1
0
mirror of https://github.com/clementine-player/Clementine synced 2025-01-01 12:27:57 +01:00
Clementine-audio-player-Mac.../gst/moodbar/gstmoodbar.c
2013-11-22 12:08:24 +00:00

674 lines
17 KiB
C

/* GStreamer spectrum analysis toy
* Copyright (C) 2006 Joseph Rabinoff <bobqwatson@yahoo.com>
* Some code copyright (C) 2005 Gav Wood
*/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
/**
* SECTION:element-moodbar
*
* <refsect2>
* <title>Example launch line</title>
* <para>
* <programlisting>
* gst-launch filesrc location=test.mp3 ! mad ! audioconvert ! fftwspectrum ! moodbar height=50 ! pngenc ! filesink location=test.png
* </programlisting>
* </para>
* </refsect2>
*/
/* This plugin is based on the Moodbar code in Amarok version 1.4.0a,
* written by Gav Wood. The algorithm is basically the same as the
* one applied there, and the normalizing code below is taken directly
* from Gav Wood's Exscalibar package.
*/
/* This plugin takes a frequency-domain stream, does some simple
* analysis, and returns a string of (unsigned char) rgb triples
* that represent the magnitude of various sections of the stream.
* Since we have to perform some normalization, we queue up all
* of our analysis until we get an EOS event, at which point we
* normalize and do the output. If a max-width is specified, the
* output is scaled down to the desired width if necessary.
*/
/* More precisely, the analysis performed is as follows:
* (1) the spectrum is broken into 24 parts, called "bark bands"
* (Gav's terminology), as given in bark_bands below
* (2) we compute the size of the first 8 bark bands and store
* that as the "red" component; similarly for blue and green
* (3) after receiving an EOS, we normalize all of the analysis
* done in (1) and (2) and return a stream of rgb triples
* (application/x-raw-rgb)
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <gst/gst.h>
#include <string.h>
#include <math.h>
#include "gstmoodbar.h"
#include "spectrum.h"
GST_DEBUG_CATEGORY (gst_moodbar_debug);
#define GST_CAT_DEFAULT gst_moodbar_debug
/* Filter signals and args */
enum
{
/* FILL ME */
LAST_SIGNAL
};
enum
{
ARG_0,
ARG_HEIGHT,
ARG_MAX_WIDTH
};
static GstStaticPadTemplate sink_factory
= GST_STATIC_PAD_TEMPLATE ("sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,
GST_STATIC_CAPS
( SPECTRUM_FREQ_CAPS )
);
static GstStaticPadTemplate src_factory
= GST_STATIC_PAD_TEMPLATE ("src",
GST_PAD_SRC,
GST_PAD_ALWAYS,
GST_STATIC_CAPS
( "video/x-raw-rgb, "
"bpp = (int) 24, "
"depth = (int) 24, "
"height = (int) [ 1, MAX ], "
"width = (int) [ 1, MAX ], "
"framerate = (fraction) 0/1"
)
);
GST_BOILERPLATE (GstMoodbar, gst_moodbar, GstElement,
GST_TYPE_ELEMENT);
static void gst_moodbar_set_property (GObject *object, guint prop_id,
const GValue *value, GParamSpec *pspec);
static void gst_moodbar_get_property (GObject *object, guint prop_id,
GValue *value, GParamSpec *pspec);
static gboolean gst_moodbar_set_sink_caps (GstPad *pad, GstCaps *caps);
static gboolean gst_moodbar_sink_event (GstPad *pad, GstEvent *event);
static GstFlowReturn gst_moodbar_chain (GstPad *pad, GstBuffer *buf);
static GstStateChangeReturn gst_moodbar_change_state (GstElement *element,
GstStateChange transition);
static void gst_moodbar_finish (GstMoodbar *mood);
/* This is a failsafe so we don't eat up all of a computer's memory
* if we hit an endless stream. */
#define MAX_TRIPLES (1024*1024*4)
#define NUMFREQS(mood) ((mood)->size/2+1)
/* Allocate mood->r, mood->g, and mood->b in chunks of this many */
#define FRAME_CHUNK 1000
/* Default height of the output image */
#define HEIGHT_DEFAULT 1
/* Default max-width of the output image, or 0 for no rescaling */
#define MAX_WIDTH_DEFAULT 0
/* We use this table to break up the incoming spectrum into segments */
static const guint bark_bands[24]
= { 100, 200, 300, 400, 510, 630, 770, 920,
1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150,
3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500 };
/***************************************************************/
/* GObject boilerplate stuff */
/***************************************************************/
static void
gst_moodbar_base_init (gpointer gclass)
{
static GstElementDetails element_details =
{
"Moodbar analyzer",
"Filter/Converter/Moodbar",
"Convert a spectrum into a stream of (uchar) rgb triples representing its \"mood\"",
"Joe Rabinoff <bobqwatson@yahoo.com>"
};
GstElementClass *element_class = GST_ELEMENT_CLASS (gclass);
gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&src_factory));
gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&sink_factory));
gst_element_class_set_details (element_class, &element_details);
}
/* initialize the plugin's class */
static void
gst_moodbar_class_init (GstMoodbarClass * klass)
{
GObjectClass *gobject_class;
GstElementClass *gstelement_class;
gobject_class = (GObjectClass *) klass;
gstelement_class = (GstElementClass *) klass;
gobject_class->set_property = gst_moodbar_set_property;
gobject_class->get_property = gst_moodbar_get_property;
g_object_class_install_property (gobject_class, ARG_HEIGHT,
g_param_spec_int ("height", "Image height",
"The height of the resulting raw image",
1, G_MAXINT32, HEIGHT_DEFAULT, G_PARAM_READWRITE));
g_object_class_install_property (gobject_class, ARG_MAX_WIDTH,
g_param_spec_int ("max-width", "Image maximum width",
"The maximum width of the resulting raw image, or 0 for no rescaling",
0, G_MAXINT32, MAX_WIDTH_DEFAULT, G_PARAM_READWRITE));
gstelement_class->change_state
= GST_DEBUG_FUNCPTR (gst_moodbar_change_state);
}
/* initialize the new element
* instantiate pads and add them to element
* set functions
* initialize structure
*/
static void
gst_moodbar_init (GstMoodbar *mood, GstMoodbarClass *gclass)
{
GstElementClass *klass = GST_ELEMENT_GET_CLASS (mood);
mood->sinkpad =
gst_pad_new_from_template
(gst_element_class_get_pad_template (klass, "sink"), "sink");
gst_pad_set_setcaps_function (mood->sinkpad,
GST_DEBUG_FUNCPTR (gst_moodbar_set_sink_caps));
gst_pad_set_event_function (mood->sinkpad,
GST_DEBUG_FUNCPTR (gst_moodbar_sink_event));
gst_pad_set_chain_function (mood->sinkpad,
GST_DEBUG_FUNCPTR (gst_moodbar_chain));
mood->srcpad =
gst_pad_new_from_template
(gst_element_class_get_pad_template (klass, "src"), "src");
gst_element_add_pad (GST_ELEMENT (mood), mood->sinkpad);
gst_element_add_pad (GST_ELEMENT (mood), mood->srcpad);
/* These are set once the (sink) capabilities are determined */
mood->rate = 0;
mood->size = 0;
mood->barkband_table = NULL;
/* These are allocated when we change to PAUSED */
mood->r = NULL;
mood->g = NULL;
mood->b = NULL;
mood->numframes = 0;
/* Property */
mood->height = HEIGHT_DEFAULT;
mood->max_width = MAX_WIDTH_DEFAULT;
}
static void gst_moodbar_set_property (GObject *object, guint prop_id,
const GValue *value, GParamSpec *pspec)
{
GstMoodbar *mood = GST_MOODBAR (object);
switch (prop_id)
{
case ARG_HEIGHT:
mood->height = (guint) g_value_get_int (value);
break;
case ARG_MAX_WIDTH:
mood->max_width = (guint) g_value_get_int (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void gst_moodbar_get_property (GObject *object, guint prop_id,
GValue *value, GParamSpec *pspec)
{
GstMoodbar *mood = GST_MOODBAR (object);
switch (prop_id)
{
case ARG_HEIGHT:
g_value_set_int (value, (int) mood->height);
break;
case ARG_MAX_WIDTH:
g_value_set_int (value, (int) mood->max_width);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
/***************************************************************/
/* Pad handling */
/***************************************************************/
/* This calculates a table that caches which bark band slot each
* incoming band is supposed to go in. */
static void
calc_barkband_table (GstMoodbar *mood)
{
guint i;
guint barkband = 0;
/* Avoid divide-by-zero */
if (!mood->size || !mood->rate)
return;
if (mood->barkband_table)
g_free (mood->barkband_table);
mood->barkband_table = g_malloc (NUMFREQS (mood) * sizeof (guint));
for (i = 0; i < NUMFREQS (mood); ++i)
{
if (barkband < 23 &&
(guint) GST_SPECTRUM_BAND_FREQ (i, mood->size, mood->rate)
>= bark_bands[barkband])
barkband++;
mood->barkband_table[i] = barkband;
/*
GST_LOG ("Band %d (frequency %f) -> barkband %d (frequency %d)",
i, GST_SPECTRUM_BAND_FREQ (i, mood->size, mood->rate),
barkband, bark_bands[barkband]);
*/
}
}
/* Setting the sink caps just gets the rate and size parameters.
* Note that we do not support upstream caps renegotiation, since
* we could only possibly scale the height anyway.
*/
static gboolean
gst_moodbar_set_sink_caps (GstPad *pad, GstCaps *caps)
{
GstMoodbar *mood;
GstStructure *newstruct;
gint rate, size;
gboolean res = FALSE;
mood = GST_MOODBAR (gst_pad_get_parent (pad));
newstruct = gst_caps_get_structure (caps, 0);
if (!gst_structure_get_int (newstruct, "rate", &rate) ||
!gst_structure_get_int (newstruct, "size", &size))
goto out;
res = TRUE;
mood->rate = rate;
mood->size = (guint) size;
calc_barkband_table (mood);
out:
gst_object_unref (mood);
return res;
}
static gboolean
gst_moodbar_sink_event (GstPad *pad, GstEvent *event)
{
GstMoodbar *mood;
gboolean res = TRUE;
mood = GST_MOODBAR (gst_pad_get_parent (pad));
if (GST_EVENT_TYPE (event) == GST_EVENT_EOS)
gst_moodbar_finish (mood);
res = gst_pad_push_event (mood->srcpad, event);
gst_object_unref (mood);
return res;
}
/***************************************************************/
/* Actual analysis */
/***************************************************************/
static GstStateChangeReturn
gst_moodbar_change_state (GstElement *element, GstStateChange transition)
{
GstMoodbar *mood = GST_MOODBAR (element);
GstStateChangeReturn res;
switch (transition)
{
case GST_STATE_CHANGE_NULL_TO_READY:
calc_barkband_table (mood);
break;
case GST_STATE_CHANGE_READY_TO_PAUSED:
mood->r = (gdouble *) g_malloc (FRAME_CHUNK * sizeof(gdouble));
mood->g = (gdouble *) g_malloc (FRAME_CHUNK * sizeof(gdouble));
mood->b = (gdouble *) g_malloc (FRAME_CHUNK * sizeof(gdouble));
mood->numframes = 0;
break;
case GST_STATE_CHANGE_PAUSED_TO_PLAYING:
break;
default:
break;
}
res = parent_class->change_state (element, transition);
switch (transition)
{
case GST_STATE_CHANGE_PLAYING_TO_PAUSED:
break;
case GST_STATE_CHANGE_PAUSED_TO_READY:
g_free (mood->r);
g_free (mood->g);
g_free (mood->b);
mood->r = NULL;
mood->g = NULL;
mood->b = NULL;
mood->numframes = 0;
break;
case GST_STATE_CHANGE_READY_TO_NULL:
g_free (mood->barkband_table);
mood->barkband_table = NULL;
break;
default:
break;
}
return res;
}
/* We allocate r, g, b frames in chunks of FRAME_CHUNK so we don't
* have to realloc every time a buffer comes in.
*/
static gboolean
allocate_another_frame (GstMoodbar *mood)
{
mood->numframes++;
/* Failsafe */
if (mood->numframes == MAX_TRIPLES)
return FALSE;
if(mood->numframes % FRAME_CHUNK == 0)
{
guint size = (mood->numframes + FRAME_CHUNK) * sizeof (gdouble);
mood->r = (gdouble *) g_realloc (mood->r, size);
mood->g = (gdouble *) g_realloc (mood->g, size);
mood->b = (gdouble *) g_realloc (mood->b, size);
if (mood->r == NULL || mood->g == NULL || mood->b == NULL)
return FALSE;
}
return TRUE;
}
/* This function does most of the analysis on the spectra we
* get as input and caches them. We actually push buffers
* once we receive an EOS signal.
*/
static GstFlowReturn
gst_moodbar_chain (GstPad *pad, GstBuffer *buf)
{
GstMoodbar *mood = GST_MOODBAR (gst_pad_get_parent (pad));
guint i;
gdouble amplitudes[24], rgb[3] = {0.f, 0.f, 0.f};
gdouble *out, real, imag;
guint numfreqs = NUMFREQS (mood);
if (GST_BUFFER_SIZE (buf) != numfreqs * sizeof (gdouble) * 2)
{
gst_object_unref (mood);
return GST_FLOW_ERROR;
}
out = (gdouble *) GST_BUFFER_DATA (buf);
if (!allocate_another_frame (mood))
return GST_FLOW_ERROR;
/* Calculate total amplitudes for the different bark bands */
for (i = 0; i < 24; ++i)
amplitudes[i] = 0.f;
for (i = 0; i < numfreqs; ++i)
{
real = out[2*i]; imag = out[2*i + 1];
amplitudes[mood->barkband_table[i]] += sqrtf (real*real + imag*imag);
}
/* Now divide the bark bands into thirds and compute their total
* amplitudes */
for (i = 0; i < 24; ++i)
rgb[i/8] += amplitudes[i] * amplitudes[i];
rgb[0] = sqrtf (rgb[0]);
rgb[1] = sqrtf (rgb[1]);
rgb[2] = sqrtf (rgb[2]);
mood->r[mood->numframes] = rgb[0];
mood->g[mood->numframes] = rgb[1];
mood->b[mood->numframes] = rgb[2];
gst_buffer_unref (buf);
gst_object_unref (mood);
return GST_FLOW_OK;
}
/* The normalization code was copied from Gav Wood's Exscalibar
* library, normalise.cpp
*/
static void
normalize (gdouble *vals, guint numvals)
{
gdouble mini, maxi, tu = 0.f, tb = 0.f;
gdouble avgu = 0.f, avgb = 0.f, delta, avg = 0.f;
gdouble avguu = 0.f, avgbb = 0.f;
guint i;
gint t = 0;
if (!numvals)
return;
mini = maxi = vals[0];
for (i = 1; i < numvals; i++)
{
if (vals[i] > maxi)
maxi = vals[i];
else if (vals[i] < mini)
mini = vals[i];
}
for (i = 0; i < numvals; i++)
{
if(vals[i] != mini && vals[i] != maxi)
{
avg += vals[i] / ((gdouble) numvals);
t++;
}
}
for (i = 0; i < numvals; i++)
{
if (vals[i] != mini && vals[i] != maxi)
{
if (vals[i] > avg)
{
avgu += vals[i];
tu++;
}
else
{
avgb += vals[i];
tb++;
}
}
}
avgu /= (gdouble) tu;
avgb /= (gdouble) tb;
tu = 0.f;
tb = 0.f;
for (i = 0; i < numvals; i++)
{
if (vals[i] != mini && vals[i] != maxi)
{
if (vals[i] > avgu)
{
avguu += vals[i];
tu++;
}
else if (vals[i] < avgb)
{
avgbb += vals[i];
tb++;
}
}
}
avguu /= (gdouble) tu;
avgbb /= (gdouble) tb;
mini = MAX (avg + (avgb - avg) * 2.f, avgbb);
maxi = MIN (avg + (avgu - avg) * 2.f, avguu);
delta = maxi - mini;
if (delta == 0.f)
delta = 1.f;
for (i = 0; i < numvals; i++)
vals[i] = isfinite (vals[i]) ? MIN(1.f, MAX(0.f, (vals[i] - mini) / delta))
: 0.f;
}
/* This function normalizes all of the cached r,g,b data and
* finally pushes a monster buffer with all of our output.
*/
static void
gst_moodbar_finish (GstMoodbar *mood)
{
GstBuffer *buf;
guchar *data;
guint line;
guint output_width;
if (mood->max_width == 0
|| mood->numframes <= mood->max_width)
output_width = mood->numframes;
else
output_width = mood->max_width;
normalize (mood->r, mood->numframes);
normalize (mood->g, mood->numframes);
normalize (mood->b, mood->numframes);
buf = gst_buffer_new_and_alloc
(output_width * mood->height * 3 * sizeof (guchar));
if (!buf)
return;
/* Don't set the timestamp, duration, etc. since it's irrelevant */
GST_BUFFER_OFFSET (buf) = 0;
data = (guchar *) GST_BUFFER_DATA (buf);
gdouble r, g, b;
guint i, j, n;
guint start, end;
for (line = 0; line < mood->height; ++line)
{
for (i = 0; i < output_width; ++i)
{
r = 0.f; g = 0.f; b = 0.f;
start = i * mood->numframes / output_width;
end = (i + 1) * mood->numframes / output_width;
if ( start == end )
end = start + 1;
for( j = start; j < end; j++ )
{
r += mood->r[j] * 255.f;
g += mood->g[j] * 255.f;
b += mood->b[j] * 255.f;
}
n = end - start;
*(data++) = (guchar) (r / ((gdouble) n));
*(data++) = (guchar) (g / ((gdouble) n));
*(data++) = (guchar) (b / ((gdouble) n));
}
}
{ /* Now we (finally) know the width of the image we're pushing */
GstCaps *caps = gst_caps_copy (gst_pad_get_caps (mood->srcpad));
gboolean res;
gst_caps_set_simple (caps, "width", G_TYPE_INT, output_width, NULL);
gst_caps_set_simple (caps, "height", G_TYPE_INT, mood->height, NULL);
res = gst_pad_set_caps (mood->srcpad, caps);
if (res)
gst_buffer_set_caps (buf, caps);
gst_caps_unref (caps);
if (!res)
return;
}
gst_pad_push (mood->srcpad, buf);
}