120 lines
3.2 KiB
C
120 lines
3.2 KiB
C
|
// FHT - Fast Hartley Transform Class
|
||
|
//
|
||
|
// Copyright (C) 2004 Melchior FRANZ - mfranz@kde.org
|
||
|
//
|
||
|
// This program is free software; you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU General Public License as
|
||
|
// published by the Free Software Foundation; either version 2 of the
|
||
|
// License, or (at your option) any later version.
|
||
|
//
|
||
|
// This program is distributed in the hope that it will be useful, but
|
||
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
// General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License
|
||
|
// along with this program; if not, write to the Free Software
|
||
|
// Foundation, 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA
|
||
|
//
|
||
|
// $Id$
|
||
|
|
||
|
#ifndef FHT_H
|
||
|
#define FHT_H
|
||
|
|
||
|
/**
|
||
|
* Implementation of the Hartley Transform after Bracewell's discrete
|
||
|
* algorithm. The algorithm is subject to US patent No. 4,646,256 (1987)
|
||
|
* but was put into public domain by the Board of Trustees of Stanford
|
||
|
* University in 1994 and is now freely available[1].
|
||
|
*
|
||
|
* [1] Computer in Physics, Vol. 9, No. 4, Jul/Aug 1995 pp 373-379
|
||
|
*/
|
||
|
class FHT
|
||
|
{
|
||
|
int m_exp2;
|
||
|
int m_num;
|
||
|
float *m_buf;
|
||
|
float *m_tab;
|
||
|
int *m_log;
|
||
|
|
||
|
/**
|
||
|
* Create a table of "cas" (cosine and sine) values.
|
||
|
* Has only to be done in the constructor and saves from
|
||
|
* calculating the same values over and over while transforming.
|
||
|
*/
|
||
|
void makeCasTable();
|
||
|
|
||
|
/**
|
||
|
* Recursive in-place Hartley transform. For internal use only!
|
||
|
*/
|
||
|
void _transform(float *, int, int);
|
||
|
|
||
|
public:
|
||
|
/**
|
||
|
* Prepare transform for data sets with @f$2^n@f$ numbers, whereby @f$n@f$
|
||
|
* should be at least 3. Values of more than 3 need a trigonometry table.
|
||
|
* @see makeCasTable()
|
||
|
*/
|
||
|
FHT(int);
|
||
|
|
||
|
~FHT();
|
||
|
inline int sizeExp() const { return m_exp2; }
|
||
|
inline int size() const { return m_num; }
|
||
|
float *copy(float *, float *);
|
||
|
float *clear(float *);
|
||
|
void scale(float *, float);
|
||
|
|
||
|
/**
|
||
|
* Exponentially Weighted Moving Average (EWMA) filter.
|
||
|
* @param d is the filtered data.
|
||
|
* @param s is fresh input.
|
||
|
* @param w is the weighting factor.
|
||
|
*/
|
||
|
void ewma(float *d, float *s, float w);
|
||
|
|
||
|
/**
|
||
|
* Logarithmic audio spectrum. Maps semi-logarithmic spectrum
|
||
|
* to logarithmic frequency scale, interpolates missing values.
|
||
|
* A logarithmic index map is calculated at the first run only.
|
||
|
* @param p is the input array.
|
||
|
* @param out is the spectrum.
|
||
|
*/
|
||
|
void logSpectrum(float *out, float *p);
|
||
|
|
||
|
/**
|
||
|
* Semi-logarithmic audio spectrum.
|
||
|
*/
|
||
|
void semiLogSpectrum(float *);
|
||
|
|
||
|
/**
|
||
|
* Fourier spectrum.
|
||
|
*/
|
||
|
void spectrum(float *);
|
||
|
|
||
|
/**
|
||
|
* Calculates a mathematically correct FFT power spectrum.
|
||
|
* If further scaling is applied later, use power2 instead
|
||
|
* and factor the 0.5 in the final scaling factor.
|
||
|
* @see FHT::power2()
|
||
|
*/
|
||
|
void power(float *);
|
||
|
|
||
|
/**
|
||
|
* Calculates an FFT power spectrum with doubled values as a
|
||
|
* result. The values need to be multiplied by 0.5 to be exact.
|
||
|
* Note that you only get @f$2^{n-1}@f$ power values for a data set
|
||
|
* of @f$2^n@f$ input values. This is the fastest transform.
|
||
|
* @see FHT::power()
|
||
|
*/
|
||
|
void power2(float *);
|
||
|
|
||
|
/**
|
||
|
* Discrete Hartley transform of data sets with 8 values.
|
||
|
*/
|
||
|
void transform8(float *);
|
||
|
|
||
|
void transform(float *);
|
||
|
};
|
||
|
|
||
|
#endif
|