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Motivation

Doebner and Mann introduced an approach to the ray representations
of the Galilei group in (1 4 1)-dimensions, giving rise to quantum
genertors with an explicit dependence on time.

Our purpouse is to extend their approach to higher dimensions. As a
result, we determine the generators of the ray representation in

(2 4+ 1)- and (3 + 1)-dimensions.
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Wigner’s Theorem and Ray Representations

Ry ={p € H:|p)=1]|),|r| =1} € R, where R set of rays in Hilbert space.
Wigner’s Theorem!

‘H Hilbert space. T symmetry transformation, T : R — R, TRy, = Ry, such that

[ {1 [92) | = | (91 | 3) |

3U, unitary or antiunitary, such that 1)’ = U1), univocally determined up a phase factor.

Conclusion

G3r—U ={U,reG:U,=¢(r)U,le(r) =1}
U, — Uy, U, Us 7é Uy, UyUs € Uy = U Us = w(r7 S)Urx

Ray Representation”

G Lie group. r, 5, ¢, ... € G.

R(G):r—U, €U,
Uls = Uy - U, Us = w(r, S)Urs

|w(r,s)| = 1, con w(r, s) phase factor or multiplicator.

1Wigner, 1959; Bargmann, 1964; Weinberg, 1995
2Baremann. 1954
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Localizable physical system in R

G translation group on R. A — E(A)

Definition

(H, E, U), where H Hilbert space, E projection valued measure E(A) on H, U : G — U
representation of G, such that

E(A) = U7'E(A — a)U,

it is called Imprimitivity System? based on (R, Z(R), G).

Von Neumann’s Theorem*

‘H Hilbert space. P, Q adjoint operators such that U(a) = e/®P, V(8) = e/#? satisfy the
following:

U(@)V(B) =P V(B)U(a)
then P, Q are a Schridinger’s couple, [Q, P] = i.

*Mackey, 1952
“yon Neumann, 1931; Putnam, 1967; Jauch, 1968; Weyl, 1931
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Localizable physical system in R

G: group of Galilei’s transformations

G > r = (a, v), with product defined by

rs = (ap,vr) - (ag, vs) = (@ + ag, vr + vy)

Let W(«, v) be a representation of G, W € U(H). Then:

W(Oér, Vr)W(O‘s’ Vs) = ei%(arv.‘—a.‘vr) W(Oér + o, v VS)

Uy =W(a,0) B
—1 - UOéGv
G =w(0,v)

U — eiaP
a =

1 _ Liaf ~—1
e o UaH{lezeifBQ

The generator of time translation operator coincides with the system’s
hamiltonian operator:
.d
H = Ho+ V(Q) — Hl|y)=ig|v)
P2

:ﬁ — k<> mass

Hy
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Phase factors and phase exponents

G Lie group, r, s,t € G, e identity of G. Let be 4" a neighbourhood
of e.

R(G):r— U, €U,
U,Us = w(r,s)Uy, withr,s € N

Equivalence relation:

W(r,s =er,s, U. = ¢(r)U,, with |¢(r)| = 1,
(r.5) = £ 7w(rs) @ 6(r)
w(r,s) = (%) where £(r, s) local phase exponent, Vr,s € A4 C G
§(r,e) =&(e,r) =0
§(r,s) + &(rs, 1) = §(r,s1) + &(s,1)
For connected and simply connected Lie groups:

&(r,s) local — &(r,s) global

Vr,s,t € N
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Phase exponents and infinitesimal exponents

o Equivalence relation: £ ~ &g if

§(r,s) = &olr, ) +¢(r) + ((s) = C(rs) = o(r;5) + A 5[]

o scr(rt)=¢&(r,s) =¢&(s,r) =0
@ Local group: &(r,s) — H : {0,r},0 e R,re G

g Lie algebra of group G.
3=(a, b), with a, b € g, bilinear, anti-symmetric, such that

=(a,b) = lim 77 (¢ ((ra)(b), (ra) "' (rb) ") +
+ &(ra,7b) + & ((ta) ™!

d=(a,d',d") = Z([a,d],d") + Z([d',d"],a) + E([d",a],d’) = 0

—~
\]
S
~ —
\
—_
~—
~—

with = infinitesimal exponent of g.
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Infinitesimal exponents

{an} basis of g, a = S va;, d = S 'a; (1 <i < n)

E a a Zﬂt]')”y , /811 /Bji = E(aivaj)

g = 0%¢(r,s)  0°¢(r,s)
v 8p’80/ 6pj0'i k— ok —()

Equivalence relation:
=/(a,b) = Z(a,b) — A[a, b]) = =(a,b) — d[A]

Aai) =N, Bij =2 "idm (1 <m < n)
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Bargmann’s Theorem

@ On aLie group G, every local exponent £(r, s) is equivalent to a canonical
local exponent &' (r, s) which, on some canonical neighborhood ./, is analytic
in the canonical coordinates r, s and vanishes if r, s belong to the same local
one-parameter subgroup. Two canonical exponent are equivalent if and only if
&' = £ + A[A] on some canonical neighborhood, where A(r) is a linear form
in the canonical coordinates of r, A[A] = A(r) + A(s) — A(rs).
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Bargmann’s Theorem

@ On aLie group G, every local exponent £(r, s) is equivalent to a canonical
local exponent £’(r, s) which, on some canonical neighborhood ./, is analytic
in the canonical coordinates r, s and vanishes if r, s belong to the same local
one-parameter subgroup. Two canonical exponent are equivalent if and only if
&' = € + A[A] on some canonical neighborhood, where A(r) is a linear form
in the canonical coordinates of r, A[A] = A(r) + A(s) — A(rs).

@ To every canonical local exponent of G corresponds uniquely a infinitesimal
exponent =(a, b) of the Lie algebra g of G, i.e., a bilinear antisymmetric form
which satisfies the identity d Z(a, a’, a”) = 0. The correspondence is linear.

© Two canonical local exponents, &, £ are equivalent if and only if the
corresponding =, =’ are equivalent, i.e., if Z'(a, b) = Z(a, b) — A([a, b]),
where A(a) is a linear form on g.

@ There exists a one-to-one linear correspondence between the equivalence

classes of local exponents of G and the equivalence classes of infinitesimal
exponents of g.
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Galilei’s group in (3 + 1)-dimensions®

G group of Galilei’s transformations of elements r, s, r. The generic transformation of G is
given by:

X =Wx+vt+u
! =t+n

where W orthogonal transformation, v, u € R3, neR

":(Wr,nryvr:”r)
rs = (WrWA'ynr + s, Wivs + vi, uy + Wyng + T]sVr)
e=(1,0,0,0), 7' = (W7 —n, =W v =W (= )

Wr v uy
Zry=10 1 =
0o 0 1

(W7 v, u) = (1707‘}70) : (W7777 07“)

>Bargmann, 1954

Conclusion
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Algebra of G

Infinitesimal generators:

a;; —orthogonal transformations’ generators
d; —Galilei’s pure transformations’ generators
b; —space translations’ generators

f ——time translations’ generators

5

P

SO0 OO0 OO0

[N

(=N}

SO0 o ocox

(=Rl

SO OO

oo ©ooF
N~ T o~ ~
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Algebra of G

Commutations rules:
[aj, an] = djai — Siaj + S — Spaix
[aij, bi] = dbi — duby; [bi,bj] =0
[ajj, di] = djrd; — did; [di, dj] = 0; [di, bj] =0
[aj,f] = 0; [br, f1 = 0; [di,f] = b

Infinitesimal exponents:
Every infinitesimal exponents are equivalent to zero except one:

E(bi,dx) = —E(di,bi) = von,  vER
Calculation of group’s exponents (A = 1):
The equivalence classes of non equivalent exponents are multiples of a given &y(r, s), with

multiplicative factor:

§0(r, S) = % ((ur ‘ W/Vx> - <Vr | Wr”s) + <"7.§Vr | Wﬂ’x))

& bilinear form which holds definition relations
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Generators of G

Generators of Galilei’s group®:

ajj — My = ic™a; My, Mj] = i M,
dj — D; = id; [M;, Dj] = ie™*Dy; [Di, D) = 0
b; —B; = ib; [M;, Bj] = ie™By; [B;,B]] = 0
f—H=if [Mi,H] = 0; [By,H] = 05 [Dy, H] = iBk
S(bi, dj) = 2 (birdj) = 405, E(bidy) Zﬁk,p“ Y
eiﬁDj eiaB,- _ e—i’yaﬁé,-j eiaB,- eiBD/- = [Dian] _ _i’yéi/

3S such that SD;S~! = D;, S0;S~! = 0;, SPiS~! = Pe D; — ~Q; = 0. Then:

PZ

H = Hy + V(0Q), Hy =
2y

with v = particle mass: for every particle of different mass exists a non-equivalent multiplicator
and so a different ray representation of Galilei’s group’

*Bose, 1995; Toller, 1999
"Brennich, 1970
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Galilei’s group in quantum mechanics®

Let be v solutions of Schrodinger equation, r element of G, Galilei’s group:
Y(X) = () = 00Xy x)
o) = (510619 = 1)
Phase exponent
q(r.8) = Gur [ W) = (v ve) = 1 o | Wos)

E=6+ AL )= 5 (e (o) — ()

Representation of G
&' (k) = Urp(r—1k) = o (k)= 3% (k[ )+ Fy (v [ v) =y (u|v)) (%) J

$Bargmann, 1954
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Galilei’s group in (2 + 1)-dimensions!®

Phase exponents
1 -
:‘(di7 dj) g'é Oa A

&i(rys) = (vr, Wyvg) = E(vr A Wyvs),
&(r,8) = 9r7ls — Usnir E(aijvf) =S

Semi-direct product of G: G = AYS x; H*

(1 uB O,M; C(,)v lvcé) . (W707 v, 07 174‘17 1)

AP ={(1,1,0,1; 0,1, G2)}
— (W,n,v,u; Co, C1, =
A ={(W,0,7,051,¢1, 1)} (W, v, 15 €0, C1, )

Co Coe

i2( .
—ig(u v)7 Cé zczetSGU

Representation of G: U(g) = x°(a)V(h),a € AYS, h € H*

Ray representations: vy = A =S =0

U(W,n,v,u) = ePo (W, 0,v,0)
. . pAvV
(UW, n,v,1)f)(po, p) = eW0+WIP)) @™ £p0 4 (v | p) , W' p)

“Karpilovsky, 1994
Grigore, 1996; Bose, 1995
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Galilei’s group in (2 + 1)-dimensions!®

Phase exponents

&i(rys) = (vr, Wyvg) = %

&(r,s) —9r775 — Usnir E(aj,f) =S

Semi-direct product of G: G = AYS x; H*
AT ={(1,1,0,u;¢0,1,¢2)}
A ={(W,0,v,0:1,¢1,1)}
G=CoeT MM =G

Representation of G: U(g) = x°(a)V(h),a € AYS, h € H*

(vr A Wyvs), E(di,dj) Z0, A

- (anavv u; COvClaCZ) = (17777 O,M; C(,)v I,Cé) : (W707 v, 07 174‘17 1)

Ray representations: v # 0, A # 0,5 =0

UW, 1,9, 0)f) () = (Wl +F @i+ L el —5 (vAp>+s9)f(W_1(p+w)) J

Karpilovsky, 1994
Grigore, 1996; Bose, 1995
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Galilei’s group in (2 + 1)-dimensions!®

Phase exponents

&i(rys) = (vr, Wyvg) = %

&(r,s) —9r775 — Usnr E(ay,f) =S

Semi-direct product of G: G = AYS x; H*
AT ={(1,1,0,u;¢0,1,¢2)}
A ={(W,0,v,0:1,¢1,1)}
G=CoeT MM =G

Representation of G: U(g) = x°(a)V(h),a € AYS, h € H*

(vr A Wyvs), E(di,dj) Z0, A

- (anavv u; COvClaCZ) = (17777 O,M; C(,)v I,Cé) : (W707 v, 07 174‘17 1)

Ray representations: v # 0, A = S =0

YW, v, ) (p) = (“1PHFCERCI0) s (=1 4 )

Karpilovsky, 1994
Grigore, 1996; Bose, 1995



Summary Introductic

Galilei’s group in (1 + 1)-dimensions!!

r= (”rvvrﬂlr)
Phase exponent:

a a
&n(r,s) = ?l(arvs — agvy + Nvrvs) + Ez(urns — UsTr — MrNsVr)

U, Us = ei€n () U,

Time depending generators

R) == 5 et Vo S R(X) = KR ([H, X)), Rieo(X) = R(X)

__ipg — n?
Ri(P) = — ihdx — ft Vo = 2 = R(H) — apx + ~— &
2a 2a;

Cs =2HZ| —2KZ, — P> m=ai,f = a»

1
R(N) =mx — ifitdy — 5ft2

""Doebner, Mann, 1995



Summary

Galilei’s group in (1 + 1)-dimensions!!
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Galilei’s group in (1 + 1)-dimensions!!

r= (”rvvrﬂlr)
Phase exponent:

a a
&n(r,s) = ?l(arvs — agvy + Nvrvs) + Ez(urns — UsTr — MrNsVr)

U, Us = ei€n () U,

Time depending generators

B) == 5 et vy S R(X) = KR ([H, X)), Rieo(X) = R(X)

— _ B — - h?
Ri(P) = — ihd — ft Vo =2 — R(H) — arx + ~ 82
2a1 2a1

. 1>
Rt(N) =mx— lﬁtax - Eﬁ C3 :2HZI - ZKZZ — P2,m = (,l],f =a

""Doebner, Mann, 1995
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Extension of Doebner and Mann approach

— higher dimensions

Ri(H) = R(H), R((Pi) = R(P;), R((M) = R(M)
Ri(Ni) = — iR(P)t + R(N;)

y#0,A#£0,S=0 YA£0A=85=0
Ni=—ipil+ﬂi }
Ny = —ile—“yi —iipz Ori
opr 2y
Ny = tpgt—l—'yi—ti
op2 2'y

(U (p) = e @I U (p)
(U U(s)f) (p) = ¢(r; 5, )w(r, s)(Ui(rs)f) (p)

o(r,s,1) = e~ v (v | Wvs)t
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Physical interpretation of the phase exponents

Bargmann’s phase exponent

6o(r,5) = 5 (| Wovs) = (v | W) + (v | W)

—(1,0,0, .
’ _< " U U(s) = 50 Uns) —
s =(1,0,v,0) rs =(1,0,v,u)
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Physical interpretation of the phase exponents

Time depending phase exponent }

b(r, s, 1) = e~ [ W)t

—(U(r)U:(s)f) (p) = ei€(rs) o(r,s,t)U(rs) —
{¢(7’, S, t) = e—i’Y(Vr [ vs)t

r=(1,0,v,,0)
s =(1,0,vs,0)

rs =(1,0,v, + vy,0)
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Physical interpretation of the phase exponents

Time depending phase exponent

B(r,5,1) = D W

Conclusion

— r s :eiﬁ(’ﬂs) r.s rs) —
Lo 0) " GOUENE) o(r.5,1)U(rs)

8(r,s,1) =015
N
rs =(1,0,v, 4+ v5,0)

{r =(1,0,v,,0)

PO 3
Vo
1 , 1

1
S =St o g+ (vlw)
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Physical interpretation of the phase exponents

Time depending phase exponent

B(r,5,1) = D W

Conclusion

— r s :eiﬁ(’ﬂs) r.s rs) —
Lo 0) " GOUENE) o(r.5,1)U(rs)

8(r,s,1) =015
N
rs =(1,0,v, 4+ v5,0)

{r =(1,0,v,,0)

PO 3
Vo
1 , 1

1
S =t omg+ (vlw)
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Physical interpretation of the phase exponents

Time depending phase exponent
o(r,s,t) = e~y {vr [ Wrvs) t J

= (U U(s)f)(p) = ") (r,5,0)U(rs) —

— a1 (vr| vt
. o(r,s,t) =e
rs =(1,0,v, + vy,0)

r=(1,0,v,,0)
s =(1,0,vs,0)

PIRAND JHRLI >N
Y (vrlvs) = (v (vIvo))y = [(V (VIve)), + (v (vIvo)),]
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Application of Bargmann’s ray representation theory to Galilei’s group in:
@ (3 + 1)-dimensions;
@ (2 + 1)-dimensions;
@ (14 1)-dimensions.

o Extension of Doebner and Mann approach to higher dimensions;
o Calculation of time depending ray representation of Galilei’s
group in (2 + 1)- and (3 + 1)-dimensions.
Future developments:

@ In order to develop phisycal application of Wawrzycki’s generalization of Bargmann’s

theory'2, we’ll study the possibility to extend the Doebner and Mann approach to
Poincaré group.

2Wawrzycki, 2004
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