mirror of
https://github.com/clementine-player/Clementine
synced 2024-12-31 20:07:25 +01:00
699 lines
23 KiB
C++
699 lines
23 KiB
C++
// Copyright (c) 2010, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// exception_handler_test.cc: Unit tests for google_breakpad::ExceptionHandler
|
|
|
|
#include <pthread.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
|
|
#include "breakpad_googletest_includes.h"
|
|
#include "client/mac/handler/exception_handler.h"
|
|
#include "client/mac/tests/auto_tempdir.h"
|
|
#include "common/mac/MachIPC.h"
|
|
#include "google_breakpad/processor/minidump.h"
|
|
|
|
namespace google_breakpad {
|
|
// This acts as the log sink for INFO logging from the processor
|
|
// logging code. The logging output confuses XCode and makes it think
|
|
// there are unit test failures. testlogging.h handles the overriding.
|
|
std::ostringstream info_log;
|
|
}
|
|
|
|
namespace {
|
|
using std::string;
|
|
using google_breakpad::AutoTempDir;
|
|
using google_breakpad::ExceptionHandler;
|
|
using google_breakpad::MachPortSender;
|
|
using google_breakpad::MachReceiveMessage;
|
|
using google_breakpad::MachSendMessage;
|
|
using google_breakpad::Minidump;
|
|
using google_breakpad::MinidumpContext;
|
|
using google_breakpad::MinidumpException;
|
|
using google_breakpad::MinidumpMemoryList;
|
|
using google_breakpad::MinidumpMemoryRegion;
|
|
using google_breakpad::ReceivePort;
|
|
using testing::Test;
|
|
|
|
class ExceptionHandlerTest : public Test {
|
|
public:
|
|
AutoTempDir tempDir;
|
|
string lastDumpName;
|
|
};
|
|
|
|
static void Crasher() {
|
|
int *a = (int*)0x42;
|
|
|
|
fprintf(stdout, "Going to crash...\n");
|
|
fprintf(stdout, "A = %d", *a);
|
|
}
|
|
|
|
static void SoonToCrash() {
|
|
Crasher();
|
|
}
|
|
|
|
static bool MDCallback(const char *dump_dir, const char *file_name,
|
|
void *context, bool success) {
|
|
string path(dump_dir);
|
|
path.append("/");
|
|
path.append(file_name);
|
|
path.append(".dmp");
|
|
|
|
int fd = *reinterpret_cast<int*>(context);
|
|
(void)write(fd, path.c_str(), path.length() + 1);
|
|
close(fd);
|
|
exit(0);
|
|
// not reached
|
|
return true;
|
|
}
|
|
|
|
TEST_F(ExceptionHandlerTest, InProcess) {
|
|
// Give the child process a pipe to report back on.
|
|
int fds[2];
|
|
ASSERT_EQ(0, pipe(fds));
|
|
// Fork off a child process so it can crash.
|
|
pid_t pid = fork();
|
|
if (pid == 0) {
|
|
// In the child process.
|
|
close(fds[0]);
|
|
ExceptionHandler eh(tempDir.path, NULL, MDCallback, &fds[1], true, NULL);
|
|
// crash
|
|
SoonToCrash();
|
|
// not reached
|
|
exit(1);
|
|
}
|
|
// In the parent process.
|
|
ASSERT_NE(-1, pid);
|
|
// Wait for the background process to return the minidump file.
|
|
close(fds[1]);
|
|
char minidump_file[PATH_MAX];
|
|
ssize_t nbytes = read(fds[0], minidump_file, sizeof(minidump_file));
|
|
ASSERT_NE(0, nbytes);
|
|
// Ensure that minidump file exists and is > 0 bytes.
|
|
struct stat st;
|
|
ASSERT_EQ(0, stat(minidump_file, &st));
|
|
ASSERT_LT(0, st.st_size);
|
|
|
|
// Child process should have exited with a zero status.
|
|
int ret;
|
|
ASSERT_EQ(pid, waitpid(pid, &ret, 0));
|
|
EXPECT_NE(0, WIFEXITED(ret));
|
|
EXPECT_EQ(0, WEXITSTATUS(ret));
|
|
}
|
|
|
|
static bool DumpNameMDCallback(const char *dump_dir, const char *file_name,
|
|
void *context, bool success) {
|
|
ExceptionHandlerTest *self = reinterpret_cast<ExceptionHandlerTest*>(context);
|
|
if (dump_dir && file_name) {
|
|
self->lastDumpName = dump_dir;
|
|
self->lastDumpName += "/";
|
|
self->lastDumpName += file_name;
|
|
self->lastDumpName += ".dmp";
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TEST_F(ExceptionHandlerTest, WriteMinidump) {
|
|
ExceptionHandler eh(tempDir.path, NULL, DumpNameMDCallback, this, true, NULL);
|
|
ASSERT_TRUE(eh.WriteMinidump());
|
|
|
|
// Ensure that minidump file exists and is > 0 bytes.
|
|
ASSERT_FALSE(lastDumpName.empty());
|
|
struct stat st;
|
|
ASSERT_EQ(0, stat(lastDumpName.c_str(), &st));
|
|
ASSERT_LT(0, st.st_size);
|
|
|
|
// The minidump should not contain an exception stream.
|
|
Minidump minidump(lastDumpName);
|
|
ASSERT_TRUE(minidump.Read());
|
|
|
|
MinidumpException* exception = minidump.GetException();
|
|
EXPECT_FALSE(exception);
|
|
}
|
|
|
|
TEST_F(ExceptionHandlerTest, WriteMinidumpWithException) {
|
|
ExceptionHandler eh(tempDir.path, NULL, DumpNameMDCallback, this, true, NULL);
|
|
ASSERT_TRUE(eh.WriteMinidump(true));
|
|
|
|
// Ensure that minidump file exists and is > 0 bytes.
|
|
ASSERT_FALSE(lastDumpName.empty());
|
|
struct stat st;
|
|
ASSERT_EQ(0, stat(lastDumpName.c_str(), &st));
|
|
ASSERT_LT(0, st.st_size);
|
|
|
|
// The minidump should contain an exception stream.
|
|
Minidump minidump(lastDumpName);
|
|
ASSERT_TRUE(minidump.Read());
|
|
|
|
MinidumpException* exception = minidump.GetException();
|
|
ASSERT_TRUE(exception);
|
|
const MDRawExceptionStream* raw_exception = exception->exception();
|
|
ASSERT_TRUE(raw_exception);
|
|
|
|
EXPECT_EQ(MD_EXCEPTION_MAC_BREAKPOINT,
|
|
raw_exception->exception_record.exception_code);
|
|
}
|
|
|
|
TEST_F(ExceptionHandlerTest, DumpChildProcess) {
|
|
const int kTimeoutMs = 2000;
|
|
// Create a mach port to receive the child task on.
|
|
char machPortName[128];
|
|
sprintf(machPortName, "ExceptionHandlerTest.%d", getpid());
|
|
ReceivePort parent_recv_port(machPortName);
|
|
|
|
// Give the child process a pipe to block on.
|
|
int fds[2];
|
|
ASSERT_EQ(0, pipe(fds));
|
|
|
|
// Fork off a child process to dump.
|
|
pid_t pid = fork();
|
|
if (pid == 0) {
|
|
// In the child process
|
|
close(fds[1]);
|
|
|
|
// Send parent process the task and thread ports.
|
|
MachSendMessage child_message(0);
|
|
child_message.AddDescriptor(mach_task_self());
|
|
child_message.AddDescriptor(mach_thread_self());
|
|
|
|
MachPortSender child_sender(machPortName);
|
|
if (child_sender.SendMessage(child_message, kTimeoutMs) != KERN_SUCCESS)
|
|
exit(1);
|
|
|
|
// Wait for the parent process.
|
|
uint8_t data;
|
|
read(fds[0], &data, 1);
|
|
exit(0);
|
|
}
|
|
// In the parent process.
|
|
ASSERT_NE(-1, pid);
|
|
close(fds[0]);
|
|
|
|
// Read the child's task and thread ports.
|
|
MachReceiveMessage child_message;
|
|
ASSERT_EQ(KERN_SUCCESS,
|
|
parent_recv_port.WaitForMessage(&child_message, kTimeoutMs));
|
|
mach_port_t child_task = child_message.GetTranslatedPort(0);
|
|
mach_port_t child_thread = child_message.GetTranslatedPort(1);
|
|
ASSERT_NE((mach_port_t)MACH_PORT_NULL, child_task);
|
|
ASSERT_NE((mach_port_t)MACH_PORT_NULL, child_thread);
|
|
|
|
// Write a minidump of the child process.
|
|
bool result = ExceptionHandler::WriteMinidumpForChild(child_task,
|
|
child_thread,
|
|
tempDir.path,
|
|
DumpNameMDCallback,
|
|
this);
|
|
ASSERT_EQ(true, result);
|
|
|
|
// Ensure that minidump file exists and is > 0 bytes.
|
|
ASSERT_FALSE(lastDumpName.empty());
|
|
struct stat st;
|
|
ASSERT_EQ(0, stat(lastDumpName.c_str(), &st));
|
|
ASSERT_LT(0, st.st_size);
|
|
|
|
// Unblock child process
|
|
uint8_t data = 1;
|
|
(void)write(fds[1], &data, 1);
|
|
|
|
// Child process should have exited with a zero status.
|
|
int ret;
|
|
ASSERT_EQ(pid, waitpid(pid, &ret, 0));
|
|
EXPECT_NE(0, WIFEXITED(ret));
|
|
EXPECT_EQ(0, WEXITSTATUS(ret));
|
|
}
|
|
|
|
// Test that memory around the instruction pointer is written
|
|
// to the dump as a MinidumpMemoryRegion.
|
|
TEST_F(ExceptionHandlerTest, InstructionPointerMemory) {
|
|
// Give the child process a pipe to report back on.
|
|
int fds[2];
|
|
ASSERT_EQ(0, pipe(fds));
|
|
|
|
// These are defined here so the parent can use them to check the
|
|
// data from the minidump afterwards.
|
|
const u_int32_t kMemorySize = 256; // bytes
|
|
const int kOffset = kMemorySize / 2;
|
|
// This crashes with SIGILL on x86/x86-64/arm.
|
|
const unsigned char instructions[] = { 0xff, 0xff, 0xff, 0xff };
|
|
|
|
pid_t pid = fork();
|
|
if (pid == 0) {
|
|
close(fds[0]);
|
|
ExceptionHandler eh(tempDir.path, NULL, MDCallback, &fds[1], true, NULL);
|
|
// Get some executable memory.
|
|
char* memory =
|
|
reinterpret_cast<char*>(mmap(NULL,
|
|
kMemorySize,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_PRIVATE | MAP_ANON,
|
|
-1,
|
|
0));
|
|
if (!memory)
|
|
exit(0);
|
|
|
|
// Write some instructions that will crash. Put them in the middle
|
|
// of the block of memory, because the minidump should contain 128
|
|
// bytes on either side of the instruction pointer.
|
|
memcpy(memory + kOffset, instructions, sizeof(instructions));
|
|
|
|
// Now execute the instructions, which should crash.
|
|
typedef void (*void_function)(void);
|
|
void_function memory_function =
|
|
reinterpret_cast<void_function>(memory + kOffset);
|
|
memory_function();
|
|
// not reached
|
|
exit(1);
|
|
}
|
|
// In the parent process.
|
|
ASSERT_NE(-1, pid);
|
|
close(fds[1]);
|
|
|
|
// Wait for the background process to return the minidump file.
|
|
close(fds[1]);
|
|
char minidump_file[PATH_MAX];
|
|
ssize_t nbytes = read(fds[0], minidump_file, sizeof(minidump_file));
|
|
ASSERT_NE(0, nbytes);
|
|
// Ensure that minidump file exists and is > 0 bytes.
|
|
struct stat st;
|
|
ASSERT_EQ(0, stat(minidump_file, &st));
|
|
ASSERT_LT(0, st.st_size);
|
|
|
|
// Child process should have exited with a zero status.
|
|
int ret;
|
|
ASSERT_EQ(pid, waitpid(pid, &ret, 0));
|
|
EXPECT_NE(0, WIFEXITED(ret));
|
|
EXPECT_EQ(0, WEXITSTATUS(ret));
|
|
|
|
// Read the minidump. Locate the exception record and the
|
|
// memory list, and then ensure that there is a memory region
|
|
// in the memory list that covers the instruction pointer from
|
|
// the exception record.
|
|
Minidump minidump(minidump_file);
|
|
ASSERT_TRUE(minidump.Read());
|
|
|
|
MinidumpException* exception = minidump.GetException();
|
|
MinidumpMemoryList* memory_list = minidump.GetMemoryList();
|
|
ASSERT_TRUE(exception);
|
|
ASSERT_TRUE(memory_list);
|
|
ASSERT_NE((unsigned int)0, memory_list->region_count());
|
|
|
|
MinidumpContext* context = exception->GetContext();
|
|
ASSERT_TRUE(context);
|
|
|
|
u_int64_t instruction_pointer;
|
|
switch (context->GetContextCPU()) {
|
|
case MD_CONTEXT_X86:
|
|
instruction_pointer = context->GetContextX86()->eip;
|
|
break;
|
|
case MD_CONTEXT_AMD64:
|
|
instruction_pointer = context->GetContextAMD64()->rip;
|
|
break;
|
|
case MD_CONTEXT_ARM:
|
|
instruction_pointer = context->GetContextARM()->iregs[15];
|
|
break;
|
|
default:
|
|
FAIL() << "Unknown context CPU: " << context->GetContextCPU();
|
|
break;
|
|
}
|
|
|
|
MinidumpMemoryRegion* region =
|
|
memory_list->GetMemoryRegionForAddress(instruction_pointer);
|
|
EXPECT_TRUE(region);
|
|
|
|
EXPECT_EQ(kMemorySize, region->GetSize());
|
|
const u_int8_t* bytes = region->GetMemory();
|
|
ASSERT_TRUE(bytes);
|
|
|
|
u_int8_t prefix_bytes[kOffset];
|
|
u_int8_t suffix_bytes[kMemorySize - kOffset - sizeof(instructions)];
|
|
memset(prefix_bytes, 0, sizeof(prefix_bytes));
|
|
memset(suffix_bytes, 0, sizeof(suffix_bytes));
|
|
EXPECT_TRUE(memcmp(bytes, prefix_bytes, sizeof(prefix_bytes)) == 0);
|
|
EXPECT_TRUE(memcmp(bytes + kOffset, instructions, sizeof(instructions)) == 0);
|
|
EXPECT_TRUE(memcmp(bytes + kOffset + sizeof(instructions),
|
|
suffix_bytes, sizeof(suffix_bytes)) == 0);
|
|
}
|
|
|
|
// Test that the memory region around the instruction pointer is
|
|
// bounded correctly on the low end.
|
|
TEST_F(ExceptionHandlerTest, InstructionPointerMemoryMinBound) {
|
|
// Give the child process a pipe to report back on.
|
|
int fds[2];
|
|
ASSERT_EQ(0, pipe(fds));
|
|
|
|
// These are defined here so the parent can use them to check the
|
|
// data from the minidump afterwards.
|
|
const u_int32_t kMemorySize = 256; // bytes
|
|
const int kOffset = 0;
|
|
// This crashes with SIGILL on x86/x86-64/arm.
|
|
const unsigned char instructions[] = { 0xff, 0xff, 0xff, 0xff };
|
|
|
|
pid_t pid = fork();
|
|
if (pid == 0) {
|
|
close(fds[0]);
|
|
ExceptionHandler eh(tempDir.path, NULL, MDCallback, &fds[1], true, NULL);
|
|
// Get some executable memory.
|
|
char* memory =
|
|
reinterpret_cast<char*>(mmap(NULL,
|
|
kMemorySize,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_PRIVATE | MAP_ANON,
|
|
-1,
|
|
0));
|
|
if (!memory)
|
|
exit(0);
|
|
|
|
// Write some instructions that will crash. Put them at the start
|
|
// of the block of memory, to ensure that the memory bounding
|
|
// works properly.
|
|
memcpy(memory + kOffset, instructions, sizeof(instructions));
|
|
|
|
// Now execute the instructions, which should crash.
|
|
typedef void (*void_function)(void);
|
|
void_function memory_function =
|
|
reinterpret_cast<void_function>(memory + kOffset);
|
|
memory_function();
|
|
// not reached
|
|
exit(1);
|
|
}
|
|
// In the parent process.
|
|
ASSERT_NE(-1, pid);
|
|
close(fds[1]);
|
|
|
|
// Wait for the background process to return the minidump file.
|
|
close(fds[1]);
|
|
char minidump_file[PATH_MAX];
|
|
ssize_t nbytes = read(fds[0], minidump_file, sizeof(minidump_file));
|
|
ASSERT_NE(0, nbytes);
|
|
// Ensure that minidump file exists and is > 0 bytes.
|
|
struct stat st;
|
|
ASSERT_EQ(0, stat(minidump_file, &st));
|
|
ASSERT_LT(0, st.st_size);
|
|
|
|
// Child process should have exited with a zero status.
|
|
int ret;
|
|
ASSERT_EQ(pid, waitpid(pid, &ret, 0));
|
|
EXPECT_NE(0, WIFEXITED(ret));
|
|
EXPECT_EQ(0, WEXITSTATUS(ret));
|
|
|
|
// Read the minidump. Locate the exception record and the
|
|
// memory list, and then ensure that there is a memory region
|
|
// in the memory list that covers the instruction pointer from
|
|
// the exception record.
|
|
Minidump minidump(minidump_file);
|
|
ASSERT_TRUE(minidump.Read());
|
|
|
|
MinidumpException* exception = minidump.GetException();
|
|
MinidumpMemoryList* memory_list = minidump.GetMemoryList();
|
|
ASSERT_TRUE(exception);
|
|
ASSERT_TRUE(memory_list);
|
|
ASSERT_NE((unsigned int)0, memory_list->region_count());
|
|
|
|
MinidumpContext* context = exception->GetContext();
|
|
ASSERT_TRUE(context);
|
|
|
|
u_int64_t instruction_pointer;
|
|
switch (context->GetContextCPU()) {
|
|
case MD_CONTEXT_X86:
|
|
instruction_pointer = context->GetContextX86()->eip;
|
|
break;
|
|
case MD_CONTEXT_AMD64:
|
|
instruction_pointer = context->GetContextAMD64()->rip;
|
|
break;
|
|
case MD_CONTEXT_ARM:
|
|
instruction_pointer = context->GetContextARM()->iregs[15];
|
|
break;
|
|
default:
|
|
FAIL() << "Unknown context CPU: " << context->GetContextCPU();
|
|
break;
|
|
}
|
|
|
|
MinidumpMemoryRegion* region =
|
|
memory_list->GetMemoryRegionForAddress(instruction_pointer);
|
|
EXPECT_TRUE(region);
|
|
|
|
EXPECT_EQ(kMemorySize / 2, region->GetSize());
|
|
const u_int8_t* bytes = region->GetMemory();
|
|
ASSERT_TRUE(bytes);
|
|
|
|
u_int8_t suffix_bytes[kMemorySize / 2 - sizeof(instructions)];
|
|
memset(suffix_bytes, 0, sizeof(suffix_bytes));
|
|
EXPECT_TRUE(memcmp(bytes + kOffset, instructions, sizeof(instructions)) == 0);
|
|
EXPECT_TRUE(memcmp(bytes + kOffset + sizeof(instructions),
|
|
suffix_bytes, sizeof(suffix_bytes)) == 0);
|
|
}
|
|
|
|
// Test that the memory region around the instruction pointer is
|
|
// bounded correctly on the high end.
|
|
TEST_F(ExceptionHandlerTest, InstructionPointerMemoryMaxBound) {
|
|
// Give the child process a pipe to report back on.
|
|
int fds[2];
|
|
ASSERT_EQ(0, pipe(fds));
|
|
|
|
// These are defined here so the parent can use them to check the
|
|
// data from the minidump afterwards.
|
|
// Use 4k here because the OS will hand out a single page even
|
|
// if a smaller size is requested, and this test wants to
|
|
// test the upper bound of the memory range.
|
|
const u_int32_t kMemorySize = 4096; // bytes
|
|
// This crashes with SIGILL on x86/x86-64/arm.
|
|
const unsigned char instructions[] = { 0xff, 0xff, 0xff, 0xff };
|
|
const int kOffset = kMemorySize - sizeof(instructions);
|
|
|
|
pid_t pid = fork();
|
|
if (pid == 0) {
|
|
close(fds[0]);
|
|
ExceptionHandler eh(tempDir.path, NULL, MDCallback, &fds[1], true, NULL);
|
|
// Get some executable memory.
|
|
char* memory =
|
|
reinterpret_cast<char*>(mmap(NULL,
|
|
kMemorySize,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_PRIVATE | MAP_ANON,
|
|
-1,
|
|
0));
|
|
if (!memory)
|
|
exit(0);
|
|
|
|
// Write some instructions that will crash. Put them at the start
|
|
// of the block of memory, to ensure that the memory bounding
|
|
// works properly.
|
|
memcpy(memory + kOffset, instructions, sizeof(instructions));
|
|
|
|
// Now execute the instructions, which should crash.
|
|
typedef void (*void_function)(void);
|
|
void_function memory_function =
|
|
reinterpret_cast<void_function>(memory + kOffset);
|
|
memory_function();
|
|
// not reached
|
|
exit(1);
|
|
}
|
|
// In the parent process.
|
|
ASSERT_NE(-1, pid);
|
|
close(fds[1]);
|
|
|
|
// Wait for the background process to return the minidump file.
|
|
close(fds[1]);
|
|
char minidump_file[PATH_MAX];
|
|
ssize_t nbytes = read(fds[0], minidump_file, sizeof(minidump_file));
|
|
ASSERT_NE(0, nbytes);
|
|
// Ensure that minidump file exists and is > 0 bytes.
|
|
struct stat st;
|
|
ASSERT_EQ(0, stat(minidump_file, &st));
|
|
ASSERT_LT(0, st.st_size);
|
|
|
|
// Child process should have exited with a zero status.
|
|
int ret;
|
|
ASSERT_EQ(pid, waitpid(pid, &ret, 0));
|
|
EXPECT_NE(0, WIFEXITED(ret));
|
|
EXPECT_EQ(0, WEXITSTATUS(ret));
|
|
|
|
// Read the minidump. Locate the exception record and the
|
|
// memory list, and then ensure that there is a memory region
|
|
// in the memory list that covers the instruction pointer from
|
|
// the exception record.
|
|
Minidump minidump(minidump_file);
|
|
ASSERT_TRUE(minidump.Read());
|
|
|
|
MinidumpException* exception = minidump.GetException();
|
|
MinidumpMemoryList* memory_list = minidump.GetMemoryList();
|
|
ASSERT_TRUE(exception);
|
|
ASSERT_TRUE(memory_list);
|
|
ASSERT_NE((unsigned int)0, memory_list->region_count());
|
|
|
|
MinidumpContext* context = exception->GetContext();
|
|
ASSERT_TRUE(context);
|
|
|
|
u_int64_t instruction_pointer;
|
|
switch (context->GetContextCPU()) {
|
|
case MD_CONTEXT_X86:
|
|
instruction_pointer = context->GetContextX86()->eip;
|
|
break;
|
|
case MD_CONTEXT_AMD64:
|
|
instruction_pointer = context->GetContextAMD64()->rip;
|
|
break;
|
|
case MD_CONTEXT_ARM:
|
|
instruction_pointer = context->GetContextARM()->iregs[15];
|
|
break;
|
|
default:
|
|
FAIL() << "Unknown context CPU: " << context->GetContextCPU();
|
|
break;
|
|
}
|
|
|
|
MinidumpMemoryRegion* region =
|
|
memory_list->GetMemoryRegionForAddress(instruction_pointer);
|
|
EXPECT_TRUE(region);
|
|
|
|
const size_t kPrefixSize = 128; // bytes
|
|
EXPECT_EQ(kPrefixSize + sizeof(instructions), region->GetSize());
|
|
const u_int8_t* bytes = region->GetMemory();
|
|
ASSERT_TRUE(bytes);
|
|
|
|
u_int8_t prefix_bytes[kPrefixSize];
|
|
memset(prefix_bytes, 0, sizeof(prefix_bytes));
|
|
EXPECT_TRUE(memcmp(bytes, prefix_bytes, sizeof(prefix_bytes)) == 0);
|
|
EXPECT_TRUE(memcmp(bytes + kPrefixSize,
|
|
instructions, sizeof(instructions)) == 0);
|
|
}
|
|
|
|
// Ensure that an extra memory block doesn't get added when the
|
|
// instruction pointer is not in mapped memory.
|
|
TEST_F(ExceptionHandlerTest, InstructionPointerMemoryNullPointer) {
|
|
// Give the child process a pipe to report back on.
|
|
int fds[2];
|
|
ASSERT_EQ(0, pipe(fds));
|
|
|
|
pid_t pid = fork();
|
|
if (pid == 0) {
|
|
close(fds[0]);
|
|
ExceptionHandler eh(tempDir.path, NULL, MDCallback, &fds[1], true, NULL);
|
|
// Try calling a NULL pointer.
|
|
typedef void (*void_function)(void);
|
|
void_function memory_function =
|
|
reinterpret_cast<void_function>(NULL);
|
|
memory_function();
|
|
// not reached
|
|
exit(1);
|
|
}
|
|
// In the parent process.
|
|
ASSERT_NE(-1, pid);
|
|
close(fds[1]);
|
|
|
|
// Wait for the background process to return the minidump file.
|
|
close(fds[1]);
|
|
char minidump_file[PATH_MAX];
|
|
ssize_t nbytes = read(fds[0], minidump_file, sizeof(minidump_file));
|
|
ASSERT_NE(0, nbytes);
|
|
// Ensure that minidump file exists and is > 0 bytes.
|
|
struct stat st;
|
|
ASSERT_EQ(0, stat(minidump_file, &st));
|
|
ASSERT_LT(0, st.st_size);
|
|
|
|
// Child process should have exited with a zero status.
|
|
int ret;
|
|
ASSERT_EQ(pid, waitpid(pid, &ret, 0));
|
|
EXPECT_NE(0, WIFEXITED(ret));
|
|
EXPECT_EQ(0, WEXITSTATUS(ret));
|
|
|
|
// Read the minidump. Locate the exception record and the
|
|
// memory list, and then ensure that there is only one memory region
|
|
// in the memory list (the thread memory from the single thread).
|
|
Minidump minidump(minidump_file);
|
|
ASSERT_TRUE(minidump.Read());
|
|
|
|
MinidumpException* exception = minidump.GetException();
|
|
MinidumpMemoryList* memory_list = minidump.GetMemoryList();
|
|
ASSERT_TRUE(exception);
|
|
ASSERT_TRUE(memory_list);
|
|
ASSERT_EQ((unsigned int)1, memory_list->region_count());
|
|
}
|
|
|
|
static void *Junk(void *) {
|
|
sleep(1000000);
|
|
return NULL;
|
|
}
|
|
|
|
// Test that the memory list gets written correctly when multiple
|
|
// threads are running.
|
|
TEST_F(ExceptionHandlerTest, MemoryListMultipleThreads) {
|
|
// Give the child process a pipe to report back on.
|
|
int fds[2];
|
|
ASSERT_EQ(0, pipe(fds));
|
|
|
|
pid_t pid = fork();
|
|
if (pid == 0) {
|
|
close(fds[0]);
|
|
ExceptionHandler eh(tempDir.path, NULL, MDCallback, &fds[1], true, NULL);
|
|
|
|
// Run an extra thread so >2 memory regions will be written.
|
|
pthread_t junk_thread;
|
|
if (pthread_create(&junk_thread, NULL, Junk, NULL) == 0)
|
|
pthread_detach(junk_thread);
|
|
|
|
// Just crash.
|
|
Crasher();
|
|
|
|
// not reached
|
|
exit(1);
|
|
}
|
|
// In the parent process.
|
|
ASSERT_NE(-1, pid);
|
|
close(fds[1]);
|
|
|
|
// Wait for the background process to return the minidump file.
|
|
close(fds[1]);
|
|
char minidump_file[PATH_MAX];
|
|
ssize_t nbytes = read(fds[0], minidump_file, sizeof(minidump_file));
|
|
ASSERT_NE(0, nbytes);
|
|
// Ensure that minidump file exists and is > 0 bytes.
|
|
struct stat st;
|
|
ASSERT_EQ(0, stat(minidump_file, &st));
|
|
ASSERT_LT(0, st.st_size);
|
|
|
|
// Child process should have exited with a zero status.
|
|
int ret;
|
|
ASSERT_EQ(pid, waitpid(pid, &ret, 0));
|
|
EXPECT_NE(0, WIFEXITED(ret));
|
|
EXPECT_EQ(0, WEXITSTATUS(ret));
|
|
|
|
// Read the minidump, and verify that the memory list can be read.
|
|
Minidump minidump(minidump_file);
|
|
ASSERT_TRUE(minidump.Read());
|
|
|
|
MinidumpMemoryList* memory_list = minidump.GetMemoryList();
|
|
ASSERT_TRUE(memory_list);
|
|
// Verify that there are three memory regions:
|
|
// one per thread, and one for the instruction pointer memory.
|
|
ASSERT_EQ((unsigned int)3, memory_list->region_count());
|
|
}
|
|
|
|
}
|