1
0
mirror of https://github.com/clementine-player/Clementine synced 2024-12-16 11:19:18 +01:00
Clementine-audio-player-Mac.../3rdparty/google-breakpad/third_party/lss/linux_syscall_support.h

3474 lines
141 KiB
C

/* Copyright (c) 2005-2010, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ---
* Author: Markus Gutschke
*/
/* This file includes Linux-specific support functions common to the
* coredumper and the thread lister; primarily, this is a collection
* of direct system calls, and a couple of symbols missing from
* standard header files.
* There are a few options that the including file can set to control
* the behavior of this file:
*
* SYS_CPLUSPLUS:
* The entire header file will normally be wrapped in 'extern "C" { }",
* making it suitable for compilation as both C and C++ source. If you
* do not want to do this, you can set the SYS_CPLUSPLUS macro to inhibit
* the wrapping. N.B. doing so will suppress inclusion of all prerequisite
* system header files, too. It is the caller's responsibility to provide
* the necessary definitions.
*
* SYS_ERRNO:
* All system calls will update "errno" unless overriden by setting the
* SYS_ERRNO macro prior to including this file. SYS_ERRNO should be
* an l-value.
*
* SYS_INLINE:
* New symbols will be defined "static inline", unless overridden by
* the SYS_INLINE macro.
*
* SYS_LINUX_SYSCALL_SUPPORT_H
* This macro is used to avoid multiple inclusions of this header file.
* If you need to include this file more than once, make sure to
* unset SYS_LINUX_SYSCALL_SUPPORT_H before each inclusion.
*
* SYS_PREFIX:
* New system calls will have a prefix of "sys_" unless overridden by
* the SYS_PREFIX macro. Valid values for this macro are [0..9] which
* results in prefixes "sys[0..9]_". It is also possible to set this
* macro to -1, which avoids all prefixes.
*
* SYS_SYSCALL_ENTRYPOINT:
* Some applications (such as sandboxes that filter system calls), need
* to be able to run custom-code each time a system call is made. If this
* macro is defined, it expands to the name of a "common" symbol. If
* this symbol is assigned a non-NULL pointer value, it is used as the
* address of the system call entrypoint.
* A pointer to this symbol can be obtained by calling
* get_syscall_entrypoint()
*
* This file defines a few internal symbols that all start with "LSS_".
* Do not access these symbols from outside this file. They are not part
* of the supported API.
*/
#ifndef SYS_LINUX_SYSCALL_SUPPORT_H
#define SYS_LINUX_SYSCALL_SUPPORT_H
/* We currently only support x86-32, x86-64, ARM, MIPS, and PPC on Linux.
* Porting to other related platforms should not be difficult.
*/
#if (defined(__i386__) || defined(__x86_64__) || defined(__ARM_ARCH_3__) || \
defined(__mips__) || defined(__PPC__) || defined(__ARM_EABI__)) \
&& defined(__linux)
#ifndef SYS_CPLUSPLUS
#ifdef __cplusplus
/* Some system header files in older versions of gcc neglect to properly
* handle being included from C++. As it appears to be harmless to have
* multiple nested 'extern "C"' blocks, just add another one here.
*/
extern "C" {
#endif
#include <errno.h>
#include <signal.h>
#include <stdarg.h>
#include <stddef.h>
#include <string.h>
#include <sys/ptrace.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <syscall.h>
#include <unistd.h>
#include <linux/unistd.h>
#include <endian.h>
#ifdef __mips__
/* Include definitions of the ABI currently in use. */
#include <sgidefs.h>
#endif
#endif
/* As glibc often provides subtly incompatible data structures (and implicit
* wrapper functions that convert them), we provide our own kernel data
* structures for use by the system calls.
* These structures have been developed by using Linux 2.6.23 headers for
* reference. Note though, we do not care about exact API compatibility
* with the kernel, and in fact the kernel often does not have a single
* API that works across architectures. Instead, we try to mimic the glibc
* API where reasonable, and only guarantee ABI compatibility with the
* kernel headers.
* Most notably, here are a few changes that were made to the structures
* defined by kernel headers:
*
* - we only define structures, but not symbolic names for kernel data
* types. For the latter, we directly use the native C datatype
* (i.e. "unsigned" instead of "mode_t").
* - in a few cases, it is possible to define identical structures for
* both 32bit (e.g. i386) and 64bit (e.g. x86-64) platforms by
* standardizing on the 64bit version of the data types. In particular,
* this means that we use "unsigned" where the 32bit headers say
* "unsigned long".
* - overall, we try to minimize the number of cases where we need to
* conditionally define different structures.
* - the "struct kernel_sigaction" class of structures have been
* modified to more closely mimic glibc's API by introducing an
* anonymous union for the function pointer.
* - a small number of field names had to have an underscore appended to
* them, because glibc defines a global macro by the same name.
*/
/* include/linux/dirent.h */
struct kernel_dirent64 {
unsigned long long d_ino;
long long d_off;
unsigned short d_reclen;
unsigned char d_type;
char d_name[256];
};
/* include/linux/dirent.h */
struct kernel_dirent {
long d_ino;
long d_off;
unsigned short d_reclen;
char d_name[256];
};
/* include/linux/uio.h */
struct kernel_iovec {
void *iov_base;
unsigned long iov_len;
};
/* include/linux/socket.h */
struct kernel_msghdr {
void *msg_name;
int msg_namelen;
struct kernel_iovec*msg_iov;
unsigned long msg_iovlen;
void *msg_control;
unsigned long msg_controllen;
unsigned msg_flags;
};
/* include/asm-generic/poll.h */
struct kernel_pollfd {
int fd;
short events;
short revents;
};
/* include/linux/resource.h */
struct kernel_rlimit {
unsigned long rlim_cur;
unsigned long rlim_max;
};
/* include/linux/time.h */
struct kernel_timespec {
long tv_sec;
long tv_nsec;
};
/* include/linux/time.h */
struct kernel_timeval {
long tv_sec;
long tv_usec;
};
/* include/linux/resource.h */
struct kernel_rusage {
struct kernel_timeval ru_utime;
struct kernel_timeval ru_stime;
long ru_maxrss;
long ru_ixrss;
long ru_idrss;
long ru_isrss;
long ru_minflt;
long ru_majflt;
long ru_nswap;
long ru_inblock;
long ru_oublock;
long ru_msgsnd;
long ru_msgrcv;
long ru_nsignals;
long ru_nvcsw;
long ru_nivcsw;
};
struct siginfo;
#if defined(__i386__) || defined(__ARM_EABI__) || defined(__ARM_ARCH_3__) \
|| defined(__PPC__)
/* include/asm-{arm,i386,mips,ppc}/signal.h */
struct kernel_old_sigaction {
union {
void (*sa_handler_)(int);
void (*sa_sigaction_)(int, struct siginfo *, void *);
};
unsigned long sa_mask;
unsigned long sa_flags;
void (*sa_restorer)(void);
} __attribute__((packed,aligned(4)));
#elif (defined(__mips__) && _MIPS_SIM == _MIPS_SIM_ABI32)
#define kernel_old_sigaction kernel_sigaction
#endif
/* Some kernel functions (e.g. sigaction() in 2.6.23) require that the
* exactly match the size of the signal set, even though the API was
* intended to be extensible. We define our own KERNEL_NSIG to deal with
* this.
* Please note that glibc provides signals [1.._NSIG-1], whereas the
* kernel (and this header) provides the range [1..KERNEL_NSIG]. The
* actual number of signals is obviously the same, but the constants
* differ by one.
*/
#ifdef __mips__
#define KERNEL_NSIG 128
#else
#define KERNEL_NSIG 64
#endif
/* include/asm-{arm,i386,mips,x86_64}/signal.h */
struct kernel_sigset_t {
unsigned long sig[(KERNEL_NSIG + 8*sizeof(unsigned long) - 1)/
(8*sizeof(unsigned long))];
};
/* include/asm-{arm,i386,mips,x86_64,ppc}/signal.h */
struct kernel_sigaction {
#ifdef __mips__
unsigned long sa_flags;
union {
void (*sa_handler_)(int);
void (*sa_sigaction_)(int, struct siginfo *, void *);
};
struct kernel_sigset_t sa_mask;
#else
union {
void (*sa_handler_)(int);
void (*sa_sigaction_)(int, struct siginfo *, void *);
};
unsigned long sa_flags;
void (*sa_restorer)(void);
struct kernel_sigset_t sa_mask;
#endif
};
/* include/linux/socket.h */
struct kernel_sockaddr {
unsigned short sa_family;
char sa_data[14];
};
/* include/asm-{arm,i386,mips,ppc}/stat.h */
#ifdef __mips__
#if _MIPS_SIM == _MIPS_SIM_ABI64
struct kernel_stat {
#else
struct kernel_stat64 {
#endif
unsigned st_dev;
unsigned __pad0[3];
unsigned long long st_ino;
unsigned st_mode;
unsigned st_nlink;
unsigned st_uid;
unsigned st_gid;
unsigned st_rdev;
unsigned __pad1[3];
long long st_size;
unsigned st_atime_;
unsigned st_atime_nsec_;
unsigned st_mtime_;
unsigned st_mtime_nsec_;
unsigned st_ctime_;
unsigned st_ctime_nsec_;
unsigned st_blksize;
unsigned __pad2;
unsigned long long st_blocks;
};
#elif defined __PPC__
struct kernel_stat64 {
unsigned long long st_dev;
unsigned long long st_ino;
unsigned st_mode;
unsigned st_nlink;
unsigned st_uid;
unsigned st_gid;
unsigned long long st_rdev;
unsigned short int __pad2;
long long st_size;
long st_blksize;
long long st_blocks;
long st_atime_;
unsigned long st_atime_nsec_;
long st_mtime_;
unsigned long st_mtime_nsec_;
long st_ctime_;
unsigned long st_ctime_nsec_;
unsigned long __unused4;
unsigned long __unused5;
};
#else
struct kernel_stat64 {
unsigned long long st_dev;
unsigned char __pad0[4];
unsigned __st_ino;
unsigned st_mode;
unsigned st_nlink;
unsigned st_uid;
unsigned st_gid;
unsigned long long st_rdev;
unsigned char __pad3[4];
long long st_size;
unsigned st_blksize;
unsigned long long st_blocks;
unsigned st_atime_;
unsigned st_atime_nsec_;
unsigned st_mtime_;
unsigned st_mtime_nsec_;
unsigned st_ctime_;
unsigned st_ctime_nsec_;
unsigned long long st_ino;
};
#endif
/* include/asm-{arm,i386,mips,x86_64,ppc}/stat.h */
#if defined(__i386__) || defined(__ARM_ARCH_3__) || defined(__ARM_EABI__)
struct kernel_stat {
/* The kernel headers suggest that st_dev and st_rdev should be 32bit
* quantities encoding 12bit major and 20bit minor numbers in an interleaved
* format. In reality, we do not see useful data in the top bits. So,
* we'll leave the padding in here, until we find a better solution.
*/
unsigned short st_dev;
short pad1;
unsigned st_ino;
unsigned short st_mode;
unsigned short st_nlink;
unsigned short st_uid;
unsigned short st_gid;
unsigned short st_rdev;
short pad2;
unsigned st_size;
unsigned st_blksize;
unsigned st_blocks;
unsigned st_atime_;
unsigned st_atime_nsec_;
unsigned st_mtime_;
unsigned st_mtime_nsec_;
unsigned st_ctime_;
unsigned st_ctime_nsec_;
unsigned __unused4;
unsigned __unused5;
};
#elif defined(__x86_64__)
struct kernel_stat {
unsigned long st_dev;
unsigned long st_ino;
unsigned long st_nlink;
unsigned st_mode;
unsigned st_uid;
unsigned st_gid;
unsigned __pad0;
unsigned long st_rdev;
long st_size;
long st_blksize;
long st_blocks;
unsigned long st_atime_;
unsigned long st_atime_nsec_;
unsigned long st_mtime_;
unsigned long st_mtime_nsec_;
unsigned long st_ctime_;
unsigned long st_ctime_nsec_;
long __unused[3];
};
#elif defined(__PPC__)
struct kernel_stat {
unsigned st_dev;
unsigned long st_ino; // ino_t
unsigned long st_mode; // mode_t
unsigned short st_nlink; // nlink_t
unsigned st_uid; // uid_t
unsigned st_gid; // gid_t
unsigned st_rdev;
long st_size; // off_t
unsigned long st_blksize;
unsigned long st_blocks;
unsigned long st_atime_;
unsigned long st_atime_nsec_;
unsigned long st_mtime_;
unsigned long st_mtime_nsec_;
unsigned long st_ctime_;
unsigned long st_ctime_nsec_;
unsigned long __unused4;
unsigned long __unused5;
};
#elif (defined(__mips__) && _MIPS_SIM != _MIPS_SIM_ABI64)
struct kernel_stat {
unsigned st_dev;
int st_pad1[3];
unsigned st_ino;
unsigned st_mode;
unsigned st_nlink;
unsigned st_uid;
unsigned st_gid;
unsigned st_rdev;
int st_pad2[2];
long st_size;
int st_pad3;
long st_atime_;
long st_atime_nsec_;
long st_mtime_;
long st_mtime_nsec_;
long st_ctime_;
long st_ctime_nsec_;
int st_blksize;
int st_blocks;
int st_pad4[14];
};
#endif
/* include/asm-{arm,i386,mips,x86_64,ppc}/statfs.h */
#ifdef __mips__
#if _MIPS_SIM != _MIPS_SIM_ABI64
struct kernel_statfs64 {
unsigned long f_type;
unsigned long f_bsize;
unsigned long f_frsize;
unsigned long __pad;
unsigned long long f_blocks;
unsigned long long f_bfree;
unsigned long long f_files;
unsigned long long f_ffree;
unsigned long long f_bavail;
struct { int val[2]; } f_fsid;
unsigned long f_namelen;
unsigned long f_spare[6];
};
#endif
#elif !defined(__x86_64__)
struct kernel_statfs64 {
unsigned long f_type;
unsigned long f_bsize;
unsigned long long f_blocks;
unsigned long long f_bfree;
unsigned long long f_bavail;
unsigned long long f_files;
unsigned long long f_ffree;
struct { int val[2]; } f_fsid;
unsigned long f_namelen;
unsigned long f_frsize;
unsigned long f_spare[5];
};
#endif
/* include/asm-{arm,i386,mips,x86_64,ppc,generic}/statfs.h */
#ifdef __mips__
struct kernel_statfs {
long f_type;
long f_bsize;
long f_frsize;
long f_blocks;
long f_bfree;
long f_files;
long f_ffree;
long f_bavail;
struct { int val[2]; } f_fsid;
long f_namelen;
long f_spare[6];
};
#else
struct kernel_statfs {
/* x86_64 actually defines all these fields as signed, whereas all other */
/* platforms define them as unsigned. Leaving them at unsigned should not */
/* cause any problems. */
unsigned long f_type;
unsigned long f_bsize;
unsigned long f_blocks;
unsigned long f_bfree;
unsigned long f_bavail;
unsigned long f_files;
unsigned long f_ffree;
struct { int val[2]; } f_fsid;
unsigned long f_namelen;
unsigned long f_frsize;
unsigned long f_spare[5];
};
#endif
/* Definitions missing from the standard header files */
#ifndef O_DIRECTORY
#if defined(__ARM_ARCH_3__) || defined(__ARM_EABI__)
#define O_DIRECTORY 0040000
#else
#define O_DIRECTORY 0200000
#endif
#endif
#ifndef NT_PRXFPREG
#define NT_PRXFPREG 0x46e62b7f
#endif
#ifndef PTRACE_GETFPXREGS
#define PTRACE_GETFPXREGS ((enum __ptrace_request)18)
#endif
#ifndef PR_GET_DUMPABLE
#define PR_GET_DUMPABLE 3
#endif
#ifndef PR_SET_DUMPABLE
#define PR_SET_DUMPABLE 4
#endif
#ifndef PR_GET_SECCOMP
#define PR_GET_SECCOMP 21
#endif
#ifndef PR_SET_SECCOMP
#define PR_SET_SECCOMP 22
#endif
#ifndef AT_FDCWD
#define AT_FDCWD (-100)
#endif
#ifndef AT_SYMLINK_NOFOLLOW
#define AT_SYMLINK_NOFOLLOW 0x100
#endif
#ifndef AT_REMOVEDIR
#define AT_REMOVEDIR 0x200
#endif
#ifndef MREMAP_FIXED
#define MREMAP_FIXED 2
#endif
#ifndef SA_RESTORER
#define SA_RESTORER 0x04000000
#endif
#ifndef CPUCLOCK_PROF
#define CPUCLOCK_PROF 0
#endif
#ifndef CPUCLOCK_VIRT
#define CPUCLOCK_VIRT 1
#endif
#ifndef CPUCLOCK_SCHED
#define CPUCLOCK_SCHED 2
#endif
#ifndef CPUCLOCK_PERTHREAD_MASK
#define CPUCLOCK_PERTHREAD_MASK 4
#endif
#ifndef MAKE_PROCESS_CPUCLOCK
#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
((~(int)(pid) << 3) | (int)(clock))
#endif
#ifndef MAKE_THREAD_CPUCLOCK
#define MAKE_THREAD_CPUCLOCK(tid, clock) \
((~(int)(tid) << 3) | (int)((clock) | CPUCLOCK_PERTHREAD_MASK))
#endif
#ifndef FUTEX_WAIT
#define FUTEX_WAIT 0
#endif
#ifndef FUTEX_WAKE
#define FUTEX_WAKE 1
#endif
#ifndef FUTEX_FD
#define FUTEX_FD 2
#endif
#ifndef FUTEX_REQUEUE
#define FUTEX_REQUEUE 3
#endif
#ifndef FUTEX_CMP_REQUEUE
#define FUTEX_CMP_REQUEUE 4
#endif
#ifndef FUTEX_WAKE_OP
#define FUTEX_WAKE_OP 5
#endif
#ifndef FUTEX_LOCK_PI
#define FUTEX_LOCK_PI 6
#endif
#ifndef FUTEX_UNLOCK_PI
#define FUTEX_UNLOCK_PI 7
#endif
#ifndef FUTEX_TRYLOCK_PI
#define FUTEX_TRYLOCK_PI 8
#endif
#ifndef FUTEX_PRIVATE_FLAG
#define FUTEX_PRIVATE_FLAG 128
#endif
#ifndef FUTEX_CMD_MASK
#define FUTEX_CMD_MASK ~FUTEX_PRIVATE_FLAG
#endif
#ifndef FUTEX_WAIT_PRIVATE
#define FUTEX_WAIT_PRIVATE (FUTEX_WAIT | FUTEX_PRIVATE_FLAG)
#endif
#ifndef FUTEX_WAKE_PRIVATE
#define FUTEX_WAKE_PRIVATE (FUTEX_WAKE | FUTEX_PRIVATE_FLAG)
#endif
#ifndef FUTEX_REQUEUE_PRIVATE
#define FUTEX_REQUEUE_PRIVATE (FUTEX_REQUEUE | FUTEX_PRIVATE_FLAG)
#endif
#ifndef FUTEX_CMP_REQUEUE_PRIVATE
#define FUTEX_CMP_REQUEUE_PRIVATE (FUTEX_CMP_REQUEUE | FUTEX_PRIVATE_FLAG)
#endif
#ifndef FUTEX_WAKE_OP_PRIVATE
#define FUTEX_WAKE_OP_PRIVATE (FUTEX_WAKE_OP | FUTEX_PRIVATE_FLAG)
#endif
#ifndef FUTEX_LOCK_PI_PRIVATE
#define FUTEX_LOCK_PI_PRIVATE (FUTEX_LOCK_PI | FUTEX_PRIVATE_FLAG)
#endif
#ifndef FUTEX_UNLOCK_PI_PRIVATE
#define FUTEX_UNLOCK_PI_PRIVATE (FUTEX_UNLOCK_PI | FUTEX_PRIVATE_FLAG)
#endif
#ifndef FUTEX_TRYLOCK_PI_PRIVATE
#define FUTEX_TRYLOCK_PI_PRIVATE (FUTEX_TRYLOCK_PI | FUTEX_PRIVATE_FLAG)
#endif
#if defined(__x86_64__)
#ifndef ARCH_SET_GS
#define ARCH_SET_GS 0x1001
#endif
#ifndef ARCH_GET_GS
#define ARCH_GET_GS 0x1004
#endif
#endif
#if defined(__i386__)
#ifndef __NR_quotactl
#define __NR_quotactl 131
#endif
#ifndef __NR_setresuid
#define __NR_setresuid 164
#define __NR_getresuid 165
#define __NR_setresgid 170
#define __NR_getresgid 171
#endif
#ifndef __NR_rt_sigaction
#define __NR_rt_sigreturn 173
#define __NR_rt_sigaction 174
#define __NR_rt_sigprocmask 175
#define __NR_rt_sigpending 176
#define __NR_rt_sigsuspend 179
#endif
#ifndef __NR_pread64
#define __NR_pread64 180
#endif
#ifndef __NR_pwrite64
#define __NR_pwrite64 181
#endif
#ifndef __NR_ugetrlimit
#define __NR_ugetrlimit 191
#endif
#ifndef __NR_stat64
#define __NR_stat64 195
#endif
#ifndef __NR_fstat64
#define __NR_fstat64 197
#endif
#ifndef __NR_setresuid32
#define __NR_setresuid32 208
#define __NR_getresuid32 209
#define __NR_setresgid32 210
#define __NR_getresgid32 211
#endif
#ifndef __NR_setfsuid32
#define __NR_setfsuid32 215
#define __NR_setfsgid32 216
#endif
#ifndef __NR_getdents64
#define __NR_getdents64 220
#endif
#ifndef __NR_gettid
#define __NR_gettid 224
#endif
#ifndef __NR_readahead
#define __NR_readahead 225
#endif
#ifndef __NR_setxattr
#define __NR_setxattr 226
#endif
#ifndef __NR_lsetxattr
#define __NR_lsetxattr 227
#endif
#ifndef __NR_getxattr
#define __NR_getxattr 229
#endif
#ifndef __NR_lgetxattr
#define __NR_lgetxattr 230
#endif
#ifndef __NR_listxattr
#define __NR_listxattr 232
#endif
#ifndef __NR_llistxattr
#define __NR_llistxattr 233
#endif
#ifndef __NR_tkill
#define __NR_tkill 238
#endif
#ifndef __NR_futex
#define __NR_futex 240
#endif
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 241
#define __NR_sched_getaffinity 242
#endif
#ifndef __NR_set_tid_address
#define __NR_set_tid_address 258
#endif
#ifndef __NR_clock_gettime
#define __NR_clock_gettime 265
#endif
#ifndef __NR_clock_getres
#define __NR_clock_getres 266
#endif
#ifndef __NR_statfs64
#define __NR_statfs64 268
#endif
#ifndef __NR_fstatfs64
#define __NR_fstatfs64 269
#endif
#ifndef __NR_fadvise64_64
#define __NR_fadvise64_64 272
#endif
#ifndef __NR_ioprio_set
#define __NR_ioprio_set 289
#endif
#ifndef __NR_ioprio_get
#define __NR_ioprio_get 290
#endif
#ifndef __NR_openat
#define __NR_openat 295
#endif
#ifndef __NR_fstatat64
#define __NR_fstatat64 300
#endif
#ifndef __NR_unlinkat
#define __NR_unlinkat 301
#endif
#ifndef __NR_move_pages
#define __NR_move_pages 317
#endif
#ifndef __NR_getcpu
#define __NR_getcpu 318
#endif
#ifndef __NR_fallocate
#define __NR_fallocate 324
#endif
/* End of i386 definitions */
#elif defined(__ARM_ARCH_3__) || defined(__ARM_EABI__)
#ifndef __NR_setresuid
#define __NR_setresuid (__NR_SYSCALL_BASE + 164)
#define __NR_getresuid (__NR_SYSCALL_BASE + 165)
#define __NR_setresgid (__NR_SYSCALL_BASE + 170)
#define __NR_getresgid (__NR_SYSCALL_BASE + 171)
#endif
#ifndef __NR_rt_sigaction
#define __NR_rt_sigreturn (__NR_SYSCALL_BASE + 173)
#define __NR_rt_sigaction (__NR_SYSCALL_BASE + 174)
#define __NR_rt_sigprocmask (__NR_SYSCALL_BASE + 175)
#define __NR_rt_sigpending (__NR_SYSCALL_BASE + 176)
#define __NR_rt_sigsuspend (__NR_SYSCALL_BASE + 179)
#endif
#ifndef __NR_pread64
#define __NR_pread64 (__NR_SYSCALL_BASE + 180)
#endif
#ifndef __NR_pwrite64
#define __NR_pwrite64 (__NR_SYSCALL_BASE + 181)
#endif
#ifndef __NR_ugetrlimit
#define __NR_ugetrlimit (__NR_SYSCALL_BASE + 191)
#endif
#ifndef __NR_stat64
#define __NR_stat64 (__NR_SYSCALL_BASE + 195)
#endif
#ifndef __NR_fstat64
#define __NR_fstat64 (__NR_SYSCALL_BASE + 197)
#endif
#ifndef __NR_setresuid32
#define __NR_setresuid32 (__NR_SYSCALL_BASE + 208)
#define __NR_getresuid32 (__NR_SYSCALL_BASE + 209)
#define __NR_setresgid32 (__NR_SYSCALL_BASE + 210)
#define __NR_getresgid32 (__NR_SYSCALL_BASE + 211)
#endif
#ifndef __NR_setfsuid32
#define __NR_setfsuid32 (__NR_SYSCALL_BASE + 215)
#define __NR_setfsgid32 (__NR_SYSCALL_BASE + 216)
#endif
#ifndef __NR_getdents64
#define __NR_getdents64 (__NR_SYSCALL_BASE + 217)
#endif
#ifndef __NR_gettid
#define __NR_gettid (__NR_SYSCALL_BASE + 224)
#endif
#ifndef __NR_readahead
#define __NR_readahead (__NR_SYSCALL_BASE + 225)
#endif
#ifndef __NR_setxattr
#define __NR_setxattr (__NR_SYSCALL_BASE + 226)
#endif
#ifndef __NR_lsetxattr
#define __NR_lsetxattr (__NR_SYSCALL_BASE + 227)
#endif
#ifndef __NR_getxattr
#define __NR_getxattr (__NR_SYSCALL_BASE + 229)
#endif
#ifndef __NR_lgetxattr
#define __NR_lgetxattr (__NR_SYSCALL_BASE + 230)
#endif
#ifndef __NR_listxattr
#define __NR_listxattr (__NR_SYSCALL_BASE + 232)
#endif
#ifndef __NR_llistxattr
#define __NR_llistxattr (__NR_SYSCALL_BASE + 233)
#endif
#ifndef __NR_tkill
#define __NR_tkill (__NR_SYSCALL_BASE + 238)
#endif
#ifndef __NR_futex
#define __NR_futex (__NR_SYSCALL_BASE + 240)
#endif
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity (__NR_SYSCALL_BASE + 241)
#define __NR_sched_getaffinity (__NR_SYSCALL_BASE + 242)
#endif
#ifndef __NR_set_tid_address
#define __NR_set_tid_address (__NR_SYSCALL_BASE + 256)
#endif
#ifndef __NR_clock_gettime
#define __NR_clock_gettime (__NR_SYSCALL_BASE + 263)
#endif
#ifndef __NR_clock_getres
#define __NR_clock_getres (__NR_SYSCALL_BASE + 264)
#endif
#ifndef __NR_statfs64
#define __NR_statfs64 (__NR_SYSCALL_BASE + 266)
#endif
#ifndef __NR_fstatfs64
#define __NR_fstatfs64 (__NR_SYSCALL_BASE + 267)
#endif
#ifndef __NR_ioprio_set
#define __NR_ioprio_set (__NR_SYSCALL_BASE + 314)
#endif
#ifndef __NR_ioprio_get
#define __NR_ioprio_get (__NR_SYSCALL_BASE + 315)
#endif
#ifndef __NR_move_pages
#define __NR_move_pages (__NR_SYSCALL_BASE + 344)
#endif
#ifndef __NR_getcpu
#define __NR_getcpu (__NR_SYSCALL_BASE + 345)
#endif
/* End of ARM 3/EABI definitions */
#elif defined(__x86_64__)
#ifndef __NR_pread64
#define __NR_pread64 17
#endif
#ifndef __NR_pwrite64
#define __NR_pwrite64 18
#endif
#ifndef __NR_setresuid
#define __NR_setresuid 117
#define __NR_getresuid 118
#define __NR_setresgid 119
#define __NR_getresgid 120
#endif
#ifndef __NR_quotactl
#define __NR_quotactl 179
#endif
#ifndef __NR_gettid
#define __NR_gettid 186
#endif
#ifndef __NR_readahead
#define __NR_readahead 187
#endif
#ifndef __NR_setxattr
#define __NR_setxattr 188
#endif
#ifndef __NR_lsetxattr
#define __NR_lsetxattr 189
#endif
#ifndef __NR_getxattr
#define __NR_getxattr 191
#endif
#ifndef __NR_lgetxattr
#define __NR_lgetxattr 192
#endif
#ifndef __NR_listxattr
#define __NR_listxattr 194
#endif
#ifndef __NR_llistxattr
#define __NR_llistxattr 195
#endif
#ifndef __NR_tkill
#define __NR_tkill 200
#endif
#ifndef __NR_futex
#define __NR_futex 202
#endif
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 203
#define __NR_sched_getaffinity 204
#endif
#ifndef __NR_getdents64
#define __NR_getdents64 217
#endif
#ifndef __NR_set_tid_address
#define __NR_set_tid_address 218
#endif
#ifndef __NR_fadvise64
#define __NR_fadvise64 221
#endif
#ifndef __NR_clock_gettime
#define __NR_clock_gettime 228
#endif
#ifndef __NR_clock_getres
#define __NR_clock_getres 229
#endif
#ifndef __NR_ioprio_set
#define __NR_ioprio_set 251
#endif
#ifndef __NR_ioprio_get
#define __NR_ioprio_get 252
#endif
#ifndef __NR_openat
#define __NR_openat 257
#endif
#ifndef __NR_newfstatat
#define __NR_newfstatat 262
#endif
#ifndef __NR_unlinkat
#define __NR_unlinkat 263
#endif
#ifndef __NR_move_pages
#define __NR_move_pages 279
#endif
#ifndef __NR_fallocate
#define __NR_fallocate 285
#endif
/* End of x86-64 definitions */
#elif defined(__mips__)
#if _MIPS_SIM == _MIPS_SIM_ABI32
#ifndef __NR_setresuid
#define __NR_setresuid (__NR_Linux + 185)
#define __NR_getresuid (__NR_Linux + 186)
#define __NR_setresgid (__NR_Linux + 190)
#define __NR_getresgid (__NR_Linux + 191)
#endif
#ifndef __NR_rt_sigaction
#define __NR_rt_sigreturn (__NR_Linux + 193)
#define __NR_rt_sigaction (__NR_Linux + 194)
#define __NR_rt_sigprocmask (__NR_Linux + 195)
#define __NR_rt_sigpending (__NR_Linux + 196)
#define __NR_rt_sigsuspend (__NR_Linux + 199)
#endif
#ifndef __NR_pread64
#define __NR_pread64 (__NR_Linux + 200)
#endif
#ifndef __NR_pwrite64
#define __NR_pwrite64 (__NR_Linux + 201)
#endif
#ifndef __NR_stat64
#define __NR_stat64 (__NR_Linux + 213)
#endif
#ifndef __NR_fstat64
#define __NR_fstat64 (__NR_Linux + 215)
#endif
#ifndef __NR_getdents64
#define __NR_getdents64 (__NR_Linux + 219)
#endif
#ifndef __NR_gettid
#define __NR_gettid (__NR_Linux + 222)
#endif
#ifndef __NR_readahead
#define __NR_readahead (__NR_Linux + 223)
#endif
#ifndef __NR_setxattr
#define __NR_setxattr (__NR_Linux + 224)
#endif
#ifndef __NR_lsetxattr
#define __NR_lsetxattr (__NR_Linux + 225)
#endif
#ifndef __NR_getxattr
#define __NR_getxattr (__NR_Linux + 227)
#endif
#ifndef __NR_lgetxattr
#define __NR_lgetxattr (__NR_Linux + 228)
#endif
#ifndef __NR_listxattr
#define __NR_listxattr (__NR_Linux + 230)
#endif
#ifndef __NR_llistxattr
#define __NR_llistxattr (__NR_Linux + 231)
#endif
#ifndef __NR_tkill
#define __NR_tkill (__NR_Linux + 236)
#endif
#ifndef __NR_futex
#define __NR_futex (__NR_Linux + 238)
#endif
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity (__NR_Linux + 239)
#define __NR_sched_getaffinity (__NR_Linux + 240)
#endif
#ifndef __NR_set_tid_address
#define __NR_set_tid_address (__NR_Linux + 252)
#endif
#ifndef __NR_statfs64
#define __NR_statfs64 (__NR_Linux + 255)
#endif
#ifndef __NR_fstatfs64
#define __NR_fstatfs64 (__NR_Linux + 256)
#endif
#ifndef __NR_clock_gettime
#define __NR_clock_gettime (__NR_Linux + 263)
#endif
#ifndef __NR_clock_getres
#define __NR_clock_getres (__NR_Linux + 264)
#endif
#ifndef __NR_openat
#define __NR_openat (__NR_Linux + 288)
#endif
#ifndef __NR_fstatat
#define __NR_fstatat (__NR_Linux + 293)
#endif
#ifndef __NR_unlinkat
#define __NR_unlinkat (__NR_Linux + 294)
#endif
#ifndef __NR_move_pages
#define __NR_move_pages (__NR_Linux + 308)
#endif
#ifndef __NR_getcpu
#define __NR_getcpu (__NR_Linux + 312)
#endif
#ifndef __NR_ioprio_set
#define __NR_ioprio_set (__NR_Linux + 314)
#endif
#ifndef __NR_ioprio_get
#define __NR_ioprio_get (__NR_Linux + 315)
#endif
/* End of MIPS (old 32bit API) definitions */
#elif _MIPS_SIM == _MIPS_SIM_ABI64
#ifndef __NR_pread64
#define __NR_pread64 (__NR_Linux + 16)
#endif
#ifndef __NR_pwrite64
#define __NR_pwrite64 (__NR_Linux + 17)
#endif
#ifndef __NR_setresuid
#define __NR_setresuid (__NR_Linux + 115)
#define __NR_getresuid (__NR_Linux + 116)
#define __NR_setresgid (__NR_Linux + 117)
#define __NR_getresgid (__NR_Linux + 118)
#endif
#ifndef __NR_gettid
#define __NR_gettid (__NR_Linux + 178)
#endif
#ifndef __NR_readahead
#define __NR_readahead (__NR_Linux + 179)
#endif
#ifndef __NR_setxattr
#define __NR_setxattr (__NR_Linux + 180)
#endif
#ifndef __NR_lsetxattr
#define __NR_lsetxattr (__NR_Linux + 181)
#endif
#ifndef __NR_getxattr
#define __NR_getxattr (__NR_Linux + 183)
#endif
#ifndef __NR_lgetxattr
#define __NR_lgetxattr (__NR_Linux + 184)
#endif
#ifndef __NR_listxattr
#define __NR_listxattr (__NR_Linux + 186)
#endif
#ifndef __NR_llistxattr
#define __NR_llistxattr (__NR_Linux + 187)
#endif
#ifndef __NR_tkill
#define __NR_tkill (__NR_Linux + 192)
#endif
#ifndef __NR_futex
#define __NR_futex (__NR_Linux + 194)
#endif
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity (__NR_Linux + 195)
#define __NR_sched_getaffinity (__NR_Linux + 196)
#endif
#ifndef __NR_set_tid_address
#define __NR_set_tid_address (__NR_Linux + 212)
#endif
#ifndef __NR_clock_gettime
#define __NR_clock_gettime (__NR_Linux + 222)
#endif
#ifndef __NR_clock_getres
#define __NR_clock_getres (__NR_Linux + 223)
#endif
#ifndef __NR_openat
#define __NR_openat (__NR_Linux + 247)
#endif
#ifndef __NR_fstatat
#define __NR_fstatat (__NR_Linux + 252)
#endif
#ifndef __NR_unlinkat
#define __NR_unlinkat (__NR_Linux + 253)
#endif
#ifndef __NR_move_pages
#define __NR_move_pages (__NR_Linux + 267)
#endif
#ifndef __NR_getcpu
#define __NR_getcpu (__NR_Linux + 271)
#endif
#ifndef __NR_ioprio_set
#define __NR_ioprio_set (__NR_Linux + 273)
#endif
#ifndef __NR_ioprio_get
#define __NR_ioprio_get (__NR_Linux + 274)
#endif
/* End of MIPS (64bit API) definitions */
#else
#ifndef __NR_setresuid
#define __NR_setresuid (__NR_Linux + 115)
#define __NR_getresuid (__NR_Linux + 116)
#define __NR_setresgid (__NR_Linux + 117)
#define __NR_getresgid (__NR_Linux + 118)
#endif
#ifndef __NR_gettid
#define __NR_gettid (__NR_Linux + 178)
#endif
#ifndef __NR_readahead
#define __NR_readahead (__NR_Linux + 179)
#endif
#ifndef __NR_setxattr
#define __NR_setxattr (__NR_Linux + 180)
#endif
#ifndef __NR_lsetxattr
#define __NR_lsetxattr (__NR_Linux + 181)
#endif
#ifndef __NR_getxattr
#define __NR_getxattr (__NR_Linux + 183)
#endif
#ifndef __NR_lgetxattr
#define __NR_lgetxattr (__NR_Linux + 184)
#endif
#ifndef __NR_listxattr
#define __NR_listxattr (__NR_Linux + 186)
#endif
#ifndef __NR_llistxattr
#define __NR_llistxattr (__NR_Linux + 187)
#endif
#ifndef __NR_tkill
#define __NR_tkill (__NR_Linux + 192)
#endif
#ifndef __NR_futex
#define __NR_futex (__NR_Linux + 194)
#endif
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity (__NR_Linux + 195)
#define __NR_sched_getaffinity (__NR_Linux + 196)
#endif
#ifndef __NR_set_tid_address
#define __NR_set_tid_address (__NR_Linux + 213)
#endif
#ifndef __NR_statfs64
#define __NR_statfs64 (__NR_Linux + 217)
#endif
#ifndef __NR_fstatfs64
#define __NR_fstatfs64 (__NR_Linux + 218)
#endif
#ifndef __NR_clock_gettime
#define __NR_clock_gettime (__NR_Linux + 226)
#endif
#ifndef __NR_clock_getres
#define __NR_clock_getres (__NR_Linux + 227)
#endif
#ifndef __NR_openat
#define __NR_openat (__NR_Linux + 251)
#endif
#ifndef __NR_fstatat
#define __NR_fstatat (__NR_Linux + 256)
#endif
#ifndef __NR_unlinkat
#define __NR_unlinkat (__NR_Linux + 257)
#endif
#ifndef __NR_move_pages
#define __NR_move_pages (__NR_Linux + 271)
#endif
#ifndef __NR_getcpu
#define __NR_getcpu (__NR_Linux + 275)
#endif
#ifndef __NR_ioprio_set
#define __NR_ioprio_set (__NR_Linux + 277)
#endif
#ifndef __NR_ioprio_get
#define __NR_ioprio_get (__NR_Linux + 278)
#endif
/* End of MIPS (new 32bit API) definitions */
#endif
/* End of MIPS definitions */
#elif defined(__PPC__)
#ifndef __NR_setfsuid
#define __NR_setfsuid 138
#define __NR_setfsgid 139
#endif
#ifndef __NR_setresuid
#define __NR_setresuid 164
#define __NR_getresuid 165
#define __NR_setresgid 169
#define __NR_getresgid 170
#endif
#ifndef __NR_rt_sigaction
#define __NR_rt_sigreturn 172
#define __NR_rt_sigaction 173
#define __NR_rt_sigprocmask 174
#define __NR_rt_sigpending 175
#define __NR_rt_sigsuspend 178
#endif
#ifndef __NR_pread64
#define __NR_pread64 179
#endif
#ifndef __NR_pwrite64
#define __NR_pwrite64 180
#endif
#ifndef __NR_ugetrlimit
#define __NR_ugetrlimit 190
#endif
#ifndef __NR_readahead
#define __NR_readahead 191
#endif
#ifndef __NR_stat64
#define __NR_stat64 195
#endif
#ifndef __NR_fstat64
#define __NR_fstat64 197
#endif
#ifndef __NR_getdents64
#define __NR_getdents64 202
#endif
#ifndef __NR_gettid
#define __NR_gettid 207
#endif
#ifndef __NR_tkill
#define __NR_tkill 208
#endif
#ifndef __NR_setxattr
#define __NR_setxattr 209
#endif
#ifndef __NR_lsetxattr
#define __NR_lsetxattr 210
#endif
#ifndef __NR_getxattr
#define __NR_getxattr 212
#endif
#ifndef __NR_lgetxattr
#define __NR_lgetxattr 213
#endif
#ifndef __NR_listxattr
#define __NR_listxattr 215
#endif
#ifndef __NR_llistxattr
#define __NR_llistxattr 216
#endif
#ifndef __NR_futex
#define __NR_futex 221
#endif
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 222
#define __NR_sched_getaffinity 223
#endif
#ifndef __NR_set_tid_address
#define __NR_set_tid_address 232
#endif
#ifndef __NR_clock_gettime
#define __NR_clock_gettime 246
#endif
#ifndef __NR_clock_getres
#define __NR_clock_getres 247
#endif
#ifndef __NR_statfs64
#define __NR_statfs64 252
#endif
#ifndef __NR_fstatfs64
#define __NR_fstatfs64 253
#endif
#ifndef __NR_fadvise64_64
#define __NR_fadvise64_64 254
#endif
#ifndef __NR_ioprio_set
#define __NR_ioprio_set 273
#endif
#ifndef __NR_ioprio_get
#define __NR_ioprio_get 274
#endif
#ifndef __NR_openat
#define __NR_openat 286
#endif
#ifndef __NR_fstatat64
#define __NR_fstatat64 291
#endif
#ifndef __NR_unlinkat
#define __NR_unlinkat 292
#endif
#ifndef __NR_move_pages
#define __NR_move_pages 301
#endif
#ifndef __NR_getcpu
#define __NR_getcpu 302
#endif
/* End of powerpc defininitions */
#endif
/* After forking, we must make sure to only call system calls. */
#if __BOUNDED_POINTERS__
#error "Need to port invocations of syscalls for bounded ptrs"
#else
/* The core dumper and the thread lister get executed after threads
* have been suspended. As a consequence, we cannot call any functions
* that acquire locks. Unfortunately, libc wraps most system calls
* (e.g. in order to implement pthread_atfork, and to make calls
* cancellable), which means we cannot call these functions. Instead,
* we have to call syscall() directly.
*/
#undef LSS_ERRNO
#ifdef SYS_ERRNO
/* Allow the including file to override the location of errno. This can
* be useful when using clone() with the CLONE_VM option.
*/
#define LSS_ERRNO SYS_ERRNO
#else
#define LSS_ERRNO errno
#endif
#undef LSS_INLINE
#ifdef SYS_INLINE
#define LSS_INLINE SYS_INLINE
#else
#define LSS_INLINE static inline
#endif
/* Allow the including file to override the prefix used for all new
* system calls. By default, it will be set to "sys_".
*/
#undef LSS_NAME
#ifndef SYS_PREFIX
#define LSS_NAME(name) sys_##name
#elif SYS_PREFIX < 0
#define LSS_NAME(name) name
#elif SYS_PREFIX == 0
#define LSS_NAME(name) sys0_##name
#elif SYS_PREFIX == 1
#define LSS_NAME(name) sys1_##name
#elif SYS_PREFIX == 2
#define LSS_NAME(name) sys2_##name
#elif SYS_PREFIX == 3
#define LSS_NAME(name) sys3_##name
#elif SYS_PREFIX == 4
#define LSS_NAME(name) sys4_##name
#elif SYS_PREFIX == 5
#define LSS_NAME(name) sys5_##name
#elif SYS_PREFIX == 6
#define LSS_NAME(name) sys6_##name
#elif SYS_PREFIX == 7
#define LSS_NAME(name) sys7_##name
#elif SYS_PREFIX == 8
#define LSS_NAME(name) sys8_##name
#elif SYS_PREFIX == 9
#define LSS_NAME(name) sys9_##name
#endif
#undef LSS_RETURN
#if (defined(__i386__) || defined(__x86_64__) || defined(__ARM_ARCH_3__) \
|| defined(__ARM_EABI__))
/* Failing system calls return a negative result in the range of
* -1..-4095. These are "errno" values with the sign inverted.
*/
#define LSS_RETURN(type, res) \
do { \
if ((unsigned long)(res) >= (unsigned long)(-4095)) { \
LSS_ERRNO = -(res); \
res = -1; \
} \
return (type) (res); \
} while (0)
#elif defined(__mips__)
/* On MIPS, failing system calls return -1, and set errno in a
* separate CPU register.
*/
#define LSS_RETURN(type, res, err) \
do { \
if (err) { \
LSS_ERRNO = (res); \
res = -1; \
} \
return (type) (res); \
} while (0)
#elif defined(__PPC__)
/* On PPC, failing system calls return -1, and set errno in a
* separate CPU register. See linux/unistd.h.
*/
#define LSS_RETURN(type, res, err) \
do { \
if (err & 0x10000000 ) { \
LSS_ERRNO = (res); \
res = -1; \
} \
return (type) (res); \
} while (0)
#endif
#if defined(__i386__)
/* In PIC mode (e.g. when building shared libraries), gcc for i386
* reserves ebx. Unfortunately, most distribution ship with implementations
* of _syscallX() which clobber ebx.
* Also, most definitions of _syscallX() neglect to mark "memory" as being
* clobbered. This causes problems with compilers, that do a better job
* at optimizing across __asm__ calls.
* So, we just have to redefine all of the _syscallX() macros.
*/
#undef LSS_ENTRYPOINT
#ifdef SYS_SYSCALL_ENTRYPOINT
static inline void (**LSS_NAME(get_syscall_entrypoint)(void))(void) {
void (**entrypoint)(void);
asm volatile(".bss\n"
".align 8\n"
".globl "SYS_SYSCALL_ENTRYPOINT"\n"
".common "SYS_SYSCALL_ENTRYPOINT",8,8\n"
".previous\n"
/* This logically does 'lea "SYS_SYSCALL_ENTRYPOINT", %0' */
"call 0f\n"
"0:pop %0\n"
"add $_GLOBAL_OFFSET_TABLE_+[.-0b], %0\n"
"mov "SYS_SYSCALL_ENTRYPOINT"@GOT(%0), %0\n"
: "=r"(entrypoint));
return entrypoint;
}
#define LSS_ENTRYPOINT ".bss\n" \
".align 8\n" \
".globl "SYS_SYSCALL_ENTRYPOINT"\n" \
".common "SYS_SYSCALL_ENTRYPOINT",8,8\n" \
".previous\n" \
/* Check the SYS_SYSCALL_ENTRYPOINT vector */ \
"push %%eax\n" \
"call 10000f\n" \
"10000:pop %%eax\n" \
"add $_GLOBAL_OFFSET_TABLE_+[.-10000b], %%eax\n" \
"mov "SYS_SYSCALL_ENTRYPOINT"@GOT(%%eax), %%eax\n"\
"mov 0(%%eax), %%eax\n" \
"test %%eax, %%eax\n" \
"jz 10001f\n" \
"push %%eax\n" \
"lea 10002f, %%eax\n" \
"xchg 4(%%esp), %%eax\n" \
"ret\n" \
"10001:pop %%eax\n" \
"int $0x80\n" \
"10002:\n"
#else
#define LSS_ENTRYPOINT "int $0x80\n"
#endif
#undef LSS_BODY
#define LSS_BODY(type,args...) \
long __res; \
__asm__ __volatile__("push %%ebx\n" \
"movl %2,%%ebx\n" \
LSS_ENTRYPOINT \
"pop %%ebx" \
args \
: "esp", "memory"); \
LSS_RETURN(type,__res)
#undef _syscall0
#define _syscall0(type,name) \
type LSS_NAME(name)(void) { \
long __res; \
__asm__ volatile(LSS_ENTRYPOINT \
: "=a" (__res) \
: "0" (__NR_##name) \
: "esp", "memory"); \
LSS_RETURN(type,__res); \
}
#undef _syscall1
#define _syscall1(type,name,type1,arg1) \
type LSS_NAME(name)(type1 arg1) { \
LSS_BODY(type, \
: "=a" (__res) \
: "0" (__NR_##name), "ri" ((long)(arg1))); \
}
#undef _syscall2
#define _syscall2(type,name,type1,arg1,type2,arg2) \
type LSS_NAME(name)(type1 arg1,type2 arg2) { \
LSS_BODY(type, \
: "=a" (__res) \
: "0" (__NR_##name),"ri" ((long)(arg1)), "c" ((long)(arg2))); \
}
#undef _syscall3
#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
type LSS_NAME(name)(type1 arg1,type2 arg2,type3 arg3) { \
LSS_BODY(type, \
: "=a" (__res) \
: "0" (__NR_##name), "ri" ((long)(arg1)), "c" ((long)(arg2)), \
"d" ((long)(arg3))); \
}
#undef _syscall4
#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
LSS_BODY(type, \
: "=a" (__res) \
: "0" (__NR_##name), "ri" ((long)(arg1)), "c" ((long)(arg2)), \
"d" ((long)(arg3)),"S" ((long)(arg4))); \
}
#undef _syscall5
#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5) { \
long __res; \
__asm__ __volatile__("push %%ebx\n" \
"movl %2,%%ebx\n" \
"movl %1,%%eax\n" \
LSS_ENTRYPOINT \
"pop %%ebx" \
: "=a" (__res) \
: "i" (__NR_##name), "ri" ((long)(arg1)), \
"c" ((long)(arg2)), "d" ((long)(arg3)), \
"S" ((long)(arg4)), "D" ((long)(arg5)) \
: "esp", "memory"); \
LSS_RETURN(type,__res); \
}
#undef _syscall6
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5,type6,arg6) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5, type6 arg6) { \
long __res; \
struct { long __a1; long __a6; } __s = { (long)arg1, (long) arg6 }; \
__asm__ __volatile__("push %%ebp\n" \
"push %%ebx\n" \
"movl 4(%2),%%ebp\n" \
"movl 0(%2), %%ebx\n" \
"movl %1,%%eax\n" \
LSS_ENTRYPOINT \
"pop %%ebx\n" \
"pop %%ebp" \
: "=a" (__res) \
: "i" (__NR_##name), "0" ((long)(&__s)), \
"c" ((long)(arg2)), "d" ((long)(arg3)), \
"S" ((long)(arg4)), "D" ((long)(arg5)) \
: "esp", "memory"); \
LSS_RETURN(type,__res); \
}
LSS_INLINE int LSS_NAME(clone)(int (*fn)(void *), void *child_stack,
int flags, void *arg, int *parent_tidptr,
void *newtls, int *child_tidptr) {
long __res;
__asm__ __volatile__(/* if (fn == NULL)
* return -EINVAL;
*/
"movl %3,%%ecx\n"
"jecxz 1f\n"
/* if (child_stack == NULL)
* return -EINVAL;
*/
"movl %4,%%ecx\n"
"jecxz 1f\n"
/* Set up alignment of the child stack:
* child_stack = (child_stack & ~0xF) - 20;
*/
"andl $-16,%%ecx\n"
"subl $20,%%ecx\n"
/* Push "arg" and "fn" onto the stack that will be
* used by the child.
*/
"movl %6,%%eax\n"
"movl %%eax,4(%%ecx)\n"
"movl %3,%%eax\n"
"movl %%eax,(%%ecx)\n"
/* %eax = syscall(%eax = __NR_clone,
* %ebx = flags,
* %ecx = child_stack,
* %edx = parent_tidptr,
* %esi = newtls,
* %edi = child_tidptr)
* Also, make sure that %ebx gets preserved as it is
* used in PIC mode.
*/
"movl %8,%%esi\n"
"movl %7,%%edx\n"
"movl %5,%%eax\n"
"movl %9,%%edi\n"
"pushl %%ebx\n"
"movl %%eax,%%ebx\n"
"movl %2,%%eax\n"
LSS_ENTRYPOINT
/* In the parent: restore %ebx
* In the child: move "fn" into %ebx
*/
"popl %%ebx\n"
/* if (%eax != 0)
* return %eax;
*/
"test %%eax,%%eax\n"
"jnz 1f\n"
/* In the child, now. Terminate frame pointer chain.
*/
"movl $0,%%ebp\n"
/* Call "fn". "arg" is already on the stack.
*/
"call *%%ebx\n"
/* Call _exit(%ebx). Unfortunately older versions
* of gcc restrict the number of arguments that can
* be passed to asm(). So, we need to hard-code the
* system call number.
*/
"movl %%eax,%%ebx\n"
"movl $1,%%eax\n"
LSS_ENTRYPOINT
/* Return to parent.
*/
"1:\n"
: "=a" (__res)
: "0"(-EINVAL), "i"(__NR_clone),
"m"(fn), "m"(child_stack), "m"(flags), "m"(arg),
"m"(parent_tidptr), "m"(newtls), "m"(child_tidptr)
: "esp", "memory", "ecx", "edx", "esi", "edi");
LSS_RETURN(int, __res);
}
#define __NR__fadvise64_64 __NR_fadvise64_64
LSS_INLINE _syscall6(int, _fadvise64_64, int, fd,
unsigned, offset_lo, unsigned, offset_hi,
unsigned, len_lo, unsigned, len_hi,
int, advice)
LSS_INLINE int LSS_NAME(fadvise64)(int fd, loff_t offset,
loff_t len, int advice) {
return LSS_NAME(_fadvise64_64)(fd,
(unsigned)offset, (unsigned)(offset >>32),
(unsigned)len, (unsigned)(len >> 32),
advice);
}
#define __NR__fallocate __NR_fallocate
LSS_INLINE _syscall6(int, _fallocate, int, fd,
int, mode,
unsigned, offset_lo, unsigned, offset_hi,
unsigned, len_lo, unsigned, len_hi)
LSS_INLINE int LSS_NAME(fallocate)(int fd, int mode,
loff_t offset, loff_t len) {
union { loff_t off; unsigned w[2]; } o = { offset }, l = { len };
return LSS_NAME(_fallocate)(fd, mode, o.w[0], o.w[1], l.w[0], l.w[1]);
}
LSS_INLINE _syscall1(int, set_thread_area, void *, u)
LSS_INLINE _syscall1(int, get_thread_area, void *, u)
LSS_INLINE void (*LSS_NAME(restore_rt)(void))(void) {
/* On i386, the kernel does not know how to return from a signal
* handler. Instead, it relies on user space to provide a
* restorer function that calls the {rt_,}sigreturn() system call.
* Unfortunately, we cannot just reference the glibc version of this
* function, as glibc goes out of its way to make it inaccessible.
*/
void (*res)(void);
__asm__ __volatile__("call 2f\n"
"0:.align 16\n"
"1:movl %1,%%eax\n"
LSS_ENTRYPOINT
"2:popl %0\n"
"addl $(1b-0b),%0\n"
: "=a" (res)
: "i" (__NR_rt_sigreturn));
return res;
}
LSS_INLINE void (*LSS_NAME(restore)(void))(void) {
/* On i386, the kernel does not know how to return from a signal
* handler. Instead, it relies on user space to provide a
* restorer function that calls the {rt_,}sigreturn() system call.
* Unfortunately, we cannot just reference the glibc version of this
* function, as glibc goes out of its way to make it inaccessible.
*/
void (*res)(void);
__asm__ __volatile__("call 2f\n"
"0:.align 16\n"
"1:pop %%eax\n"
"movl %1,%%eax\n"
LSS_ENTRYPOINT
"2:popl %0\n"
"addl $(1b-0b),%0\n"
: "=a" (res)
: "i" (__NR_sigreturn));
return res;
}
#elif defined(__x86_64__)
/* There are no known problems with any of the _syscallX() macros
* currently shipping for x86_64, but we still need to be able to define
* our own version so that we can override the location of the errno
* location (e.g. when using the clone() system call with the CLONE_VM
* option).
*/
#undef LSS_ENTRYPOINT
#ifdef SYS_SYSCALL_ENTRYPOINT
static inline void (**LSS_NAME(get_syscall_entrypoint)(void))(void) {
void (**entrypoint)(void);
asm volatile(".bss\n"
".align 8\n"
".globl "SYS_SYSCALL_ENTRYPOINT"\n"
".common "SYS_SYSCALL_ENTRYPOINT",8,8\n"
".previous\n"
"mov "SYS_SYSCALL_ENTRYPOINT"@GOTPCREL(%%rip), %0\n"
: "=r"(entrypoint));
return entrypoint;
}
#define LSS_ENTRYPOINT \
".bss\n" \
".align 8\n" \
".globl "SYS_SYSCALL_ENTRYPOINT"\n" \
".common "SYS_SYSCALL_ENTRYPOINT",8,8\n" \
".previous\n" \
"mov "SYS_SYSCALL_ENTRYPOINT"@GOTPCREL(%%rip), %%rcx\n" \
"mov 0(%%rcx), %%rcx\n" \
"test %%rcx, %%rcx\n" \
"jz 10001f\n" \
"call *%%rcx\n" \
"jmp 10002f\n" \
"10001:syscall\n" \
"10002:\n"
#else
#define LSS_ENTRYPOINT "syscall\n"
#endif
#undef LSS_BODY
#define LSS_BODY(type,name, ...) \
long __res; \
__asm__ __volatile__(LSS_ENTRYPOINT \
: "=a" (__res) : "0" (__NR_##name), \
##__VA_ARGS__ : "r11", "rcx", "memory"); \
LSS_RETURN(type, __res)
#undef _syscall0
#define _syscall0(type,name) \
type LSS_NAME(name)() { \
LSS_BODY(type, name); \
}
#undef _syscall1
#define _syscall1(type,name,type1,arg1) \
type LSS_NAME(name)(type1 arg1) { \
LSS_BODY(type, name, "D" ((long)(arg1))); \
}
#undef _syscall2
#define _syscall2(type,name,type1,arg1,type2,arg2) \
type LSS_NAME(name)(type1 arg1, type2 arg2) { \
LSS_BODY(type, name, "D" ((long)(arg1)), "S" ((long)(arg2))); \
}
#undef _syscall3
#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3) { \
LSS_BODY(type, name, "D" ((long)(arg1)), "S" ((long)(arg2)), \
"d" ((long)(arg3))); \
}
#undef _syscall4
#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
long __res; \
__asm__ __volatile__("movq %5,%%r10;" LSS_ENTRYPOINT : \
"=a" (__res) : "0" (__NR_##name), \
"D" ((long)(arg1)), "S" ((long)(arg2)), "d" ((long)(arg3)), \
"r" ((long)(arg4)) : "r10", "r11", "rcx", "memory"); \
LSS_RETURN(type, __res); \
}
#undef _syscall5
#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5) { \
long __res; \
__asm__ __volatile__("movq %5,%%r10; movq %6,%%r8;" LSS_ENTRYPOINT :\
"=a" (__res) : "0" (__NR_##name), \
"D" ((long)(arg1)), "S" ((long)(arg2)), "d" ((long)(arg3)), \
"r" ((long)(arg4)), "r" ((long)(arg5)) : \
"r8", "r10", "r11", "rcx", "memory"); \
LSS_RETURN(type, __res); \
}
#undef _syscall6
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5,type6,arg6) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5, type6 arg6) { \
long __res; \
__asm__ __volatile__("movq %5,%%r10; movq %6,%%r8; movq %7,%%r9;" \
LSS_ENTRYPOINT : \
"=a" (__res) : "0" (__NR_##name), \
"D" ((long)(arg1)), "S" ((long)(arg2)), "d" ((long)(arg3)), \
"r" ((long)(arg4)), "r" ((long)(arg5)), "r" ((long)(arg6)) : \
"r8", "r9", "r10", "r11", "rcx", "memory"); \
LSS_RETURN(type, __res); \
}
LSS_INLINE int LSS_NAME(clone)(int (*fn)(void *), void *child_stack,
int flags, void *arg, int *parent_tidptr,
void *newtls, int *child_tidptr) {
long __res;
{
register void *__tls __asm__("r8") = newtls;
register int *__ctid __asm__("r10") = child_tidptr;
__asm__ __volatile__(/* if (fn == NULL)
* return -EINVAL;
*/
"testq %4,%4\n"
"jz 1f\n"
/* if (child_stack == NULL)
* return -EINVAL;
*/
"testq %5,%5\n"
"jz 1f\n"
/* childstack -= 2*sizeof(void *);
*/
"subq $16,%5\n"
/* Push "arg" and "fn" onto the stack that will be
* used by the child.
*/
"movq %7,8(%5)\n"
"movq %4,0(%5)\n"
/* %rax = syscall(%rax = __NR_clone,
* %rdi = flags,
* %rsi = child_stack,
* %rdx = parent_tidptr,
* %r8 = new_tls,
* %r10 = child_tidptr)
*/
"movq %2,%%rax\n"
LSS_ENTRYPOINT
/* if (%rax != 0)
* return;
*/
"testq %%rax,%%rax\n"
"jnz 1f\n"
/* In the child. Terminate frame pointer chain.
*/
"xorq %%rbp,%%rbp\n"
/* Call "fn(arg)".
*/
"popq %%rax\n"
"popq %%rdi\n"
"call *%%rax\n"
/* Call _exit(%ebx).
*/
"movq %%rax,%%rdi\n"
"movq %3,%%rax\n"
LSS_ENTRYPOINT
/* Return to parent.
*/
"1:\n"
: "=a" (__res)
: "0"(-EINVAL), "i"(__NR_clone), "i"(__NR_exit),
"r"(fn), "S"(child_stack), "D"(flags), "r"(arg),
"d"(parent_tidptr), "r"(__tls), "r"(__ctid)
: "rsp", "memory", "r11", "rcx");
}
LSS_RETURN(int, __res);
}
LSS_INLINE _syscall2(int, arch_prctl, int, c, void *, a)
LSS_INLINE _syscall4(int, fadvise64, int, fd, loff_t, offset, loff_t, len,
int, advice)
LSS_INLINE void (*LSS_NAME(restore_rt)(void))(void) {
/* On x86-64, the kernel does not know how to return from
* a signal handler. Instead, it relies on user space to provide a
* restorer function that calls the rt_sigreturn() system call.
* Unfortunately, we cannot just reference the glibc version of this
* function, as glibc goes out of its way to make it inaccessible.
*/
void (*res)(void);
__asm__ __volatile__("call 2f\n"
"0:.align 16\n"
"1:movq %1,%%rax\n"
LSS_ENTRYPOINT
"2:popq %0\n"
"addq $(1b-0b),%0\n"
: "=a" (res)
: "i" (__NR_rt_sigreturn));
return res;
}
#elif defined(__ARM_ARCH_3__)
/* Most definitions of _syscallX() neglect to mark "memory" as being
* clobbered. This causes problems with compilers, that do a better job
* at optimizing across __asm__ calls.
* So, we just have to redefine all of the _syscallX() macros.
*/
#undef LSS_REG
#define LSS_REG(r,a) register long __r##r __asm__("r"#r) = (long)a
#undef LSS_BODY
#define LSS_BODY(type,name,args...) \
register long __res_r0 __asm__("r0"); \
long __res; \
__asm__ __volatile__ (__syscall(name) \
: "=r"(__res_r0) : args : "lr", "memory"); \
__res = __res_r0; \
LSS_RETURN(type, __res)
#undef _syscall0
#define _syscall0(type, name) \
type LSS_NAME(name)() { \
LSS_BODY(type, name); \
}
#undef _syscall1
#define _syscall1(type, name, type1, arg1) \
type LSS_NAME(name)(type1 arg1) { \
LSS_REG(0, arg1); LSS_BODY(type, name, "r"(__r0)); \
}
#undef _syscall2
#define _syscall2(type, name, type1, arg1, type2, arg2) \
type LSS_NAME(name)(type1 arg1, type2 arg2) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1)); \
}
#undef _syscall3
#define _syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); LSS_REG(2, arg3); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1), "r"(__r2)); \
}
#undef _syscall4
#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); LSS_REG(2, arg3); \
LSS_REG(3, arg4); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1), "r"(__r2), "r"(__r3)); \
}
#undef _syscall5
#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); LSS_REG(2, arg3); \
LSS_REG(3, arg4); LSS_REG(4, arg5); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1), "r"(__r2), "r"(__r3), \
"r"(__r4)); \
}
#undef _syscall6
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5,type6,arg6) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5, type6 arg6) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); LSS_REG(2, arg3); \
LSS_REG(3, arg4); LSS_REG(4, arg5); LSS_REG(5, arg6); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1), "r"(__r2), "r"(__r3), \
"r"(__r4), "r"(__r5)); \
}
LSS_INLINE int LSS_NAME(clone)(int (*fn)(void *), void *child_stack,
int flags, void *arg, int *parent_tidptr,
void *newtls, int *child_tidptr) {
long __res;
{
register int __flags __asm__("r0") = flags;
register void *__stack __asm__("r1") = child_stack;
register void *__ptid __asm__("r2") = parent_tidptr;
register void *__tls __asm__("r3") = newtls;
register int *__ctid __asm__("r4") = child_tidptr;
__asm__ __volatile__(/* if (fn == NULL || child_stack == NULL)
* return -EINVAL;
*/
"cmp %2,#0\n"
"cmpne %3,#0\n"
"moveq %0,%1\n"
"beq 1f\n"
/* Push "arg" and "fn" onto the stack that will be
* used by the child.
*/
"str %5,[%3,#-4]!\n"
"str %2,[%3,#-4]!\n"
/* %r0 = syscall(%r0 = flags,
* %r1 = child_stack,
* %r2 = parent_tidptr,
* %r3 = newtls,
* %r4 = child_tidptr)
*/
__syscall(clone)"\n"
/* if (%r0 != 0)
* return %r0;
*/
"movs %0,r0\n"
"bne 1f\n"
/* In the child, now. Call "fn(arg)".
*/
"ldr r0,[sp, #4]\n"
"mov lr,pc\n"
"ldr pc,[sp]\n"
/* Call _exit(%r0).
*/
__syscall(exit)"\n"
"1:\n"
: "=r" (__res)
: "i"(-EINVAL),
"r"(fn), "r"(__stack), "r"(__flags), "r"(arg),
"r"(__ptid), "r"(__tls), "r"(__ctid)
: "cc", "lr", "memory");
}
LSS_RETURN(int, __res);
}
#elif defined(__ARM_EABI__)
/* Most definitions of _syscallX() neglect to mark "memory" as being
* clobbered. This causes problems with compilers, that do a better job
* at optimizing across __asm__ calls.
* So, we just have to redefine all fo the _syscallX() macros.
*/
#undef LSS_REG
#define LSS_REG(r,a) register long __r##r __asm__("r"#r) = (long)a
#undef LSS_BODY
#define LSS_BODY(type,name,args...) \
register long __res_r0 __asm__("r0"); \
long __res; \
__asm__ __volatile__ ("push {r7}\n" \
"mov r7, %1\n" \
"swi 0x0\n" \
"pop {r7}\n" \
: "=r"(__res_r0) \
: "i"(__NR_##name) , ## args \
: "lr", "memory"); \
__res = __res_r0; \
LSS_RETURN(type, __res)
#undef _syscall0
#define _syscall0(type, name) \
type LSS_NAME(name)() { \
LSS_BODY(type, name); \
}
#undef _syscall1
#define _syscall1(type, name, type1, arg1) \
type LSS_NAME(name)(type1 arg1) { \
LSS_REG(0, arg1); LSS_BODY(type, name, "r"(__r0)); \
}
#undef _syscall2
#define _syscall2(type, name, type1, arg1, type2, arg2) \
type LSS_NAME(name)(type1 arg1, type2 arg2) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1)); \
}
#undef _syscall3
#define _syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); LSS_REG(2, arg3); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1), "r"(__r2)); \
}
#undef _syscall4
#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); LSS_REG(2, arg3); \
LSS_REG(3, arg4); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1), "r"(__r2), "r"(__r3)); \
}
#undef _syscall5
#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); LSS_REG(2, arg3); \
LSS_REG(3, arg4); LSS_REG(4, arg5); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1), "r"(__r2), "r"(__r3), \
"r"(__r4)); \
}
#undef _syscall6
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5,type6,arg6) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5, type6 arg6) { \
LSS_REG(0, arg1); LSS_REG(1, arg2); LSS_REG(2, arg3); \
LSS_REG(3, arg4); LSS_REG(4, arg5); LSS_REG(5, arg6); \
LSS_BODY(type, name, "r"(__r0), "r"(__r1), "r"(__r2), "r"(__r3), \
"r"(__r4), "r"(__r5)); \
}
LSS_INLINE int LSS_NAME(clone)(int (*fn)(void *), void *child_stack,
int flags, void *arg, int *parent_tidptr,
void *newtls, int *child_tidptr) {
long __res;
{
register int __flags __asm__("r0") = flags;
register void *__stack __asm__("r1") = child_stack;
register void *__ptid __asm__("r2") = parent_tidptr;
register void *__tls __asm__("r3") = newtls;
register int *__ctid __asm__("r4") = child_tidptr;
__asm__ __volatile__(/* if (fn == NULL || child_stack == NULL)
* return -EINVAL;
*/
"cmp %2,#0\n"
"cmpne %3,#0\n"
"moveq %0,%1\n"
"beq 1f\n"
/* Push "arg" and "fn" onto the stack that will be
* used by the child.
*/
"str %5,[%3,#-4]!\n"
"str %2,[%3,#-4]!\n"
/* %r0 = syscall(%r0 = flags,
* %r1 = child_stack,
* %r2 = parent_tidptr,
* %r3 = newtls,
* %r4 = child_tidptr)
*/
"mov r7, %9\n"
"swi 0x0\n"
/* if (%r0 != 0)
* return %r0;
*/
"movs %0,r0\n"
"bne 1f\n"
/* In the child, now. Call "fn(arg)".
*/
"ldr r0,[sp, #4]\n"
"mov lr,pc\n"
"ldr pc,[sp]\n"
/* Call _exit(%r0).
*/
"mov r7, %10\n"
"swi 0x0\n"
"1:\n"
: "=r" (__res)
: "i"(-EINVAL),
"r"(fn), "r"(__stack), "r"(__flags), "r"(arg),
"r"(__ptid), "r"(__tls), "r"(__ctid),
"i"(__NR_clone), "i"(__NR_exit)
: "cc", "r7", "lr", "memory");
}
LSS_RETURN(int, __res);
}
#elif defined(__mips__)
#undef LSS_REG
#define LSS_REG(r,a) register unsigned long __r##r __asm__("$"#r) = \
(unsigned long)(a)
#undef LSS_BODY
#define LSS_BODY(type,name,r7,...) \
register unsigned long __v0 __asm__("$2") = __NR_##name; \
__asm__ __volatile__ ("syscall\n" \
: "=&r"(__v0), r7 (__r7) \
: "0"(__v0), ##__VA_ARGS__ \
: "$8", "$9", "$10", "$11", "$12", \
"$13", "$14", "$15", "$24", "memory"); \
LSS_RETURN(type, __v0, __r7)
#undef _syscall0
#define _syscall0(type, name) \
type LSS_NAME(name)() { \
register unsigned long __r7 __asm__("$7"); \
LSS_BODY(type, name, "=r"); \
}
#undef _syscall1
#define _syscall1(type, name, type1, arg1) \
type LSS_NAME(name)(type1 arg1) { \
register unsigned long __r7 __asm__("$7"); \
LSS_REG(4, arg1); LSS_BODY(type, name, "=r", "r"(__r4)); \
}
#undef _syscall2
#define _syscall2(type, name, type1, arg1, type2, arg2) \
type LSS_NAME(name)(type1 arg1, type2 arg2) { \
register unsigned long __r7 __asm__("$7"); \
LSS_REG(4, arg1); LSS_REG(5, arg2); \
LSS_BODY(type, name, "=r", "r"(__r4), "r"(__r5)); \
}
#undef _syscall3
#define _syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3) { \
register unsigned long __r7 __asm__("$7"); \
LSS_REG(4, arg1); LSS_REG(5, arg2); LSS_REG(6, arg3); \
LSS_BODY(type, name, "=r", "r"(__r4), "r"(__r5), "r"(__r6)); \
}
#undef _syscall4
#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
LSS_REG(4, arg1); LSS_REG(5, arg2); LSS_REG(6, arg3); \
LSS_REG(7, arg4); \
LSS_BODY(type, name, "+r", "r"(__r4), "r"(__r5), "r"(__r6)); \
}
#undef _syscall5
#if _MIPS_SIM == _MIPS_SIM_ABI32
/* The old 32bit MIPS system call API passes the fifth and sixth argument
* on the stack, whereas the new APIs use registers "r8" and "r9".
*/
#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5) { \
LSS_REG(4, arg1); LSS_REG(5, arg2); LSS_REG(6, arg3); \
LSS_REG(7, arg4); \
register unsigned long __v0 __asm__("$2"); \
__asm__ __volatile__ (".set noreorder\n" \
"lw $2, %6\n" \
"subu $29, 32\n" \
"sw $2, 16($29)\n" \
"li $2, %2\n" \
"syscall\n" \
"addiu $29, 32\n" \
".set reorder\n" \
: "=&r"(__v0), "+r" (__r7) \
: "i" (__NR_##name), "r"(__r4), "r"(__r5), \
"r"(__r6), "m" ((unsigned long)arg5) \
: "$8", "$9", "$10", "$11", "$12", \
"$13", "$14", "$15", "$24", "memory"); \
LSS_RETURN(type, __v0, __r7); \
}
#else
#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5) { \
LSS_REG(4, arg1); LSS_REG(5, arg2); LSS_REG(6, arg3); \
LSS_REG(7, arg4); LSS_REG(8, arg5); \
LSS_BODY(type, name, "+r", "r"(__r4), "r"(__r5), "r"(__r6), \
"r"(__r8)); \
}
#endif
#undef _syscall6
#if _MIPS_SIM == _MIPS_SIM_ABI32
/* The old 32bit MIPS system call API passes the fifth and sixth argument
* on the stack, whereas the new APIs use registers "r8" and "r9".
*/
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5,type6,arg6) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5, type6 arg6) { \
LSS_REG(4, arg1); LSS_REG(5, arg2); LSS_REG(6, arg3); \
LSS_REG(7, arg4); \
register unsigned long __v0 __asm__("$2"); \
__asm__ __volatile__ (".set noreorder\n" \
"lw $2, %6\n" \
"lw $8, %7\n" \
"subu $29, 32\n" \
"sw $2, 16($29)\n" \
"sw $8, 20($29)\n" \
"li $2, %2\n" \
"syscall\n" \
"addiu $29, 32\n" \
".set reorder\n" \
: "=&r"(__v0), "+r" (__r7) \
: "i" (__NR_##name), "r"(__r4), "r"(__r5), \
"r"(__r6), "r" ((unsigned long)arg5), \
"r" ((unsigned long)arg6) \
: "$8", "$9", "$10", "$11", "$12", \
"$13", "$14", "$15", "$24", "memory"); \
LSS_RETURN(type, __v0, __r7); \
}
#else
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5,type6,arg6) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5,type6 arg6) { \
LSS_REG(4, arg1); LSS_REG(5, arg2); LSS_REG(6, arg3); \
LSS_REG(7, arg4); LSS_REG(8, arg5); LSS_REG(9, arg6); \
LSS_BODY(type, name, "+r", "r"(__r4), "r"(__r5), "r"(__r6), \
"r"(__r8), "r"(__r9)); \
}
#endif
LSS_INLINE int LSS_NAME(clone)(int (*fn)(void *), void *child_stack,
int flags, void *arg, int *parent_tidptr,
void *newtls, int *child_tidptr) {
register unsigned long __v0 __asm__("$2");
register unsigned long __r7 __asm__("$7") = (unsigned long)newtls;
{
register int __flags __asm__("$4") = flags;
register void *__stack __asm__("$5") = child_stack;
register void *__ptid __asm__("$6") = parent_tidptr;
register int *__ctid __asm__("$8") = child_tidptr;
__asm__ __volatile__(
#if _MIPS_SIM == _MIPS_SIM_ABI32 && _MIPS_SZPTR == 32
"subu $29,24\n"
#elif _MIPS_SIM == _MIPS_SIM_NABI32
"sub $29,16\n"
#else
"dsubu $29,16\n"
#endif
/* if (fn == NULL || child_stack == NULL)
* return -EINVAL;
*/
"li %0,%2\n"
"beqz %5,1f\n"
"beqz %6,1f\n"
/* Push "arg" and "fn" onto the stack that will be
* used by the child.
*/
#if _MIPS_SIM == _MIPS_SIM_ABI32 && _MIPS_SZPTR == 32
"subu %6,32\n"
"sw %5,0(%6)\n"
"sw %8,4(%6)\n"
#elif _MIPS_SIM == _MIPS_SIM_NABI32
"sub %6,32\n"
"sw %5,0(%6)\n"
"sw %8,8(%6)\n"
#else
"dsubu %6,32\n"
"sd %5,0(%6)\n"
"sd %8,8(%6)\n"
#endif
/* $7 = syscall($4 = flags,
* $5 = child_stack,
* $6 = parent_tidptr,
* $7 = newtls,
* $8 = child_tidptr)
*/
"li $2,%3\n"
"syscall\n"
/* if ($7 != 0)
* return $2;
*/
"bnez $7,1f\n"
"bnez $2,1f\n"
/* In the child, now. Call "fn(arg)".
*/
#if _MIPS_SIM == _MIPS_SIM_ABI32 && _MIPS_SZPTR == 32
"lw $25,0($29)\n"
"lw $4,4($29)\n"
#elif _MIPS_SIM == _MIPS_SIM_NABI32
"lw $25,0($29)\n"
"lw $4,8($29)\n"
#else
"ld $25,0($29)\n"
"ld $4,8($29)\n"
#endif
"jalr $25\n"
/* Call _exit($2)
*/
"move $4,$2\n"
"li $2,%4\n"
"syscall\n"
"1:\n"
#if _MIPS_SIM == _MIPS_SIM_ABI32 && _MIPS_SZPTR == 32
"addu $29, 24\n"
#elif _MIPS_SIM == _MIPS_SIM_NABI32
"add $29, 16\n"
#else
"daddu $29,16\n"
#endif
: "=&r" (__v0), "=r" (__r7)
: "i"(-EINVAL), "i"(__NR_clone), "i"(__NR_exit),
"r"(fn), "r"(__stack), "r"(__flags), "r"(arg),
"r"(__ptid), "r"(__r7), "r"(__ctid)
: "$9", "$10", "$11", "$12", "$13", "$14", "$15",
"$24", "memory");
}
LSS_RETURN(int, __v0, __r7);
}
#elif defined (__PPC__)
#undef LSS_LOADARGS_0
#define LSS_LOADARGS_0(name, dummy...) \
__sc_0 = __NR_##name
#undef LSS_LOADARGS_1
#define LSS_LOADARGS_1(name, arg1) \
LSS_LOADARGS_0(name); \
__sc_3 = (unsigned long) (arg1)
#undef LSS_LOADARGS_2
#define LSS_LOADARGS_2(name, arg1, arg2) \
LSS_LOADARGS_1(name, arg1); \
__sc_4 = (unsigned long) (arg2)
#undef LSS_LOADARGS_3
#define LSS_LOADARGS_3(name, arg1, arg2, arg3) \
LSS_LOADARGS_2(name, arg1, arg2); \
__sc_5 = (unsigned long) (arg3)
#undef LSS_LOADARGS_4
#define LSS_LOADARGS_4(name, arg1, arg2, arg3, arg4) \
LSS_LOADARGS_3(name, arg1, arg2, arg3); \
__sc_6 = (unsigned long) (arg4)
#undef LSS_LOADARGS_5
#define LSS_LOADARGS_5(name, arg1, arg2, arg3, arg4, arg5) \
LSS_LOADARGS_4(name, arg1, arg2, arg3, arg4); \
__sc_7 = (unsigned long) (arg5)
#undef LSS_LOADARGS_6
#define LSS_LOADARGS_6(name, arg1, arg2, arg3, arg4, arg5, arg6) \
LSS_LOADARGS_5(name, arg1, arg2, arg3, arg4, arg5); \
__sc_8 = (unsigned long) (arg6)
#undef LSS_ASMINPUT_0
#define LSS_ASMINPUT_0 "0" (__sc_0)
#undef LSS_ASMINPUT_1
#define LSS_ASMINPUT_1 LSS_ASMINPUT_0, "1" (__sc_3)
#undef LSS_ASMINPUT_2
#define LSS_ASMINPUT_2 LSS_ASMINPUT_1, "2" (__sc_4)
#undef LSS_ASMINPUT_3
#define LSS_ASMINPUT_3 LSS_ASMINPUT_2, "3" (__sc_5)
#undef LSS_ASMINPUT_4
#define LSS_ASMINPUT_4 LSS_ASMINPUT_3, "4" (__sc_6)
#undef LSS_ASMINPUT_5
#define LSS_ASMINPUT_5 LSS_ASMINPUT_4, "5" (__sc_7)
#undef LSS_ASMINPUT_6
#define LSS_ASMINPUT_6 LSS_ASMINPUT_5, "6" (__sc_8)
#undef LSS_BODY
#define LSS_BODY(nr, type, name, args...) \
long __sc_ret, __sc_err; \
{ \
register unsigned long __sc_0 __asm__ ("r0"); \
register unsigned long __sc_3 __asm__ ("r3"); \
register unsigned long __sc_4 __asm__ ("r4"); \
register unsigned long __sc_5 __asm__ ("r5"); \
register unsigned long __sc_6 __asm__ ("r6"); \
register unsigned long __sc_7 __asm__ ("r7"); \
register unsigned long __sc_8 __asm__ ("r8"); \
\
LSS_LOADARGS_##nr(name, args); \
__asm__ __volatile__ \
("sc\n\t" \
"mfcr %0" \
: "=&r" (__sc_0), \
"=&r" (__sc_3), "=&r" (__sc_4), \
"=&r" (__sc_5), "=&r" (__sc_6), \
"=&r" (__sc_7), "=&r" (__sc_8) \
: LSS_ASMINPUT_##nr \
: "cr0", "ctr", "memory", \
"r9", "r10", "r11", "r12"); \
__sc_ret = __sc_3; \
__sc_err = __sc_0; \
} \
LSS_RETURN(type, __sc_ret, __sc_err)
#undef _syscall0
#define _syscall0(type, name) \
type LSS_NAME(name)(void) { \
LSS_BODY(0, type, name); \
}
#undef _syscall1
#define _syscall1(type, name, type1, arg1) \
type LSS_NAME(name)(type1 arg1) { \
LSS_BODY(1, type, name, arg1); \
}
#undef _syscall2
#define _syscall2(type, name, type1, arg1, type2, arg2) \
type LSS_NAME(name)(type1 arg1, type2 arg2) { \
LSS_BODY(2, type, name, arg1, arg2); \
}
#undef _syscall3
#define _syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3) { \
LSS_BODY(3, type, name, arg1, arg2, arg3); \
}
#undef _syscall4
#define _syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
type4, arg4) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
LSS_BODY(4, type, name, arg1, arg2, arg3, arg4); \
}
#undef _syscall5
#define _syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
type4, arg4, type5, arg5) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5) { \
LSS_BODY(5, type, name, arg1, arg2, arg3, arg4, arg5); \
}
#undef _syscall6
#define _syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
type4, arg4, type5, arg5, type6, arg6) \
type LSS_NAME(name)(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5, type6 arg6) { \
LSS_BODY(6, type, name, arg1, arg2, arg3, arg4, arg5, arg6); \
}
/* clone function adapted from glibc 2.3.6 clone.S */
/* TODO(csilvers): consider wrapping some args up in a struct, like we
* do for i386's _syscall6, so we can compile successfully on gcc 2.95
*/
LSS_INLINE int LSS_NAME(clone)(int (*fn)(void *), void *child_stack,
int flags, void *arg, int *parent_tidptr,
void *newtls, int *child_tidptr) {
long __ret, __err;
{
register int (*__fn)(void *) __asm__ ("r8") = fn;
register void *__cstack __asm__ ("r4") = child_stack;
register int __flags __asm__ ("r3") = flags;
register void * __arg __asm__ ("r9") = arg;
register int * __ptidptr __asm__ ("r5") = parent_tidptr;
register void * __newtls __asm__ ("r6") = newtls;
register int * __ctidptr __asm__ ("r7") = child_tidptr;
__asm__ __volatile__(
/* check for fn == NULL
* and child_stack == NULL
*/
"cmpwi cr0, %6, 0\n\t"
"cmpwi cr1, %7, 0\n\t"
"cror cr0*4+eq, cr1*4+eq, cr0*4+eq\n\t"
"beq- cr0, 1f\n\t"
/* set up stack frame for child */
"clrrwi %7, %7, 4\n\t"
"li 0, 0\n\t"
"stwu 0, -16(%7)\n\t"
/* fn, arg, child_stack are saved across the syscall: r28-30 */
"mr 28, %6\n\t"
"mr 29, %7\n\t"
"mr 27, %9\n\t"
/* syscall */
"li 0, %4\n\t"
/* flags already in r3
* child_stack already in r4
* ptidptr already in r5
* newtls already in r6
* ctidptr already in r7
*/
"sc\n\t"
/* Test if syscall was successful */
"cmpwi cr1, 3, 0\n\t"
"crandc cr1*4+eq, cr1*4+eq, cr0*4+so\n\t"
"bne- cr1, 1f\n\t"
/* Do the function call */
"mtctr 28\n\t"
"mr 3, 27\n\t"
"bctrl\n\t"
/* Call _exit(r3) */
"li 0, %5\n\t"
"sc\n\t"
/* Return to parent */
"1:\n"
"mfcr %1\n\t"
"mr %0, 3\n\t"
: "=r" (__ret), "=r" (__err)
: "0" (-1), "1" (EINVAL),
"i" (__NR_clone), "i" (__NR_exit),
"r" (__fn), "r" (__cstack), "r" (__flags),
"r" (__arg), "r" (__ptidptr), "r" (__newtls),
"r" (__ctidptr)
: "cr0", "cr1", "memory", "ctr",
"r0", "r29", "r27", "r28");
}
LSS_RETURN(int, __ret, __err);
}
#endif
#define __NR__exit __NR_exit
#define __NR__gettid __NR_gettid
#define __NR__mremap __NR_mremap
LSS_INLINE _syscall1(int, brk, void *, e)
LSS_INLINE _syscall1(int, chdir, const char *,p)
LSS_INLINE _syscall1(int, close, int, f)
LSS_INLINE _syscall2(int, clock_getres, int, c,
struct kernel_timespec*, t)
LSS_INLINE _syscall2(int, clock_gettime, int, c,
struct kernel_timespec*, t)
LSS_INLINE _syscall1(int, dup, int, f)
LSS_INLINE _syscall2(int, dup2, int, s,
int, d)
LSS_INLINE _syscall3(int, execve, const char*, f,
const char*const*,a,const char*const*, e)
LSS_INLINE _syscall1(int, _exit, int, e)
LSS_INLINE _syscall1(int, exit_group, int, e)
LSS_INLINE _syscall3(int, fcntl, int, f,
int, c, long, a)
LSS_INLINE _syscall0(pid_t, fork)
LSS_INLINE _syscall2(int, fstat, int, f,
struct kernel_stat*, b)
LSS_INLINE _syscall2(int, fstatfs, int, f,
struct kernel_statfs*, b)
LSS_INLINE _syscall2(int, ftruncate, int, f,
off_t, l)
LSS_INLINE _syscall4(int, futex, int*, a,
int, o, int, v,
struct kernel_timespec*, t)
LSS_INLINE _syscall3(int, getdents, int, f,
struct kernel_dirent*, d, int, c)
LSS_INLINE _syscall3(int, getdents64, int, f,
struct kernel_dirent64*, d, int, c)
LSS_INLINE _syscall0(gid_t, getegid)
LSS_INLINE _syscall0(uid_t, geteuid)
LSS_INLINE _syscall0(pid_t, getpgrp)
LSS_INLINE _syscall0(pid_t, getpid)
LSS_INLINE _syscall0(pid_t, getppid)
LSS_INLINE _syscall2(int, getpriority, int, a,
int, b)
LSS_INLINE _syscall3(int, getresgid, gid_t *, r,
gid_t *, e, gid_t *, s)
LSS_INLINE _syscall3(int, getresuid, uid_t *, r,
uid_t *, e, uid_t *, s)
#if !defined(__ARM_EABI__)
LSS_INLINE _syscall2(int, getrlimit, int, r,
struct kernel_rlimit*, l)
#endif
LSS_INLINE _syscall1(pid_t, getsid, pid_t, p)
LSS_INLINE _syscall0(pid_t, _gettid)
LSS_INLINE _syscall2(pid_t, gettimeofday, struct kernel_timeval*, t,
void*, tz)
LSS_INLINE _syscall5(int, setxattr, const char *,p,
const char *, n, const void *,v,
size_t, s, int, f)
LSS_INLINE _syscall5(int, lsetxattr, const char *,p,
const char *, n, const void *,v,
size_t, s, int, f)
LSS_INLINE _syscall4(ssize_t, getxattr, const char *,p,
const char *, n, void *, v, size_t, s)
LSS_INLINE _syscall4(ssize_t, lgetxattr, const char *,p,
const char *, n, void *, v, size_t, s)
LSS_INLINE _syscall3(ssize_t, listxattr, const char *,p,
char *, l, size_t, s)
LSS_INLINE _syscall3(ssize_t, llistxattr, const char *,p,
char *, l, size_t, s)
LSS_INLINE _syscall3(int, ioctl, int, d,
int, r, void *, a)
LSS_INLINE _syscall2(int, ioprio_get, int, which,
int, who)
LSS_INLINE _syscall3(int, ioprio_set, int, which,
int, who, int, ioprio)
LSS_INLINE _syscall2(int, kill, pid_t, p,
int, s)
LSS_INLINE _syscall3(off_t, lseek, int, f,
off_t, o, int, w)
LSS_INLINE _syscall2(int, munmap, void*, s,
size_t, l)
LSS_INLINE _syscall6(long, move_pages, pid_t, p,
unsigned long, n, void **,g, int *, d,
int *, s, int, f)
LSS_INLINE _syscall3(int, mprotect, const void *,a,
size_t, l, int, p)
LSS_INLINE _syscall5(void*, _mremap, void*, o,
size_t, os, size_t, ns,
unsigned long, f, void *, a)
LSS_INLINE _syscall3(int, open, const char*, p,
int, f, int, m)
LSS_INLINE _syscall3(int, poll, struct kernel_pollfd*, u,
unsigned int, n, int, t)
LSS_INLINE _syscall2(int, prctl, int, o,
long, a)
LSS_INLINE _syscall4(long, ptrace, int, r,
pid_t, p, void *, a, void *, d)
#if defined(__NR_quotactl)
// Defined on x86_64 / i386 only
LSS_INLINE _syscall4(int, quotactl, int, cmd, const char *, special,
int, id, caddr_t, addr)
#endif
LSS_INLINE _syscall3(ssize_t, read, int, f,
void *, b, size_t, c)
LSS_INLINE _syscall3(int, readlink, const char*, p,
char*, b, size_t, s)
LSS_INLINE _syscall4(int, rt_sigaction, int, s,
const struct kernel_sigaction*, a,
struct kernel_sigaction*, o, size_t, c)
LSS_INLINE _syscall2(int, rt_sigpending, struct kernel_sigset_t *, s,
size_t, c)
LSS_INLINE _syscall4(int, rt_sigprocmask, int, h,
const struct kernel_sigset_t*, s,
struct kernel_sigset_t*, o, size_t, c)
LSS_INLINE _syscall2(int, rt_sigsuspend,
const struct kernel_sigset_t*, s, size_t, c)
LSS_INLINE _syscall3(int, sched_getaffinity,pid_t, p,
unsigned int, l, unsigned long *, m)
LSS_INLINE _syscall3(int, sched_setaffinity,pid_t, p,
unsigned int, l, unsigned long *, m)
LSS_INLINE _syscall0(int, sched_yield)
LSS_INLINE _syscall1(long, set_tid_address, int *, t)
LSS_INLINE _syscall1(int, setfsgid, gid_t, g)
LSS_INLINE _syscall1(int, setfsuid, uid_t, u)
LSS_INLINE _syscall1(int, setuid, uid_t, u)
LSS_INLINE _syscall1(int, setgid, gid_t, g)
LSS_INLINE _syscall2(int, setpgid, pid_t, p,
pid_t, g)
LSS_INLINE _syscall3(int, setpriority, int, a,
int, b, int, p)
LSS_INLINE _syscall3(int, setresgid, gid_t, r,
gid_t, e, gid_t, s)
LSS_INLINE _syscall3(int, setresuid, uid_t, r,
uid_t, e, uid_t, s)
LSS_INLINE _syscall2(int, setrlimit, int, r,
const struct kernel_rlimit*, l)
LSS_INLINE _syscall0(pid_t, setsid)
LSS_INLINE _syscall2(int, sigaltstack, const stack_t*, s,
const stack_t*, o)
#if defined(__NR_sigreturn)
LSS_INLINE _syscall1(int, sigreturn, unsigned long, u);
#endif
LSS_INLINE _syscall2(int, stat, const char*, f,
struct kernel_stat*, b)
LSS_INLINE _syscall2(int, statfs, const char*, f,
struct kernel_statfs*, b)
LSS_INLINE _syscall3(int, tgkill, pid_t, p,
pid_t, t, int, s)
LSS_INLINE _syscall2(int, tkill, pid_t, p,
int, s)
LSS_INLINE _syscall1(int, unlink, const char*, f)
LSS_INLINE _syscall3(ssize_t, write, int, f,
const void *, b, size_t, c)
LSS_INLINE _syscall3(ssize_t, writev, int, f,
const struct kernel_iovec*, v, size_t, c)
#if defined(__NR_getcpu)
LSS_INLINE _syscall3(long, getcpu, unsigned *, cpu,
unsigned *, node, void *, unused);
#endif
#if defined(__x86_64__) || \
(defined(__mips__) && _MIPS_SIM != _MIPS_SIM_ABI32)
LSS_INLINE _syscall3(int, recvmsg, int, s,
struct kernel_msghdr*, m, int, f)
LSS_INLINE _syscall3(int, sendmsg, int, s,
const struct kernel_msghdr*, m, int, f)
LSS_INLINE _syscall6(int, sendto, int, s,
const void*, m, size_t, l,
int, f,
const struct kernel_sockaddr*, a, int, t)
LSS_INLINE _syscall2(int, shutdown, int, s,
int, h)
LSS_INLINE _syscall3(int, socket, int, d,
int, t, int, p)
LSS_INLINE _syscall4(int, socketpair, int, d,
int, t, int, p, int*, s)
#endif
#if defined(__x86_64__)
LSS_INLINE _syscall4(int, fallocate, int, fd, int, mode,
loff_t, offset, loff_t, len)
LSS_INLINE int LSS_NAME(getresgid32)(gid_t *rgid,
gid_t *egid,
gid_t *sgid) {
return LSS_NAME(getresgid)(rgid, egid, sgid);
}
LSS_INLINE int LSS_NAME(getresuid32)(uid_t *ruid,
uid_t *euid,
uid_t *suid) {
return LSS_NAME(getresuid)(ruid, euid, suid);
}
LSS_INLINE _syscall6(void*, mmap, void*, s,
size_t, l, int, p,
int, f, int, d,
__off64_t, o)
LSS_INLINE _syscall4(int, newfstatat, int, d,
const char *, p,
struct kernel_stat*, b, int, f)
LSS_INLINE int LSS_NAME(setfsgid32)(gid_t gid) {
return LSS_NAME(setfsgid)(gid);
}
LSS_INLINE int LSS_NAME(setfsuid32)(uid_t uid) {
return LSS_NAME(setfsuid)(uid);
}
LSS_INLINE int LSS_NAME(setresgid32)(gid_t rgid, gid_t egid, gid_t sgid) {
return LSS_NAME(setresgid)(rgid, egid, sgid);
}
LSS_INLINE int LSS_NAME(setresuid32)(uid_t ruid, uid_t euid, uid_t suid) {
return LSS_NAME(setresuid)(ruid, euid, suid);
}
LSS_INLINE int LSS_NAME(sigaction)(int signum,
const struct kernel_sigaction *act,
struct kernel_sigaction *oldact) {
/* On x86_64, the kernel requires us to always set our own
* SA_RESTORER in order to be able to return from a signal handler.
* This function must have a "magic" signature that the "gdb"
* (and maybe the kernel?) can recognize.
*/
if (act != NULL && !(act->sa_flags & SA_RESTORER)) {
struct kernel_sigaction a = *act;
a.sa_flags |= SA_RESTORER;
a.sa_restorer = LSS_NAME(restore_rt)();
return LSS_NAME(rt_sigaction)(signum, &a, oldact,
(KERNEL_NSIG+7)/8);
} else {
return LSS_NAME(rt_sigaction)(signum, act, oldact,
(KERNEL_NSIG+7)/8);
}
}
LSS_INLINE int LSS_NAME(sigpending)(struct kernel_sigset_t *set) {
return LSS_NAME(rt_sigpending)(set, (KERNEL_NSIG+7)/8);
}
LSS_INLINE int LSS_NAME(sigprocmask)(int how,
const struct kernel_sigset_t *set,
struct kernel_sigset_t *oldset) {
return LSS_NAME(rt_sigprocmask)(how, set, oldset, (KERNEL_NSIG+7)/8);
}
LSS_INLINE int LSS_NAME(sigsuspend)(const struct kernel_sigset_t *set) {
return LSS_NAME(rt_sigsuspend)(set, (KERNEL_NSIG+7)/8);
}
#endif
#if defined(__x86_64__) || defined(__ARM_ARCH_3__) || \
defined(__ARM_EABI__) || \
(defined(__mips__) && _MIPS_SIM != _MIPS_SIM_ABI32)
LSS_INLINE _syscall4(pid_t, wait4, pid_t, p,
int*, s, int, o,
struct kernel_rusage*, r)
LSS_INLINE pid_t LSS_NAME(waitpid)(pid_t pid, int *status, int options){
return LSS_NAME(wait4)(pid, status, options, 0);
}
#endif
#if defined(__i386__) || defined(__x86_64__)
LSS_INLINE _syscall4(int, openat, int, d, const char *, p, int, f, int, m)
LSS_INLINE _syscall3(int, unlinkat, int, d, const char *, p, int, f)
#endif
#if defined(__i386__) || defined(__ARM_ARCH_3__) || defined(__ARM_EABI__)
#define __NR__getresgid32 __NR_getresgid32
#define __NR__getresuid32 __NR_getresuid32
#define __NR__setfsgid32 __NR_setfsgid32
#define __NR__setfsuid32 __NR_setfsuid32
#define __NR__setresgid32 __NR_setresgid32
#define __NR__setresuid32 __NR_setresuid32
#if defined(__ARM_EABI__)
LSS_INLINE _syscall2(int, ugetrlimit, int, r,
struct kernel_rlimit*, l)
#endif
LSS_INLINE _syscall3(int, _getresgid32, gid_t *, r,
gid_t *, e, gid_t *, s)
LSS_INLINE _syscall3(int, _getresuid32, uid_t *, r,
uid_t *, e, uid_t *, s)
LSS_INLINE _syscall1(int, _setfsgid32, gid_t, f)
LSS_INLINE _syscall1(int, _setfsuid32, uid_t, f)
LSS_INLINE _syscall3(int, _setresgid32, gid_t, r,
gid_t, e, gid_t, s)
LSS_INLINE _syscall3(int, _setresuid32, uid_t, r,
uid_t, e, uid_t, s)
LSS_INLINE int LSS_NAME(getresgid32)(gid_t *rgid,
gid_t *egid,
gid_t *sgid) {
int rc;
if ((rc = LSS_NAME(_getresgid32)(rgid, egid, sgid)) < 0 &&
LSS_ERRNO == ENOSYS) {
if ((rgid == NULL) || (egid == NULL) || (sgid == NULL)) {
return EFAULT;
}
// Clear the high bits first, since getresgid only sets 16 bits
*rgid = *egid = *sgid = 0;
rc = LSS_NAME(getresgid)(rgid, egid, sgid);
}
return rc;
}
LSS_INLINE int LSS_NAME(getresuid32)(uid_t *ruid,
uid_t *euid,
uid_t *suid) {
int rc;
if ((rc = LSS_NAME(_getresuid32)(ruid, euid, suid)) < 0 &&
LSS_ERRNO == ENOSYS) {
if ((ruid == NULL) || (euid == NULL) || (suid == NULL)) {
return EFAULT;
}
// Clear the high bits first, since getresuid only sets 16 bits
*ruid = *euid = *suid = 0;
rc = LSS_NAME(getresuid)(ruid, euid, suid);
}
return rc;
}
LSS_INLINE int LSS_NAME(setfsgid32)(gid_t gid) {
int rc;
if ((rc = LSS_NAME(_setfsgid32)(gid)) < 0 &&
LSS_ERRNO == ENOSYS) {
if ((unsigned int)gid & ~0xFFFFu) {
rc = EINVAL;
} else {
rc = LSS_NAME(setfsgid)(gid);
}
}
return rc;
}
LSS_INLINE int LSS_NAME(setfsuid32)(uid_t uid) {
int rc;
if ((rc = LSS_NAME(_setfsuid32)(uid)) < 0 &&
LSS_ERRNO == ENOSYS) {
if ((unsigned int)uid & ~0xFFFFu) {
rc = EINVAL;
} else {
rc = LSS_NAME(setfsuid)(uid);
}
}
return rc;
}
LSS_INLINE int LSS_NAME(setresgid32)(gid_t rgid, gid_t egid, gid_t sgid) {
int rc;
if ((rc = LSS_NAME(_setresgid32)(rgid, egid, sgid)) < 0 &&
LSS_ERRNO == ENOSYS) {
if ((unsigned int)rgid & ~0xFFFFu ||
(unsigned int)egid & ~0xFFFFu ||
(unsigned int)sgid & ~0xFFFFu) {
rc = EINVAL;
} else {
rc = LSS_NAME(setresgid)(rgid, egid, sgid);
}
}
return rc;
}
LSS_INLINE int LSS_NAME(setresuid32)(uid_t ruid, uid_t euid, uid_t suid) {
int rc;
if ((rc = LSS_NAME(_setresuid32)(ruid, euid, suid)) < 0 &&
LSS_ERRNO == ENOSYS) {
if ((unsigned int)ruid & ~0xFFFFu ||
(unsigned int)euid & ~0xFFFFu ||
(unsigned int)suid & ~0xFFFFu) {
rc = EINVAL;
} else {
rc = LSS_NAME(setresuid)(ruid, euid, suid);
}
}
return rc;
}
#endif
LSS_INLINE int LSS_NAME(sigemptyset)(struct kernel_sigset_t *set) {
memset(&set->sig, 0, sizeof(set->sig));
return 0;
}
LSS_INLINE int LSS_NAME(sigfillset)(struct kernel_sigset_t *set) {
memset(&set->sig, -1, sizeof(set->sig));
return 0;
}
LSS_INLINE int LSS_NAME(sigaddset)(struct kernel_sigset_t *set,
int signum) {
if (signum < 1 || signum > (int)(8*sizeof(set->sig))) {
LSS_ERRNO = EINVAL;
return -1;
} else {
set->sig[(signum - 1)/(8*sizeof(set->sig[0]))]
|= 1UL << ((signum - 1) % (8*sizeof(set->sig[0])));
return 0;
}
}
LSS_INLINE int LSS_NAME(sigdelset)(struct kernel_sigset_t *set,
int signum) {
if (signum < 1 || signum > (int)(8*sizeof(set->sig))) {
LSS_ERRNO = EINVAL;
return -1;
} else {
set->sig[(signum - 1)/(8*sizeof(set->sig[0]))]
&= ~(1UL << ((signum - 1) % (8*sizeof(set->sig[0]))));
return 0;
}
}
LSS_INLINE int LSS_NAME(sigismember)(struct kernel_sigset_t *set,
int signum) {
if (signum < 1 || signum > (int)(8*sizeof(set->sig))) {
LSS_ERRNO = EINVAL;
return -1;
} else {
return !!(set->sig[(signum - 1)/(8*sizeof(set->sig[0]))] &
(1UL << ((signum - 1) % (8*sizeof(set->sig[0])))));
}
}
#if defined(__i386__) || defined(__ARM_ARCH_3__) || \
defined(__ARM_EABI__) || \
(defined(__mips__) && _MIPS_SIM == _MIPS_SIM_ABI32) || defined(__PPC__)
#define __NR__sigaction __NR_sigaction
#define __NR__sigpending __NR_sigpending
#define __NR__sigprocmask __NR_sigprocmask
#define __NR__sigsuspend __NR_sigsuspend
#define __NR__socketcall __NR_socketcall
LSS_INLINE _syscall2(int, fstat64, int, f,
struct kernel_stat64 *, b)
LSS_INLINE _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
loff_t *, res, uint, wh)
#if !defined(__ARM_EABI__)
LSS_INLINE _syscall1(void*, mmap, void*, a)
#endif
LSS_INLINE _syscall6(void*, mmap2, void*, s,
size_t, l, int, p,
int, f, int, d,
__off64_t, o)
LSS_INLINE _syscall3(int, _sigaction, int, s,
const struct kernel_old_sigaction*, a,
struct kernel_old_sigaction*, o)
LSS_INLINE _syscall1(int, _sigpending, unsigned long*, s)
LSS_INLINE _syscall3(int, _sigprocmask, int, h,
const unsigned long*, s,
unsigned long*, o)
#ifdef __PPC__
LSS_INLINE _syscall1(int, _sigsuspend, unsigned long, s)
#else
LSS_INLINE _syscall3(int, _sigsuspend, const void*, a,
int, b,
unsigned long, s)
#endif
LSS_INLINE _syscall2(int, stat64, const char *, p,
struct kernel_stat64 *, b)
LSS_INLINE int LSS_NAME(sigaction)(int signum,
const struct kernel_sigaction *act,
struct kernel_sigaction *oldact) {
int old_errno = LSS_ERRNO;
int rc;
struct kernel_sigaction a;
if (act != NULL) {
a = *act;
#ifdef __i386__
/* On i386, the kernel requires us to always set our own
* SA_RESTORER when using realtime signals. Otherwise, it does not
* know how to return from a signal handler. This function must have
* a "magic" signature that the "gdb" (and maybe the kernel?) can
* recognize.
* Apparently, a SA_RESTORER is implicitly set by the kernel, when
* using non-realtime signals.
*
* TODO: Test whether ARM needs a restorer
*/
if (!(a.sa_flags & SA_RESTORER)) {
a.sa_flags |= SA_RESTORER;
a.sa_restorer = (a.sa_flags & SA_SIGINFO)
? LSS_NAME(restore_rt)() : LSS_NAME(restore)();
}
#endif
}
rc = LSS_NAME(rt_sigaction)(signum, act ? &a : act, oldact,
(KERNEL_NSIG+7)/8);
if (rc < 0 && LSS_ERRNO == ENOSYS) {
struct kernel_old_sigaction oa, ooa, *ptr_a = &oa, *ptr_oa = &ooa;
if (!act) {
ptr_a = NULL;
} else {
oa.sa_handler_ = act->sa_handler_;
memcpy(&oa.sa_mask, &act->sa_mask, sizeof(oa.sa_mask));
#ifndef __mips__
oa.sa_restorer = act->sa_restorer;
#endif
oa.sa_flags = act->sa_flags;
}
if (!oldact) {
ptr_oa = NULL;
}
LSS_ERRNO = old_errno;
rc = LSS_NAME(_sigaction)(signum, ptr_a, ptr_oa);
if (rc == 0 && oldact) {
if (act) {
memcpy(oldact, act, sizeof(*act));
} else {
memset(oldact, 0, sizeof(*oldact));
}
oldact->sa_handler_ = ptr_oa->sa_handler_;
oldact->sa_flags = ptr_oa->sa_flags;
memcpy(&oldact->sa_mask, &ptr_oa->sa_mask, sizeof(ptr_oa->sa_mask));
#ifndef __mips__
oldact->sa_restorer = ptr_oa->sa_restorer;
#endif
}
}
return rc;
}
LSS_INLINE int LSS_NAME(sigpending)(struct kernel_sigset_t *set) {
int old_errno = LSS_ERRNO;
int rc = LSS_NAME(rt_sigpending)(set, (KERNEL_NSIG+7)/8);
if (rc < 0 && LSS_ERRNO == ENOSYS) {
LSS_ERRNO = old_errno;
LSS_NAME(sigemptyset)(set);
rc = LSS_NAME(_sigpending)(&set->sig[0]);
}
return rc;
}
LSS_INLINE int LSS_NAME(sigprocmask)(int how,
const struct kernel_sigset_t *set,
struct kernel_sigset_t *oldset) {
int olderrno = LSS_ERRNO;
int rc = LSS_NAME(rt_sigprocmask)(how, set, oldset, (KERNEL_NSIG+7)/8);
if (rc < 0 && LSS_ERRNO == ENOSYS) {
LSS_ERRNO = olderrno;
if (oldset) {
LSS_NAME(sigemptyset)(oldset);
}
rc = LSS_NAME(_sigprocmask)(how,
set ? &set->sig[0] : NULL,
oldset ? &oldset->sig[0] : NULL);
}
return rc;
}
LSS_INLINE int LSS_NAME(sigsuspend)(const struct kernel_sigset_t *set) {
int olderrno = LSS_ERRNO;
int rc = LSS_NAME(rt_sigsuspend)(set, (KERNEL_NSIG+7)/8);
if (rc < 0 && LSS_ERRNO == ENOSYS) {
LSS_ERRNO = olderrno;
rc = LSS_NAME(_sigsuspend)(
#ifndef __PPC__
set, 0,
#endif
set->sig[0]);
}
return rc;
}
#endif
#if defined(__PPC__)
#undef LSS_SC_LOADARGS_0
#define LSS_SC_LOADARGS_0(dummy...)
#undef LSS_SC_LOADARGS_1
#define LSS_SC_LOADARGS_1(arg1) \
__sc_4 = (unsigned long) (arg1)
#undef LSS_SC_LOADARGS_2
#define LSS_SC_LOADARGS_2(arg1, arg2) \
LSS_SC_LOADARGS_1(arg1); \
__sc_5 = (unsigned long) (arg2)
#undef LSS_SC_LOADARGS_3
#define LSS_SC_LOADARGS_3(arg1, arg2, arg3) \
LSS_SC_LOADARGS_2(arg1, arg2); \
__sc_6 = (unsigned long) (arg3)
#undef LSS_SC_LOADARGS_4
#define LSS_SC_LOADARGS_4(arg1, arg2, arg3, arg4) \
LSS_SC_LOADARGS_3(arg1, arg2, arg3); \
__sc_7 = (unsigned long) (arg4)
#undef LSS_SC_LOADARGS_5
#define LSS_SC_LOADARGS_5(arg1, arg2, arg3, arg4, arg5) \
LSS_SC_LOADARGS_4(arg1, arg2, arg3, arg4); \
__sc_8 = (unsigned long) (arg5)
#undef LSS_SC_BODY
#define LSS_SC_BODY(nr, type, opt, args...) \
long __sc_ret, __sc_err; \
{ \
register unsigned long __sc_0 __asm__ ("r0") = __NR_socketcall; \
register unsigned long __sc_3 __asm__ ("r3") = opt; \
register unsigned long __sc_4 __asm__ ("r4"); \
register unsigned long __sc_5 __asm__ ("r5"); \
register unsigned long __sc_6 __asm__ ("r6"); \
register unsigned long __sc_7 __asm__ ("r7"); \
register unsigned long __sc_8 __asm__ ("r8"); \
LSS_SC_LOADARGS_##nr(args); \
__asm__ __volatile__ \
("stwu 1, -48(1)\n\t" \
"stw 4, 20(1)\n\t" \
"stw 5, 24(1)\n\t" \
"stw 6, 28(1)\n\t" \
"stw 7, 32(1)\n\t" \
"stw 8, 36(1)\n\t" \
"addi 4, 1, 20\n\t" \
"sc\n\t" \
"mfcr %0" \
: "=&r" (__sc_0), \
"=&r" (__sc_3), "=&r" (__sc_4), \
"=&r" (__sc_5), "=&r" (__sc_6), \
"=&r" (__sc_7), "=&r" (__sc_8) \
: LSS_ASMINPUT_##nr \
: "cr0", "ctr", "memory"); \
__sc_ret = __sc_3; \
__sc_err = __sc_0; \
} \
LSS_RETURN(type, __sc_ret, __sc_err)
LSS_INLINE ssize_t LSS_NAME(recvmsg)(int s,struct kernel_msghdr *msg,
int flags){
LSS_SC_BODY(3, ssize_t, 17, s, msg, flags);
}
LSS_INLINE ssize_t LSS_NAME(sendmsg)(int s,
const struct kernel_msghdr *msg,
int flags) {
LSS_SC_BODY(3, ssize_t, 16, s, msg, flags);
}
// TODO(csilvers): why is this ifdef'ed out?
#if 0
LSS_INLINE ssize_t LSS_NAME(sendto)(int s, const void *buf, size_t len,
int flags,
const struct kernel_sockaddr *to,
unsigned int tolen) {
LSS_BODY(6, ssize_t, 11, s, buf, len, flags, to, tolen);
}
#endif
LSS_INLINE int LSS_NAME(shutdown)(int s, int how) {
LSS_SC_BODY(2, int, 13, s, how);
}
LSS_INLINE int LSS_NAME(socket)(int domain, int type, int protocol) {
LSS_SC_BODY(3, int, 1, domain, type, protocol);
}
LSS_INLINE int LSS_NAME(socketpair)(int d, int type, int protocol,
int sv[2]) {
LSS_SC_BODY(4, int, 8, d, type, protocol, sv);
}
#endif
#if defined(__ARM_EABI__)
LSS_INLINE _syscall3(ssize_t, recvmsg, int, s, struct kernel_msghdr*, msg,
int, flags)
LSS_INLINE _syscall3(ssize_t, sendmsg, int, s, const struct kernel_msghdr*,
msg, int, flags)
LSS_INLINE _syscall6(ssize_t, sendto, int, s, const void*, buf, size_t,len,
int, flags, const struct kernel_sockaddr*, to,
unsigned int, tolen)
LSS_INLINE _syscall2(int, shutdown, int, s, int, how)
LSS_INLINE _syscall3(int, socket, int, domain, int, type, int, protocol)
LSS_INLINE _syscall4(int, socketpair, int, d, int, type, int, protocol,
int*, sv)
#endif
#if defined(__i386__) || defined(__ARM_ARCH_3__) || \
(defined(__mips__) && _MIPS_SIM == _MIPS_SIM_ABI32)
#define __NR__socketcall __NR_socketcall
LSS_INLINE _syscall2(int, _socketcall, int, c,
va_list, a)
LSS_INLINE int LSS_NAME(socketcall)(int op, ...) {
int rc;
va_list ap;
va_start(ap, op);
rc = LSS_NAME(_socketcall)(op, ap);
va_end(ap);
return rc;
}
LSS_INLINE ssize_t LSS_NAME(recvmsg)(int s,struct kernel_msghdr *msg,
int flags){
return (ssize_t)LSS_NAME(socketcall)(17, s, msg, flags);
}
LSS_INLINE ssize_t LSS_NAME(sendmsg)(int s,
const struct kernel_msghdr *msg,
int flags) {
return (ssize_t)LSS_NAME(socketcall)(16, s, msg, flags);
}
LSS_INLINE ssize_t LSS_NAME(sendto)(int s, const void *buf, size_t len,
int flags,
const struct kernel_sockaddr *to,
unsigned int tolen) {
return (ssize_t)LSS_NAME(socketcall)(11, s, buf, len, flags, to, tolen);
}
LSS_INLINE int LSS_NAME(shutdown)(int s, int how) {
return LSS_NAME(socketcall)(13, s, how);
}
LSS_INLINE int LSS_NAME(socket)(int domain, int type, int protocol) {
return LSS_NAME(socketcall)(1, domain, type, protocol);
}
LSS_INLINE int LSS_NAME(socketpair)(int d, int type, int protocol,
int sv[2]) {
return LSS_NAME(socketcall)(8, d, type, protocol, sv);
}
#endif
#if defined(__i386__) || defined(__PPC__)
LSS_INLINE _syscall4(int, fstatat64, int, d,
const char *, p,
struct kernel_stat64 *, b, int, f)
#endif
#if defined(__i386__) || defined(__PPC__) || \
(defined(__mips__) && _MIPS_SIM == _MIPS_SIM_ABI32)
LSS_INLINE _syscall3(pid_t, waitpid, pid_t, p,
int*, s, int, o)
#endif
#if defined(__mips__)
/* sys_pipe() on MIPS has non-standard calling conventions, as it returns
* both file handles through CPU registers.
*/
LSS_INLINE int LSS_NAME(pipe)(int *p) {
register unsigned long __v0 __asm__("$2") = __NR_pipe;
register unsigned long __v1 __asm__("$3");
register unsigned long __r7 __asm__("$7");
__asm__ __volatile__ ("syscall\n"
: "=&r"(__v0), "=&r"(__v1), "+r" (__r7)
: "0"(__v0)
: "$8", "$9", "$10", "$11", "$12",
"$13", "$14", "$15", "$24", "memory");
if (__r7) {
LSS_ERRNO = __v0;
return -1;
} else {
p[0] = __v0;
p[1] = __v1;
return 0;
}
}
#else
LSS_INLINE _syscall1(int, pipe, int *, p)
#endif
/* TODO(csilvers): see if ppc can/should support this as well */
#if defined(__i386__) || defined(__ARM_ARCH_3__) || \
defined(__ARM_EABI__) || \
(defined(__mips__) && _MIPS_SIM != _MIPS_SIM_ABI64)
#define __NR__statfs64 __NR_statfs64
#define __NR__fstatfs64 __NR_fstatfs64
LSS_INLINE _syscall3(int, _statfs64, const char*, p,
size_t, s,struct kernel_statfs64*, b)
LSS_INLINE _syscall3(int, _fstatfs64, int, f,
size_t, s,struct kernel_statfs64*, b)
LSS_INLINE int LSS_NAME(statfs64)(const char *p,
struct kernel_statfs64 *b) {
return LSS_NAME(_statfs64)(p, sizeof(*b), b);
}
LSS_INLINE int LSS_NAME(fstatfs64)(int f,struct kernel_statfs64 *b) {
return LSS_NAME(_fstatfs64)(f, sizeof(*b), b);
}
#endif
LSS_INLINE int LSS_NAME(execv)(const char *path, const char *const argv[]) {
extern char **environ;
return LSS_NAME(execve)(path, argv, (const char *const *)environ);
}
LSS_INLINE pid_t LSS_NAME(gettid)() {
pid_t tid = LSS_NAME(_gettid)();
if (tid != -1) {
return tid;
}
return LSS_NAME(getpid)();
}
LSS_INLINE void *LSS_NAME(mremap)(void *old_address, size_t old_size,
size_t new_size, int flags, ...) {
va_list ap;
void *new_address, *rc;
va_start(ap, flags);
new_address = va_arg(ap, void *);
rc = LSS_NAME(_mremap)(old_address, old_size, new_size,
flags, new_address);
va_end(ap);
return rc;
}
LSS_INLINE int LSS_NAME(ptrace_detach)(pid_t pid) {
/* PTRACE_DETACH can sometimes forget to wake up the tracee and it
* then sends job control signals to the real parent, rather than to
* the tracer. We reduce the risk of this happening by starting a
* whole new time slice, and then quickly sending a SIGCONT signal
* right after detaching from the tracee.
*
* We use tkill to ensure that we only issue a wakeup for the thread being
* detached. Large multi threaded apps can take a long time in the kernel
* processing SIGCONT.
*/
int rc, err;
LSS_NAME(sched_yield)();
rc = LSS_NAME(ptrace)(PTRACE_DETACH, pid, (void *)0, (void *)0);
err = LSS_ERRNO;
LSS_NAME(tkill)(pid, SIGCONT);
/* Old systems don't have tkill */
if (LSS_ERRNO == ENOSYS)
LSS_NAME(kill)(pid, SIGCONT);
LSS_ERRNO = err;
return rc;
}
LSS_INLINE int LSS_NAME(raise)(int sig) {
return LSS_NAME(kill)(LSS_NAME(getpid)(), sig);
}
LSS_INLINE int LSS_NAME(setpgrp)() {
return LSS_NAME(setpgid)(0, 0);
}
LSS_INLINE int LSS_NAME(sysconf)(int name) {
extern int __getpagesize(void);
switch (name) {
case _SC_OPEN_MAX: {
struct kernel_rlimit limit;
#if defined(__ARM_EABI__)
return LSS_NAME(ugetrlimit)(RLIMIT_NOFILE, &limit) < 0
? 8192 : limit.rlim_cur;
#else
return LSS_NAME(getrlimit)(RLIMIT_NOFILE, &limit) < 0
? 8192 : limit.rlim_cur;
#endif
}
case _SC_PAGESIZE:
return __getpagesize();
default:
LSS_ERRNO = ENOSYS;
return -1;
}
}
#if defined(__x86_64__) || \
(defined(__mips__) && _MIPS_SIM == _MIPS_SIM_ABI64)
LSS_INLINE _syscall4(ssize_t, pread64, int, f,
void *, b, size_t, c,
loff_t, o)
LSS_INLINE _syscall4(ssize_t, pwrite64, int, f,
const void *, b, size_t, c,
loff_t, o)
LSS_INLINE _syscall3(int, readahead, int, f,
loff_t, o, unsigned, c)
#else
#define __NR__pread64 __NR_pread64
#define __NR__pwrite64 __NR_pwrite64
#define __NR__readahead __NR_readahead
LSS_INLINE _syscall5(ssize_t, _pread64, int, f,
void *, b, size_t, c, unsigned, o1,
unsigned, o2)
LSS_INLINE _syscall5(ssize_t, _pwrite64, int, f,
const void *, b, size_t, c, unsigned, o1,
long, o2)
LSS_INLINE _syscall4(int, _readahead, int, f,
unsigned, o1, unsigned, o2, size_t, c)
/* We force 64bit-wide parameters onto the stack, then access each
* 32-bit component individually. This guarantees that we build the
* correct parameters independent of the native byte-order of the
* underlying architecture.
*/
LSS_INLINE ssize_t LSS_NAME(pread64)(int fd, void *buf, size_t count,
loff_t off) {
union { loff_t off; unsigned arg[2]; } o = { off };
return LSS_NAME(_pread64)(fd, buf, count, o.arg[0], o.arg[1]);
}
LSS_INLINE ssize_t LSS_NAME(pwrite64)(int fd, const void *buf,
size_t count, loff_t off) {
union { loff_t off; unsigned arg[2]; } o = { off };
return LSS_NAME(_pwrite64)(fd, buf, count, o.arg[0], o.arg[1]);
}
LSS_INLINE int LSS_NAME(readahead)(int fd, loff_t off, int len) {
union { loff_t off; unsigned arg[2]; } o = { off };
return LSS_NAME(_readahead)(fd, o.arg[0], o.arg[1], len);
}
#endif
#endif
#if defined(__cplusplus) && !defined(SYS_CPLUSPLUS)
}
#endif
#endif
#endif