Time dependent quantum generators for the Galilei group

Gianluigi Filippelli

Prague, 16th June, 2007

Motivation

Doebner and Mann introduced an approach to the ray representations of the Galilei group in (1+1)-dimensions, giving rise to quantum generators with an explicit dependence on time.

Our purpouse is to extend their approach to higher dimensions. As a result, we determine the generators of the ray representation in (2+1)- and (3+1)-dimensions.

- Introduction
 - Wigner's Theorem and Ray Representations
 - Imprimitivity system
 - Phase exponents

- Introduction
 - Wigner's Theorem and Ray Representations
 - Imprimitivity system
 - Phase exponents

- Galilei's group
 - Galilei's group in (3 + 1)-dimensions
 - Galilei's group in (2+1)-dimensions
 - Galilei's group in (1+1)-dimensions
 - Extension of Doebner and Mann approach

Wigner's Theorem and Ray Representations

 $\mathcal{R}_{\psi} = \{ \varphi \in \mathcal{H} : | \varphi \rangle = \tau | \psi \rangle, |\tau| = 1 \} \in \mathcal{R}$, where \mathcal{R} set of rays in Hilbert space.

Wigner's Theorem¹

 \mathcal{H} Hilbert space. T symmetry transformation, $T: \mathcal{R} \to \mathcal{R}$, $T\mathcal{R}_{\psi} = \mathcal{R}_{\psi'}$, such that

$$|\langle \psi_1 | \psi_2 \rangle| = |\langle \psi_1' | \psi_2' \rangle|$$

 $\exists U$, unitary or antiunitary, such that $\psi' = U\psi$, univocally determined up a phase factor.

$$G \ni r \to \mathcal{U}_r = \{U'_r, r \in G : U'_r = \phi(r)U_r, |\phi(r)| = 1\}$$

$$\mathcal{U}_r \hookrightarrow U_r, U_rU_s \neq U_{rs}, U_rU_s \in \mathcal{U}_{rs} \Rightarrow U_rU_s = \omega(r, s)U_{rs}$$

Ray Representation²

G Lie group. $r, s, t, \ldots \in G$.

$$R(G): r \to U_r \in \mathcal{U}_r$$
 $\mathcal{U}_r \mathcal{U}_s = \mathcal{U}_{rs} o U_r U_s = \omega(r, s) U_{rs}$

 $|\omega(r,s)| = 1$, con $\omega(r,s)$ phase factor or multiplicator.

¹Wigner, 1959; Bargmann, 1964; Weinberg, 1995

²Bargmann, 1954

Localizable physical system in \mathbb{R}

G translation group on \mathbb{R} . $\Delta \to E(\Delta)$

Definition

 (\mathcal{H}, E, U) , where \mathcal{H} Hilbert space, E projection valued measure $E(\Delta)$ on $\mathcal{H}, U: G \to \mathcal{U}$ representation of G, such that

$$E(\Delta) = U_a^{-1} E(\Delta - a) U_a$$

it is called Imprimitivity System³ based on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), G)$.

Von Neumann's Theorem⁴

 $\mathcal H$ Hilbert space. P,Q adjoint operators such that $U(\alpha)=\mathrm{e}^{i\alpha P},V(\beta)=\mathrm{e}^{i\beta Q}$ satisfy the following:

$$U(\alpha)V(\beta) = e^{i\alpha\beta} V(\beta)U(\alpha)$$

then P, Q are a Schrödinger's couple, [Q, P] = i.

³Mackey, 1952

Localizable physical system in \mathbb{R}

G: group of Galilei's transformations

 $G \ni r = (\alpha, \nu)$, with product defined by

$$rs = (\alpha_r, \nu_r) \cdot (\alpha_s, \nu_s) = (\alpha_r + \alpha_s, \nu_r + \nu_s)$$

Let $W(\alpha, \nu)$ be a representation of $G, W \in \mathcal{U}(\mathcal{H})$. Then:

$$W(\alpha_r, \nu_r)W(\alpha_s, \nu_s) = e^{i\frac{k}{2}(\alpha_r \nu_s - \alpha_s \nu_r)} W(\alpha_r + \alpha_s, \nu_r + \nu_s)$$

$$\begin{cases} U_{\alpha} = W(\alpha, 0) \\ G_{\nu}^{-1} = W(0, \nu) \end{cases} \rightarrow U_{\alpha}G_{\nu}^{-1} = e^{i\alpha\beta} G_{\nu}^{-1}U_{\alpha} \rightarrow \begin{cases} U_{\alpha} = e^{i\alpha P} \\ G_{\nu}^{-1} = e^{i\beta Q} \end{cases}$$

The generator of time translation operator coincides with the system's hamiltonian operator:

$$H = H_0 + V(Q)$$
 $\rightarrow H | \psi \rangle = i \frac{\mathrm{d}}{\mathrm{d} t} | \psi \rangle$
 $H_0 = \frac{P^2}{2k}$ $\rightarrow k \leftrightarrow \text{mass}$

Phase factors and phase exponents

G Lie group, $r, s, t \in G$, *e* identity of *G*. Let be \mathcal{N} a neighbourhood of *e*.

$$R(G): r \to U_r \in \mathcal{U}_r$$
 $U_r U_s = \omega(r, s) U_{rs}$, with $r, s \in \mathscr{N}$

Equivalence relation:

$$\omega'(r,s) = \frac{\phi(r)\phi(s)}{\phi(rs)}\omega(r,s), \qquad U'_r = \phi(r)U_r, \text{ with } |\phi(r)| = 1,$$

 $\omega(r,s) = e^{i\xi(r,s)}$ where $\xi(r,s)$ local phase exponent, $\forall r,s \in \mathcal{N} \subset G$

$$\xi(r,e) = \xi(e,r) = 0$$

$$\xi(r,s) + \xi(rs,t) = \xi(r,st) + \xi(s,t)$$
 $\forall r, s, t \in \mathcal{N}$

For connected and simply connected Lie groups:

$$\xi(r,s)$$
 local $\rightarrow \xi(r,s)$ global

Phase exponents and infinitesimal exponents

• Equivalence relation: $\xi \sim \xi_0$ if

$$\xi(r,s) = \xi_0(r,s) + \zeta(r) + \zeta(s) - \zeta(rs) = \xi_0(r,s) + \Delta_{r,s}[\zeta]$$

- $s \in r(\tau) \Rightarrow \xi(r,s) = \xi(s,r) = 0$
- Local group: $\xi(r,s) \to H : \{\theta,r\}, \theta \in \mathbb{R}, r \in G$

 \mathfrak{g} Lie algebra of group G.

 $\exists \Xi(a,b)$, with $a,b \in \mathfrak{g}$, bilinear, anti-symmetric, such that

$$\begin{split} \Xi(a,b) &= \lim_{\tau \to 0} \tau^{-2} \left(\xi \left((\tau a)(\tau b), (\tau a)^{-1} (\tau b)^{-1} \right) + \right. \\ &+ \left. \xi (\tau a, \tau b) + \xi \left((\tau a)^{-1}, (\tau b)^{-1} \right) \right) \\ \mathrm{d} \, \Xi(a,a',a'') &= \Xi([a,a'],a'') + \Xi([a',a''],a) + \Xi([a'',a],a') = 0 \end{split}$$

with Ξ infinitesimal exponent of \mathfrak{g} .

Infinitesimal exponents

$$\{a_n\}$$
 basis of \mathfrak{g} , $a = \sum \gamma^i a_i$, $a' = \sum \gamma'^i a_i$ $(1 \leqslant i \leqslant n)$

$$\Xi(a, a') = \sum_{ij} \beta_{ij} \gamma^i \gamma^{ij}, \quad \beta_{ij} = -\beta_{ji} = \Xi(a_i, a_j)$$

$$\beta_{ij} = \left(\frac{\partial^2 \xi(r, s)}{\partial \rho^i \partial \sigma^j} - \frac{\partial^2 \xi(r, s)}{\partial \rho^j \sigma^i}\right)_{\rho^k = \sigma^k = 0}$$

Equivalence relation:

$$\Xi'(a,b) = \Xi(a,b) - \Lambda([a,b]) = \Xi(a,b) - d[\Lambda]$$

$$\Lambda(a_i) = \lambda_i, \, \beta_{ij} = \sum_{ij} c^m{}_{ij} \lambda_m \, (1 \leqslant m \leqslant n)$$

① On a Lie group G, every local exponent $\xi(r,s)$ is equivalent to a canonical local exponent $\xi'(r,s)$ which, on some canonical neighborhood \mathscr{N} , is analytic in the canonical coordinates r,s and vanishes if r,s belong to the same local one-parameter subgroup. Two canonical exponent are equivalent if and only if $\xi' = \xi + \Delta[\Lambda]$ on some canonical neighborhood, where $\Lambda(r)$ is a linear form in the canonical coordinates of $r, \Delta[\Lambda] = \Lambda(r) + \Lambda(s) - \Lambda(rs)$.

- On a Lie group G, every local exponent $\xi(r,s)$ is equivalent to a canonical local exponent $\xi'(r,s)$ which, on some canonical neighborhood \mathcal{N} , is analytic in the canonical coordinates r,s and vanishes if r,s belong to the same local one-parameter subgroup. Two canonical exponent are equivalent if and only if $\xi' = \xi + \Delta[\Lambda]$ on some canonical neighborhood, where $\Lambda(r)$ is a linear form in the canonical coordinates of $r, \Delta[\Lambda] = \Lambda(r) + \Lambda(s) \Lambda(rs)$.
- ② To every canonical local exponent of G corresponds uniquely a infinitesimal exponent $\Xi(a,b)$ of the Lie algebra $\mathfrak g$ of G, i.e., a bilinear antisymmetric form which satisfies the identity $d\Xi(a,a',a'')=0$. The correspondence is linear.

- On a Lie group G, every local exponent $\xi(r,s)$ is equivalent to a canonical local exponent $\xi'(r,s)$ which, on some canonical neighborhood \mathcal{N} , is analytic in the canonical coordinates r,s and vanishes if r,s belong to the same local one-parameter subgroup. Two canonical exponent are equivalent if and only if $\xi' = \xi + \Delta[\Lambda]$ on some canonical neighborhood, where $\Lambda(r)$ is a linear form in the canonical coordinates of $r, \Delta[\Lambda] = \Lambda(r) + \Lambda(s) \Lambda(rs)$.
- ② To every canonical local exponent of G corresponds uniquely a infinitesimal exponent $\Xi(a,b)$ of the Lie algebra $\mathfrak g$ of G, i.e., a bilinear antisymmetric form which satisfies the identity $d\Xi(a,a',a'')=0$. The correspondence is linear.
- **③** Two canonical local exponents, ξ, ξ' are equivalent if and only if the corresponding Ξ, Ξ' are equivalent, i.e., if $\Xi'(a,b) = \Xi(a,b) \Lambda([a,b])$, where $\Lambda(a)$ is a linear form on \mathfrak{g} .

- On a Lie group G, every local exponent $\xi(r,s)$ is equivalent to a canonical local exponent $\xi'(r,s)$ which, on some canonical neighborhood \mathcal{N} , is analytic in the canonical coordinates r,s and vanishes if r,s belong to the same local one-parameter subgroup. Two canonical exponent are equivalent if and only if $\xi' = \xi + \Delta[\Lambda]$ on some canonical neighborhood, where $\Lambda(r)$ is a linear form in the canonical coordinates of $r, \Delta[\Lambda] = \Lambda(r) + \Lambda(s) \Lambda(rs)$.
- ② To every canonical local exponent of G corresponds uniquely a infinitesimal exponent $\Xi(a,b)$ of the Lie algebra $\mathfrak g$ of G, i.e., a bilinear antisymmetric form which satisfies the identity $d\Xi(a,a',a'')=0$. The correspondence is linear.
- **3** Two canonical local exponents, ξ, ξ' are equivalent if and only if the corresponding Ξ, Ξ' are equivalent, i.e., if $\Xi'(a,b) = \Xi(a,b) \Lambda([a,b])$, where $\Lambda(a)$ is a linear form on \mathfrak{g} .
- 4 There exists a one-to-one linear correspondence between the equivalence classes of local exponents of G and the equivalence classes of infinitesimal exponents of \mathfrak{g} .

G group of Galilei's transformations of elements r, s, t. The generic transformation of G is given by:

$$\begin{cases} x' = Wx + vt + u \\ t' = t + \eta \end{cases}$$

where W orthogonal transformation, $v, u \in \mathbb{R}^3$, $\eta \in \mathbb{R}$

$$r = (W_r, \eta_r, \nu_r, u_r)$$

$$rs = (W_r W_s, \eta_r + \eta_s, W_r \nu_s + \nu_r, u_r + W_r u_s + \eta_s \nu_r)$$

$$e = (1, 0, 0, 0), \qquad r^{-1} = \left(W_r^{-1}, -\eta_r, -W_r^{-1} \nu_r, -W_r^{-1} (u_r - \eta_r \nu_r)\right)$$

$$Z(r) = \begin{pmatrix} W_r & \nu_r & u_r \\ 0 & 1 & \eta_r \\ 0 & 0 & 1 \end{pmatrix}$$

$$(W, \eta, \nu, u) = (1, 0, \nu, 0) \cdot (W, \eta, 0, u)$$

⁵Bargmann, 1954

Algebra of *G*

Infinitesimal generators:

a_{ij} —orthogonal transformations' generators	$\begin{pmatrix} M_{ij} \\ 0 \\ 0 \end{pmatrix}$	0 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
$d_j \longrightarrow$ Galilei's pure transformations' generators	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$		$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
$b_j \longrightarrow$ space translations' generators	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	0 0 0	$\begin{pmatrix} \kappa_j \\ 0 \\ 0 \end{pmatrix}$
$f \longrightarrow$ time translations' generators	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	0	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

Algebra of *G*

Commutations rules:

$$[a_{ij}, a_{kl}] = \delta_{jk} a_{il} - \delta_{ik} a_{jl} + \delta_{il} a_{jk} - \delta_{jl} a_{ik}$$

$$[a_{ij}, b_k] = \delta_{jk} b_i - \delta_{ik} b_j; [b_i, b_j] = 0$$

$$[a_{ij}, d_k] = \delta_{jk} d_i - \delta_{ik} d_j; [d_i, d_j] = 0; [d_i, b_j] = 0$$

$$[a_{ij}, f] = 0; [b_k, f] = 0; [d_k, f] = b_k$$

Infinitesimal exponents:

Every infinitesimal exponents are equivalent to zero except one:

$$\Xi(b_i, d_k) = -\Xi(d_k, b_i) = \gamma \delta_{ik}, \qquad \gamma \in \mathbb{R}$$

Calculation of group's exponents ($\hbar = 1$):

The equivalence classes of non equivalent exponents are multiples of a given $\xi_0(r,s)$, with γ multiplicative factor:

$$\xi_0(r,s) = \frac{1}{2} \left(\left\langle u_r \mid W_r v_s \right\rangle - \left\langle v_r \mid W_r u_s \right\rangle + \left\langle \eta_s v_r \mid W_r v_s \right\rangle \right)$$

 ξ_0 bilinear form which holds definition relations

Generators of G

Generators of Galilei's group⁶:

$$\begin{aligned} a_{ij} \rightarrow M_k &= i \epsilon^{ijk} a_{ij} & [M_i, M_j] &= i \epsilon^{ijk} M_k \\ d_j \rightarrow D_j &= i d_j & [M_i, D_j] &= i \epsilon^{ijk} D_k; \ [D_i, D_j] &= 0 \\ b_j \rightarrow B_j &= i b_j & [M_i, B_j] &= i \epsilon^{ijk} B_k; \ [B_i, B_j] &= 0 \\ f \rightarrow H &= if & [M_i, H] &= 0; \ [B_k, H] &= 0; \ [D_k, H] &= i B_k \end{aligned}$$

$$\Xi(b_i, d_j) = 2\xi(b_i, d_j) = \gamma \delta_{ij}, \qquad \xi(b_i, d_j) = \frac{1}{2} \sum \beta_{kl} \rho_k^{(i)} \sigma_l^{(j)}$$
$$e^{i\beta D_j} e^{i\alpha B_i} = e^{-i\gamma \alpha \beta \delta_{ij}} e^{i\alpha B_i} e^{i\beta D_j} \implies [D_i, B_i] = -i\gamma \delta_{ii}$$

 $\exists S$ such that $SD_iS^{-1} = \hat{D_i}$, $SQ_iS^{-1} = Q_i$, $SP_iS^{-1} = P \in \hat{D_i} - \gamma Q_i = 0$. Then:

$$H = H_0 + V(Q), \qquad H_0 = \frac{P^2}{2\gamma}$$

with $\gamma \equiv$ particle mass: for every particle of different mass exists a non-equivalent multiplicator and so a different ray representation of Galilei's group⁷

⁶Bose, 1995; Toller, 1999

⁷Brennich, 1970

Galilei's group in quantum mechanics⁸

$$i\frac{\partial\psi}{\partial t} + \frac{1}{2\mu}\nabla^2\psi = 0$$

Let be ψ solutions of Schrödinger equation, r element of G, Galilei's group:

$$\psi(X) \to \psi'(X') = e^{-i\theta(r,X')} \psi(r^{-1}X)$$
$$\theta(r,X) = \mu \left(\frac{1}{2}t \langle v | v \rangle - \langle v | x \rangle\right)$$

Phase exponent

$$\xi_{q}(r,s) = \langle u_{r} | W_{r}v_{s} \rangle - \frac{\eta_{r}}{2} \langle v_{s} | v_{s} \rangle - \eta_{r} \langle v_{r} | W_{r}v_{s} \rangle$$

$$\xi_{q} = \xi_{0} + \Delta[\zeta], \qquad \zeta(r) = \frac{1}{2} (\eta_{r} \langle v_{r} | v_{r} \rangle - \langle v_{r} | u_{r} \rangle)$$

Representation of G

$$\phi'(k) = U_r \phi(r^{-1}k) = e^{-i(\langle k \mid u \rangle - \frac{\eta}{2\gamma} \langle k \mid k \rangle + \frac{\eta}{2} \gamma \langle v \mid v \rangle - \gamma \langle u \mid v \rangle)} \phi(r^{-1}k)$$

⁸Bargmann, 1954

Galilei's group in (2+1)-dimensions¹⁰

Phase exponents

$$\xi_1(r,s) = \frac{1}{2}D(\nu_r, W_r\nu_s) \equiv \frac{1}{2}(\nu_r \wedge W_r\nu_s), \qquad \Xi(d_i, d_j) \not\equiv 0, \lambda$$

$$\xi_2(r,s) = \theta_r\eta_s - \theta_s\eta_r \qquad \Xi(a_{ij}, f) = S$$

Semi-direct product of $G: G^{\gamma \lambda S} = A^{\gamma S} \times_t H^{\lambda}$

$$A^{\gamma S} = \{(1, \eta, 0, u; \zeta_0, 1, \zeta_2)\} \to (W, \eta, v, u; \zeta_0, \zeta_1, \zeta_2) = (1, \eta, 0, u; \zeta'_0, 1, \zeta'_2) \cdot (W, 0, v, 0; 1, \zeta_1, 1)$$

$$\zeta'_0 = \zeta_0 e^{-i\frac{\gamma}{2}\langle u \mid v \rangle}, \qquad \zeta'_2 = \zeta_2 e^{iS\theta \eta}$$

Representation of G: $U(g) = \chi^{9}(a)V(h), a \in A^{\gamma S}, h \in H^{\lambda}$

Ray representations: $\gamma = \lambda = S = 0$

$$U(W, \eta, v, u) = e^{ip_0\eta} \pi(W, 0, v, 0)$$

$$(U(W, \eta, v, u)f)(p_0, p) = e^{i(\eta p_0 + \langle u | p \rangle)} e^{ia^{\frac{p \wedge v}{p}}} f(p_0 + \langle v | p \rangle, W^{-1}p)$$

⁹Karpilovsky, 1994

¹⁰Grigore, 1996; Bose, 1995

Galilei's group in (2+1)-dimensions¹⁰

Phase exponents

$$\xi_1(r,s) = \frac{1}{2}D(\nu_r, W_r\nu_s) \equiv \frac{1}{2}(\nu_r \wedge W_r\nu_s), \qquad \Xi(d_i, d_j) \not\equiv 0, \lambda$$

$$\xi_2(r,s) = \theta_r\eta_s - \theta_s\eta_r \qquad \Xi(a_{ij}, f) = S$$

Semi-direct product of $G: G^{\gamma \lambda S} = A^{\gamma S} \times_t H^{\lambda}$

$$A^{\gamma S} = \{(1, \eta, 0, u; \zeta_0, 1, \zeta_2)\}$$

$$H^{\lambda} = \{(W, 0, v, 0; 1, \zeta_1, 1)\}$$

$$(W, \eta, v, u; \zeta_0, \zeta_1, \zeta_2) = (1, \eta, 0, u; \zeta'_0, 1, \zeta'_2) \cdot (W, 0, v, 0; 1, \zeta_1, 1)$$

$$\zeta'_0 = \zeta_0 e^{-i\frac{\gamma}{2}\langle u \mid v \rangle}, \qquad \zeta'_2 = \zeta_2 e^{iS\theta \eta}$$

Representation of G: $U(g) = \chi^{9}(a)V(h), a \in A^{\gamma S}, h \in H^{\lambda}$

Ray representations: $\gamma \neq 0$, $\lambda \neq 0$, S = 0

$$U(W, \eta, \nu, u)f)(p) = e^{i\left(\langle u \mid p \rangle + \frac{\gamma}{2} \langle u \mid \nu \rangle + \frac{\eta}{2\gamma} \langle p \mid p \rangle - \frac{\lambda}{2\gamma} (\nu \wedge p) + s\theta\right)} f(W^{-1}(p + \gamma \nu))$$

⁹Karpilovsky, 1994

¹⁰Grigore, 1996; Bose, 1995

Phase exponents

$$\xi_1(r,s) = \frac{1}{2}D(\nu_r, W_r\nu_s) \equiv \frac{1}{2}(\nu_r \wedge W_r\nu_s), \qquad \Xi(d_i, d_j) \not\equiv 0, \lambda$$

$$\xi_2(r,s) = \theta_r \eta_s - \theta_s \eta_r \qquad \Xi(a_{ij}, f) = S$$

Semi-direct product of $G: G^{\gamma \lambda S} = A^{\gamma S} \times_t H^{\lambda}$

$$A^{\gamma S} = \{(1, \eta, 0, u; \zeta_0, 1, \zeta_2)\}$$

$$H^{\lambda} = \{(W, 0, v, 0; 1, \zeta_1, 1)\}$$

$$(W, \eta, v, u; \zeta_0, \zeta_1, \zeta_2) = (1, \eta, 0, u; \zeta'_0, 1, \zeta'_2) \cdot (W, 0, v, 0; 1, \zeta_1, 1)$$

$$\zeta'_0 = \zeta_0 e^{-i\frac{\gamma}{2}\langle u \mid v \rangle}, \qquad \zeta'_2 = \zeta_2 e^{iS\theta \eta}$$

Representation of G: $U(g) = \chi^{9}(a)V(h), a \in A^{\gamma S}, h \in H^{\lambda}$

Ray representations: $\gamma \neq 0$, $\lambda = S = 0$

$$U(W, \eta, v, u)f)(p) = e^{i\left(\langle u \mid p \rangle + \frac{\gamma}{2}\langle u \mid v \rangle + \frac{\eta}{2\gamma}\langle p \mid p \rangle\right)} s(h)f\left(W^{-1}(p + \gamma v)\right)$$

⁹Karpilovsky, 1994

¹⁰Grigore, 1996; Bose, 1995

Galilei's group in (1+1)-dimensions¹¹

$$r = (u_r, v_r, \eta_r)$$

Phase exponent:

$$\begin{split} \xi_{\eta}(r,s) &= \frac{a_{1}}{2}(a_{r}v_{s} - a_{s}v_{r} + \eta_{r}v_{r}v_{s}) + \frac{a_{2}}{2}(u_{r}\eta_{s} - u_{s}\eta_{r} - \eta_{r}\eta_{s}v_{r}) \\ U_{r}U_{s} &= \mathrm{e}^{i\xi_{\eta}(r,s)} U_{rs} \end{split}$$

Time depending generators

$$R_{t}(H) = -\frac{\hbar^{2}}{2m}\partial_{x}^{2} + fx + V_{0} \qquad \frac{d}{dt}R_{t}(X) = KR_{t}([H, X]), R_{t=0}(X) = R(X)$$

$$R_{t}(P) = -i\hbar\partial_{x} - ft \qquad \rightarrow \qquad V_{0} = \frac{a_{3}}{2a_{1}} = R(H) - a_{2}x + \frac{\hbar^{2}}{2a_{1}}\partial_{x}^{2}$$

$$R_{t}(N) = mx - i\hbar t\partial_{x} - \frac{1}{2}ft^{2} \qquad C_{3} = 2HZ_{1} - 2KZ_{2} - P^{2}, m = a_{1}, f = a_{2}$$

¹¹Doebner, Mann, 1995

Galilei's group in (1+1)-dimensions¹¹

$$r = (u_r, v_r, \eta_r)$$

Phase exponent:

$$\begin{split} \xi_{\eta}(r,s) &= \frac{a_{1}}{2}(a_{r}v_{s} - a_{s}v_{r} + \eta_{r}v_{r}v_{s}) + \frac{a_{2}}{2}(u_{r}\eta_{s} - u_{s}\eta_{r} - \eta_{r}\eta_{s}v_{r}) \\ U_{r}U_{s} &= \mathrm{e}^{i\xi_{\eta}(r,s)} U_{rs} \end{split}$$

Time depending generators

$$R_{t}(H) = -\frac{\hbar^{2}}{2m}\partial_{x}^{2} + fx + V_{0} \qquad \frac{d}{dt}R_{t}(X) = KR_{t}([H, X]), R_{t=0}(X) = R(X)$$

$$R_{t}(P) = -i\hbar\partial_{x} - ft \qquad \rightarrow \qquad V_{0} = \frac{a_{3}}{2a_{1}} = R(H) - a_{2}x + \frac{\hbar^{2}}{2a_{1}}\partial_{x}^{2}$$

$$R_{t}(N) = mx - i\hbar t\partial_{x} - \frac{1}{2}ft^{2} \qquad C_{3} = 2HZ_{1} - 2KZ_{2} - P^{2}, m = a_{1}, f = a_{2}$$

¹¹Doebner, Mann, 1995

Galilei's group in (1+1)-dimensions¹¹

$$r = (u_r, v_r, \eta_r)$$

Phase exponent:

$$\xi_{\eta}(r,s) = \frac{a_{1}}{2}(a_{r}v_{s} - a_{s}v_{r} + \eta_{r}v_{r}v_{s}) + \frac{a_{2}}{2}(u_{r}\eta_{s} - u_{s}\eta_{r} - \eta_{r}\eta_{s}v_{r})$$

$$U_{r}U_{s} = e^{i\xi_{\eta}(r,s)}U_{rs}$$

Time depending generators

$$R_{t}(H) = -\frac{\hbar^{2}}{2m}\partial_{x}^{2} + fx + \frac{\mathbf{V}_{0}}{\mathbf{V}_{0}} \qquad \frac{d}{dt}R_{t}(X) = KR_{t}([H, X]), R_{t=0}(X) = R(X)$$

$$R_{t}(P) = -i\hbar\partial_{x} - ft \qquad \rightarrow \qquad \mathbf{V}_{0} = \frac{a_{3}}{2a_{1}} = R(H) - a_{2}x + \frac{\hbar^{2}}{2a_{1}}\partial_{x}^{2}$$

$$R_{t}(N) = mx - i\hbar t\partial_{x} - \frac{1}{2}ft^{2} \qquad C_{3} = 2HZ_{1} - 2KZ_{2} - P^{2}, m = a_{1}, f = a_{2}$$

¹¹Doebner, Mann, 1995

Extension of Doebner and Mann approach

► Doebner-Mann → higher dimensions

$$R_t(H) = R(H), R_t(P_i) = R(P_i), R_t(M) = R(M)$$

 $R_t(N_i) = -iR(P_i)t + R(N_i)$

$$\gamma \neq 0, \lambda \neq 0, S = 0$$

$$N_1 = -ip_1t + \gamma \frac{\partial}{\partial p_1} - i\frac{\lambda}{2\gamma}p_2$$

$$N_2 = -ip_2t + \gamma \frac{\partial}{\partial p_2} - i\frac{\lambda}{2\gamma}p_1$$

$$\gamma \neq 0, \lambda = S = 0$$

$$N_i = -ip_i t + \mu \frac{\partial}{\partial p_i}$$

$$(U_t(r)f)(p) = e^{-i\langle p \mid \nu_r \rangle t} (U(r)f)(p)$$

$$(U_t(r)U_t(s)f)(p) = \phi(r, s, t)\omega(r, s)(U_t(rs)f)(p)$$

$$\phi(r, s, t) = e^{-i\gamma\langle \nu_r \mid W_r \nu_s \rangle t}$$

Bargmann's phase exponent

$$\xi_0(r,s) = \frac{1}{2} \left(\langle u_r | W_r v_s \rangle - \langle v_r | W_r u_s \rangle + \langle \eta_s v_r | W_r v_s \rangle \right)$$

$$\begin{cases} r = (1,0,0,u) \\ s = (1,0,v,0) \end{cases} \rightarrow U(r)U(s) = e^{i\xi(r,s)} U(rs) \rightarrow \begin{cases} \xi(r,s) = \frac{\gamma}{2} \langle u | v \rangle \\ rs = (1,0,v,u) \end{cases}$$

$$\phi(r,s,t) = e^{-i\gamma\langle v_r | W_r v_s \rangle t}$$

$$\begin{cases} r = (1, 0, v_r, 0) \\ s = (1, 0, v_s, 0) \end{cases} \rightarrow (U_t(r)U_t(s)f)(p) = e^{i\xi(r,s)} \phi(r, s, t)U(rs) \rightarrow \begin{cases} \phi(r, s, t) = e^{-i\gamma\langle v_r \mid v_s \rangle t} \\ rs = (1, 0, v_r + v_s, 0) \end{cases}$$

$$\phi(r,s,t) = e^{-i\gamma\langle v_r | W_r v_s \rangle t}$$

$$\begin{cases} r = (1, 0, v_r, 0) \\ s = (1, 0, v_s, 0) \end{cases} \rightarrow (U_t(r)U_t(s)f)(p) = e^{i\xi(r,s)} \phi(r, s, t)U(rs) \rightarrow \\ \rightarrow \begin{cases} \phi(r, s, t) = e^{-i\gamma\langle v_r \mid v_s \rangle t} \\ rs = (1, 0, v_r + v_s, 0) \end{cases}$$

$$\sum_{v_0} \sum_{v_0} \sum_{v_0} \sum_{v_0} \left(\frac{1}{2} \gamma v^2 + \frac{1}{2} \gamma v_0^2 + \gamma \langle v \mid v_0 \rangle \right)$$

$$\phi(r,s,t) = e^{-i\gamma\langle v_r | W_r v_s \rangle t}$$

$$\begin{cases} r = (1, 0, v_r, 0) \\ s = (1, 0, v_s, 0) \end{cases} \rightarrow (U_t(r)U_t(s)f)(p) = e^{i\xi(r,s)} \phi(r, s, t)U(rs) \rightarrow \\ \rightarrow \begin{cases} \phi(r, s, t) = e^{-i\gamma\langle v_r \mid v_s \rangle t} \\ rs = (1, 0, v_r + v_s, 0) \end{cases}$$

$$\sum_{v_0} \sum_{v_0} \sum_{v_0} \sum_{v_0} \left(\frac{1}{2} \gamma v^2 + \frac{1}{2} \gamma v_0^2 + \gamma \langle v \mid v_0 \rangle \right)$$

$$\phi(r,s,t) = e^{-i\gamma\langle v_r | W_r v_s \rangle t}$$

$$\begin{cases} r = (1, 0, v_r, 0) \\ s = (1, 0, v_s, 0) \end{cases} \rightarrow (U_t(r)U_t(s)f)(p) = e^{i\xi(r,s)} \phi(r, s, t)U(rs) \rightarrow \begin{cases} \phi(r, s, t) = e^{-i\gamma\langle v_r \mid v_s \rangle t} \\ rs = (1, 0, v_r + v_s, 0) \end{cases}$$

$$\Sigma \xrightarrow{r} \Sigma_r \xrightarrow{s} \Sigma_s$$

$$\gamma \langle v_r | v_s \rangle = (\gamma \langle v | v_0 \rangle)_{rs} - [(\gamma \langle v | v_0 \rangle)_r + (\gamma \langle v | v_0 \rangle)_s]$$

Conclusion

Application of Bargmann's ray representation theory to Galilei's group in:

- \circ (3 + 1)-dimensions;
- (2+1)-dimensions;
- \bullet (1+1)-dimensions.
 - Extension of Doebner and Mann approach to higher dimensions;
 - Calculation of time depending ray representation of Galilei's group in (2 + 1)- and (3 + 1)-dimensions.

Future developments:

 In order to develop phisycal application of Wawrzycki's generalization of Bargmann's theory¹², we'll study the possibility to extend the Doebner and Mann approach to Poincaré group.

