\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsmath} \title{Simplifying Mathematical Notations in Recurrence Equations} \author{Alessandro Ferro} \date{April 2022} \begin{document} \maketitle \section{Introduction} In the book "Introduction to Algorithms" written by CLRS, section 4.4, the following recurrence equation is given: \begin{equation} T(n)= \begin{cases} \Theta(1), & \text{if}\ n=1 \\ 3T(\lfloor n/4 \rfloor) + \Theta(n^2), & \text{otherwise} \end{cases} \end{equation} which later on was simplified as \begin{equation} T(n)= \begin{cases} \Theta(1), & \text{if}\ n=1 \\ 3T(\lfloor n/4 \rfloor) + cn^2, & \text{otherwise} \end{cases} \end{equation} we will argue that even if $\Theta(n^2)$ is a set, and $c*n^2$ is a scalar and they generally cannot be swapped one with the other, in this case it can be done and will help the equation to be more tractable. \section{Proof} Let's consider the general case only, so we have \begin{gather*} 3T(\lfloor n/4 \rfloor) + \Theta(n^2) \end{gather*} which expanded is \begin{gather*} 3T(\lfloor n/4 \rfloor) + f(n) \ \text{where} \ f(n) \in \Theta(n^2) \end{gather*} $f(n) \in \Theta(n^2)$ means that $\exists \ c_1>0,c_2>0,n_0>0$ such that $c_1*n^2 \leq f(n) \leq c_2*n^2 \ \forall n \geq n_0$ \\ \\ So we have \begin{gather*} 3T(\lfloor n/4 \rfloor) + c_1 * n^2 \leq 3T(\lfloor n/4 \rfloor) + f(n) \leq 3T(\lfloor n/4 \rfloor) + c_2 * n^2 \ \forall n \geq n_0 \\ = \\ \underbrace{3T(\lfloor n/4 \rfloor) + c_1 * n^2}_{\alpha} \leq T(n) \leq \underbrace{3T(\lfloor n/4 \rfloor) + c_2 * n^2}_{\beta} \ \forall n \geq n_0 \end{gather*} So if we resolve $\alpha$ only, we'll have a lower bound for $T(n)$. If we resolve $\beta$ only, we'll have an upper bound for $T(n)$. But $\alpha$ and $\beta$ are asymptotically equivalent, that means that $T(n)$ is asymptotycally equivalent to $\alpha$ and $\beta$ too. So we just need to resolve either $\alpha$ or $\beta$ to obtain the asymptotic value of $T(n)$, so we can just resolve for a generic $c$ : \begin{equation} T(n)= \begin{cases} \Theta(1), & \text{if}\ n=1 \\ 3T(\lfloor n/4 \rfloor) + cn^2, & \text{otherwise} \end{cases} \end{equation} since using a generic constant won't change the asymptotic value. \section{Conclusions} The concept described in this document and the relative proof can be easily extended to any similar recurrence, and generalized. \end{document}