bygfoot/src/maths.c

206 lines
5.1 KiB
C
Raw Normal View History

2005-10-20 17:45:00 +02:00
/*
2005-11-26 17:52:51 +01:00
maths.c
2005-10-20 17:45:00 +02:00
Bygfoot Football Manager -- a small and simple GTK2-based
football management game.
http://bygfoot.sourceforge.net
Copyright (C) 2005 Gyözö Both (gyboth@bygfoot.com)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
2004-12-23 13:58:39 +01:00
#include "maths.h"
#include "misc.h"
2005-04-04 12:36:04 +02:00
#include "variables.h"
2004-12-23 13:58:39 +01:00
/**
Generate a Gauss-distributed (pseudo)random number.
"By Box and Muller, and recommended by Knuth".
@return A Gauss-distributed random number.
*/
2005-04-04 12:36:04 +02:00
gdouble
math_gaussrand(void)
2004-12-23 13:58:39 +01:00
{
2005-04-04 12:36:04 +02:00
static gdouble V1, V2, S;
2004-12-23 13:58:39 +01:00
static gint phase = 0;
2005-04-04 12:36:04 +02:00
gdouble X;
2004-12-23 13:58:39 +01:00
if(phase == 0) {
do {
2005-04-04 12:36:04 +02:00
gdouble U1 = g_rand_double(rand_generator);
gdouble U2 = g_rand_double(rand_generator);
2004-12-23 13:58:39 +01:00
V1 = 2 * U1 - 1;
V2 = 2 * U2 - 1;
S = V1 * V1 + V2 * V2;
} while(S >= 1 || S == 0);
X = V1 * sqrt(-2 * log(S) / S);
} else
X = V2 * sqrt(-2 * log(S) / S);
phase = 1 - phase;
return X;
}
/**
Generate a Gauss-distributed random number within given boundaries
using math_gaussrand().
2004-12-23 13:58:39 +01:00
Expectation value of the distribution is (upper + lower) / 2,
the variance is so that the number is between the boundaries with probability
99,7 %. If the number isn't between the boundaries, we cut off.
@param lower Lower cutoff boundary.
@param upper Upper cutoff boundary.
@return A Gauss-distributed number
*/
2005-04-04 12:36:04 +02:00
gdouble
math_gauss_dist(gdouble lower, gdouble upper)
2004-12-23 13:58:39 +01:00
{
2005-04-04 12:36:04 +02:00
gdouble result;
2004-12-23 13:58:39 +01:00
2005-04-04 12:36:04 +02:00
result = (upper - lower) / 6 * math_gaussrand()
+ (upper + lower) / 2;
2004-12-23 13:58:39 +01:00
if(result < lower)
result = lower;
if(result > upper)
result = upper;
return result;
}
/**
Get a certain part of an integer number.
If 'place' is between 1 and 9, the 'place'th digit beginning
from the right is returned, e.g. if the number = 1234 and
place = 2, the function returns 3.
If 'place' is between 10 and 19, say 10 + x, the first
'x' digits are returned, e.g. number = 8765 and place = 12 leads to
return value 87.
If 'place' is between 20 and 29, say 20 + x, the last
'x' digits are returned, e.g. number = 4869 and place = 22
leads to return value 69.
@param value The number which gets scrutinized.
@param place The number telling the function which part of 'value' to return.
@return A part of the integer 'value'.
*/
gint
math_get_place(gint value, gint place)
2004-12-23 13:58:39 +01:00
{
if(place < 10)
return (value % (gint)powf(10, place) -
value % (gint)powf(10, place - 1)) /
(gint)powf(10, place - 1);
else if(place < 20)
{
while(value >= (gint)powf(10, place % 10))
value = (value - value % 10) / 10;
return value;
}
return value % (gint)powf(10, place % 10);
}
/**
Round an integer with given precision.
If places > 0, round with precision 'places', e.g.
number = 124566 and places = 2 leads to return value
124600.
If places < 0, precision is length of 'number' minus
'places', e.g. number = 654987 and places = -2 leads to return
value 65000.
@param number The number to be rounded.
@param places The precision.
@return The rounded integer.
*/
gint
math_round_integer(gint number, gint places)
2004-12-23 13:58:39 +01:00
{
gint length = 0;
gfloat copy = (gfloat)number;
if(places > 0)
return (gint)rint( (gfloat)number / powf(10, places) ) *
powf(10, places);
while(copy >= 1)
{
copy /= 10;
length++;
}
return (gint)rint( (gfloat)number / powf(10, length + places) ) *
powf(10, length + places);
}
/** Generate a permutation of integers and write it to 'array'.
@param array The integer array we store the permutation in.
It must have size at least end - start - 1.
@param start The integer to start with.
@param end The integer to end with. */
void
math_generate_permutation(gint *array, gint start, gint end)
{
gint i;
for(i = start; i < end + 1; i++)
array[i - start] = i;
for(i=0;i<end - start;i++)
misc_swap_int(&array[i], &array[math_rndi(i, end - start)]);
}
2005-01-09 21:21:22 +01:00
/** This function tells us how many teams from 'number' teams
have to be left away to obtain a power of 2. */
gint
math_get_bye_len(gint number)
{
gint i;
for(i=0;i<20;i++)
if((gint)powf(2, i) >= number)
2005-01-09 21:21:22 +01:00
break;
return (gint)powf(2, i) - number;
2005-01-09 21:21:22 +01:00
}
/** Return the sum of the integers in the array.
@param array The integer array.
@param max The size of the array.
@return The sum of all the integers in the array. */
gint
math_sum_int_array(const gint *array, gint max)
2005-01-09 21:21:22 +01:00
{
gint i, sum = 0;
for(i=0;i<max;i++)
sum += array[i];
return sum;
}