]);
|
||||
b = CANON_ELEMENT (needle[max_suffix_rev + k]);
|
||||
if (b < a)
|
||||
{
|
||||
/* Suffix is smaller, period is entire prefix so far. */
|
||||
j += k;
|
||||
k = 1;
|
||||
p = j - max_suffix_rev;
|
||||
}
|
||||
else if (a == b)
|
||||
{
|
||||
/* Advance through repetition of the current period. */
|
||||
if (k != p)
|
||||
++k;
|
||||
else
|
||||
{
|
||||
j += p;
|
||||
k = 1;
|
||||
}
|
||||
}
|
||||
else /* a < b */
|
||||
{
|
||||
/* Suffix is larger, start over from current location. */
|
||||
max_suffix_rev = j++;
|
||||
k = p = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Choose the longer suffix. Return the first byte of the right
|
||||
half, rather than the last byte of the left half. */
|
||||
if (max_suffix_rev + 1 < max_suffix + 1)
|
||||
return max_suffix + 1;
|
||||
*period = p;
|
||||
return max_suffix_rev + 1;
|
||||
}
|
||||
|
||||
/* Return the first location of non-empty NEEDLE within HAYSTACK, or
|
||||
NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
|
||||
method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
|
||||
Performance is guaranteed to be linear, with an initialization cost
|
||||
of 2 * NEEDLE_LEN comparisons.
|
||||
|
||||
If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
|
||||
most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
|
||||
If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
|
||||
HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching. */
|
||||
static RETURN_TYPE
|
||||
two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
|
||||
const unsigned char *needle, size_t needle_len)
|
||||
{
|
||||
size_t i; /* Index into current byte of NEEDLE. */
|
||||
size_t j; /* Index into current window of HAYSTACK. */
|
||||
size_t period; /* The period of the right half of needle. */
|
||||
size_t suffix; /* The index of the right half of needle. */
|
||||
|
||||
/* Factor the needle into two halves, such that the left half is
|
||||
smaller than the global period, and the right half is
|
||||
periodic (with a period as large as NEEDLE_LEN - suffix). */
|
||||
suffix = critical_factorization (needle, needle_len, &period);
|
||||
|
||||
/* Perform the search. Each iteration compares the right half
|
||||
first. */
|
||||
if (CMP_FUNC (needle, needle + period, suffix) == 0)
|
||||
{
|
||||
/* Entire needle is periodic; a mismatch can only advance by the
|
||||
period, so use memory to avoid rescanning known occurrences
|
||||
of the period. */
|
||||
size_t memory = 0;
|
||||
j = 0;
|
||||
while (AVAILABLE (haystack, haystack_len, j, needle_len))
|
||||
{
|
||||
/* Scan for matches in right half. */
|
||||
i = MAX (suffix, memory);
|
||||
while (i < needle_len && (CANON_ELEMENT (needle[i])
|
||||
== CANON_ELEMENT (haystack[i + j])))
|
||||
++i;
|
||||
if (needle_len <= i)
|
||||
{
|
||||
/* Scan for matches in left half. */
|
||||
i = suffix - 1;
|
||||
while (memory < i + 1 && (CANON_ELEMENT (needle[i])
|
||||
== CANON_ELEMENT (haystack[i + j])))
|
||||
--i;
|
||||
if (i + 1 < memory + 1)
|
||||
return (RETURN_TYPE) (haystack + j);
|
||||
/* No match, so remember how many repetitions of period
|
||||
on the right half were scanned. */
|
||||
j += period;
|
||||
memory = needle_len - period;
|
||||
}
|
||||
else
|
||||
{
|
||||
j += i - suffix + 1;
|
||||
memory = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* The two halves of needle are distinct; no extra memory is
|
||||
required, and any mismatch results in a maximal shift. */
|
||||
period = MAX (suffix, needle_len - suffix) + 1;
|
||||
j = 0;
|
||||
while (AVAILABLE (haystack, haystack_len, j, needle_len))
|
||||
{
|
||||
/* Scan for matches in right half. */
|
||||
i = suffix;
|
||||
while (i < needle_len && (CANON_ELEMENT (needle[i])
|
||||
== CANON_ELEMENT (haystack[i + j])))
|
||||
++i;
|
||||
if (needle_len <= i)
|
||||
{
|
||||
/* Scan for matches in left half. */
|
||||
i = suffix - 1;
|
||||
while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
|
||||
== CANON_ELEMENT (haystack[i + j])))
|
||||
--i;
|
||||
if (i == SIZE_MAX)
|
||||
return (RETURN_TYPE) (haystack + j);
|
||||
j += period;
|
||||
}
|
||||
else
|
||||
j += i - suffix + 1;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Return the first location of non-empty NEEDLE within HAYSTACK, or
|
||||
NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
|
||||
method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
|
||||
Performance is guaranteed to be linear, with an initialization cost
|
||||
of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
|
||||
|
||||
If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
|
||||
most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
|
||||
and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
|
||||
If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
|
||||
HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
|
||||
sublinear performance is not possible. */
|
||||
static RETURN_TYPE
|
||||
two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
|
||||
const unsigned char *needle, size_t needle_len)
|
||||
{
|
||||
size_t i; /* Index into current byte of NEEDLE. */
|
||||
size_t j; /* Index into current window of HAYSTACK. */
|
||||
size_t period; /* The period of the right half of needle. */
|
||||
size_t suffix; /* The index of the right half of needle. */
|
||||
size_t shift_table[1U << CHAR_BIT]; /* See below. */
|
||||
|
||||
/* Factor the needle into two halves, such that the left half is
|
||||
smaller than the global period, and the right half is
|
||||
periodic (with a period as large as NEEDLE_LEN - suffix). */
|
||||
suffix = critical_factorization (needle, needle_len, &period);
|
||||
|
||||
/* Populate shift_table. For each possible byte value c,
|
||||
shift_table[c] is the distance from the last occurrence of c to
|
||||
the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
|
||||
shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0. */
|
||||
for (i = 0; i < 1U << CHAR_BIT; i++)
|
||||
shift_table[i] = needle_len;
|
||||
for (i = 0; i < needle_len; i++)
|
||||
shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
|
||||
|
||||
/* Perform the search. Each iteration compares the right half
|
||||
first. */
|
||||
if (CMP_FUNC (needle, needle + period, suffix) == 0)
|
||||
{
|
||||
/* Entire needle is periodic; a mismatch can only advance by the
|
||||
period, so use memory to avoid rescanning known occurrences
|
||||
of the period. */
|
||||
size_t memory = 0;
|
||||
size_t shift;
|
||||
j = 0;
|
||||
while (AVAILABLE (haystack, haystack_len, j, needle_len))
|
||||
{
|
||||
/* Check the last byte first; if it does not match, then
|
||||
shift to the next possible match location. */
|
||||
shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
|
||||
if (0 < shift)
|
||||
{
|
||||
if (memory && shift < period)
|
||||
{
|
||||
/* Since needle is periodic, but the last period has
|
||||
a byte out of place, there can be no match until
|
||||
after the mismatch. */
|
||||
shift = needle_len - period;
|
||||
memory = 0;
|
||||
}
|
||||
j += shift;
|
||||
continue;
|
||||
}
|
||||
/* Scan for matches in right half. The last byte has
|
||||
already been matched, by virtue of the shift table. */
|
||||
i = MAX (suffix, memory);
|
||||
while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
|
||||
== CANON_ELEMENT (haystack[i + j])))
|
||||
++i;
|
||||
if (needle_len - 1 <= i)
|
||||
{
|
||||
/* Scan for matches in left half. */
|
||||
i = suffix - 1;
|
||||
while (memory < i + 1 && (CANON_ELEMENT (needle[i])
|
||||
== CANON_ELEMENT (haystack[i + j])))
|
||||
--i;
|
||||
if (i + 1 < memory + 1)
|
||||
return (RETURN_TYPE) (haystack + j);
|
||||
/* No match, so remember how many repetitions of period
|
||||
on the right half were scanned. */
|
||||
j += period;
|
||||
memory = needle_len - period;
|
||||
}
|
||||
else
|
||||
{
|
||||
j += i - suffix + 1;
|
||||
memory = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* The two halves of needle are distinct; no extra memory is
|
||||
required, and any mismatch results in a maximal shift. */
|
||||
size_t shift;
|
||||
period = MAX (suffix, needle_len - suffix) + 1;
|
||||
j = 0;
|
||||
while (AVAILABLE (haystack, haystack_len, j, needle_len))
|
||||
{
|
||||
/* Check the last byte first; if it does not match, then
|
||||
shift to the next possible match location. */
|
||||
shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
|
||||
if (0 < shift)
|
||||
{
|
||||
j += shift;
|
||||
continue;
|
||||
}
|
||||
/* Scan for matches in right half. The last byte has
|
||||
already been matched, by virtue of the shift table. */
|
||||
i = suffix;
|
||||
while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
|
||||
== CANON_ELEMENT (haystack[i + j])))
|
||||
++i;
|
||||
if (needle_len - 1 <= i)
|
||||
{
|
||||
/* Scan for matches in left half. */
|
||||
i = suffix - 1;
|
||||
while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
|
||||
== CANON_ELEMENT (haystack[i + j])))
|
||||
--i;
|
||||
if (i == SIZE_MAX)
|
||||
return (RETURN_TYPE) (haystack + j);
|
||||
j += period;
|
||||
}
|
||||
else
|
||||
j += i - suffix + 1;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#undef AVAILABLE
|
||||
#undef CANON_ELEMENT
|
||||
#undef CMP_FUNC
|
||||
#undef MAX
|
||||
#undef RETURN_TYPE
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
FUNCTION
|
||||
<<strcasestr>>---case-insensitive character string search
|
||||
|
||||
|
||||
INDEX
|
||||
strcasestr
|
||||
|
||||
|
@ -21,9 +21,9 @@ DESCRIPTION
|
|||
is identical to <<strstr>> except the search is
|
||||
case-insensitive.
|
||||
|
||||
RETURNS
|
||||
RETURNS
|
||||
|
||||
A pointer to the first case-insensitive occurrence of the sequence
|
||||
A pointer to the first case-insensitive occurrence of the sequence
|
||||
<[find]> or <<NULL>> if no match was found.
|
||||
|
||||
PORTABILITY
|
||||
|
@ -40,7 +40,7 @@ QUICKREF
|
|||
* Copyright (c) 1990, 1993
|
||||
* The Regents of the University of California. All rights reserved.
|
||||
*
|
||||
* This code is derived from software contributed to Berkeley by
|
||||
* The quadratic code is derived from software contributed to Berkeley by
|
||||
* Chris Torek.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
|
@ -67,12 +67,26 @@ QUICKREF
|
|||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
/* Linear algorithm Copyright (C) 2008 Eric Blake
|
||||
* Permission to use, copy, modify, and distribute the linear portion of
|
||||
* software is freely granted, provided that this notice is preserved.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
|
||||
#include <ctype.h>
|
||||
#include <string.h>
|
||||
|
||||
#if !defined(PREFER_SIZE_OVER_SPEED) && !defined(__OPTIMIZE_SIZE__)
|
||||
# define RETURN_TYPE char *
|
||||
# define AVAILABLE(h, h_l, j, n_l) \
|
||||
(!memchr ((h) + (h_l), '\0', (j) + (n_l) - (h_l)) \
|
||||
&& ((h_l) = (j) + (n_l)))
|
||||
# define CANON_ELEMENT(c) tolower (c)
|
||||
# define CMP_FUNC strncasecmp
|
||||
# include "str-two-way.h"
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Find the first occurrence of find in s, ignore case.
|
||||
*/
|
||||
|
@ -80,6 +94,9 @@ char *
|
|||
strcasestr(s, find)
|
||||
const char *s, *find;
|
||||
{
|
||||
#if defined(PREFER_SIZE_OVER_SPEED) || defined(__OPTIMIZE_SIZE__)
|
||||
|
||||
/* Less code size, but quadratic performance in the worst case. */
|
||||
char c, sc;
|
||||
size_t len;
|
||||
|
||||
|
@ -95,4 +112,36 @@ strcasestr(s, find)
|
|||
s--;
|
||||
}
|
||||
return ((char *)s);
|
||||
|
||||
#else /* compilation for speed */
|
||||
|
||||
/* Larger code size, but guaranteed linear performance. */
|
||||
const char *haystack = s;
|
||||
const char *needle = find;
|
||||
size_t needle_len; /* Length of NEEDLE. */
|
||||
size_t haystack_len; /* Known minimum length of HAYSTACK. */
|
||||
int ok = 1; /* True if NEEDLE is prefix of HAYSTACK. */
|
||||
|
||||
/* Determine length of NEEDLE, and in the process, make sure
|
||||
HAYSTACK is at least as long (no point processing all of a long
|
||||
NEEDLE if HAYSTACK is too short). */
|
||||
while (*haystack && *needle)
|
||||
ok &= (tolower ((unsigned char) *haystack++)
|
||||
== tolower ((unsigned char) *needle++));
|
||||
if (*needle)
|
||||
return NULL;
|
||||
if (ok)
|
||||
return (char *) s;
|
||||
needle_len = needle - find;
|
||||
haystack = s + 1;
|
||||
haystack_len = needle_len - 1;
|
||||
|
||||
/* Perform the search. */
|
||||
if (needle_len < LONG_NEEDLE_THRESHOLD)
|
||||
return two_way_short_needle ((const unsigned char *) haystack,
|
||||
haystack_len,
|
||||
(const unsigned char *) find, needle_len);
|
||||
return two_way_long_needle ((const unsigned char *) haystack, haystack_len,
|
||||
(const unsigned char *) find, needle_len);
|
||||
#endif /* compilation for speed */
|
||||
}
|
||||
|
|
|
@ -14,6 +14,7 @@ managing areas of memory. The corresponding declarations are in
|
|||
* memchr:: Find character in memory
|
||||
* memcmp:: Compare two memory areas
|
||||
* memcpy:: Copy memory regions
|
||||
* memmem:: Find memory segment
|
||||
* memmove:: Move possibly overlapping memory
|
||||
* mempcpy:: Copy memory regions and locate end
|
||||
* memset:: Set an area of memory
|
||||
|
@ -71,6 +72,9 @@ managing areas of memory. The corresponding declarations are in
|
|||
@page
|
||||
@include string/memcpy.def
|
||||
|
||||
@page
|
||||
@include string/memmem.def
|
||||
|
||||
@page
|
||||
@include string/memmove.def
|
||||
|
||||
|
|
|
@ -16,14 +16,14 @@ TRAD_SYNOPSIS
|
|||
char *<[s2]>;
|
||||
|
||||
DESCRIPTION
|
||||
Locates the first occurence in the string pointed to by <[s1]> of
|
||||
Locates the first occurrence in the string pointed to by <[s1]> of
|
||||
the sequence of characters in the string pointed to by <[s2]>
|
||||
(excluding the terminating null character).
|
||||
(excluding the terminating null character).
|
||||
|
||||
RETURNS
|
||||
Returns a pointer to the located string segment, or a null
|
||||
pointer if the string <[s2]> is not found. If <[s2]> points to
|
||||
a string with zero length, the <[s1]> is returned.
|
||||
a string with zero length, <[s1]> is returned.
|
||||
|
||||
PORTABILITY
|
||||
<<strstr>> is ANSI C.
|
||||
|
@ -36,11 +36,22 @@ QUICKREF
|
|||
|
||||
#include <string.h>
|
||||
|
||||
#if !defined(PREFER_SIZE_OVER_SPEED) && !defined(__OPTIMIZE_SIZE__)
|
||||
# define RETURN_TYPE char *
|
||||
# define AVAILABLE(h, h_l, j, n_l) \
|
||||
(!memchr ((h) + (h_l), '\0', (j) + (n_l) - (h_l)) \
|
||||
&& ((h_l) = (j) + (n_l)))
|
||||
# include "str-two-way.h"
|
||||
#endif
|
||||
|
||||
char *
|
||||
_DEFUN (strstr, (searchee, lookfor),
|
||||
_CONST char *searchee _AND
|
||||
_CONST char *lookfor)
|
||||
{
|
||||
#if defined(PREFER_SIZE_OVER_SPEED) || defined(__OPTIMIZE_SIZE__)
|
||||
|
||||
/* Less code size, but quadratic performance in the worst case. */
|
||||
if (*searchee == 0)
|
||||
{
|
||||
if (*lookfor)
|
||||
|
@ -70,4 +81,41 @@ _DEFUN (strstr, (searchee, lookfor),
|
|||
}
|
||||
|
||||
return (char *) NULL;
|
||||
|
||||
#else /* compilation for speed */
|
||||
|
||||
/* Larger code size, but guaranteed linear performance. */
|
||||
const char *haystack = searchee;
|
||||
const char *needle = lookfor;
|
||||
size_t needle_len; /* Length of NEEDLE. */
|
||||
size_t haystack_len; /* Known minimum length of HAYSTACK. */
|
||||
int ok = 1; /* True if NEEDLE is prefix of HAYSTACK. */
|
||||
|
||||
/* Determine length of NEEDLE, and in the process, make sure
|
||||
HAYSTACK is at least as long (no point processing all of a long
|
||||
NEEDLE if HAYSTACK is too short). */
|
||||
while (*haystack && *needle)
|
||||
ok &= *haystack++ == *needle++;
|
||||
if (*needle)
|
||||
return NULL;
|
||||
if (ok)
|
||||
return (char *) searchee;
|
||||
|
||||
/* Reduce the size of haystack using strchr, since it has a smaller
|
||||
linear coefficient than the Two-Way algorithm. */
|
||||
needle_len = needle - lookfor;
|
||||
haystack = strchr (searchee + 1, *lookfor);
|
||||
if (!haystack || needle_len == 1)
|
||||
return (char *) haystack;
|
||||
haystack_len = (haystack > searchee + needle_len ? 1
|
||||
: needle_len + searchee - haystack);
|
||||
|
||||
/* Perform the search. */
|
||||
if (needle_len < LONG_NEEDLE_THRESHOLD)
|
||||
return two_way_short_needle ((const unsigned char *) haystack,
|
||||
haystack_len,
|
||||
(const unsigned char *) lookfor, needle_len);
|
||||
return two_way_long_needle ((const unsigned char *) haystack, haystack_len,
|
||||
(const unsigned char *) lookfor, needle_len);
|
||||
#endif /* compilation for speed */
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue