VoiceCraft/steps/trainer_utils.py

629 lines
27 KiB
Python

import torch
import math
import torch.distributed as dist
from torch.utils.data.sampler import Sampler
import copy
import numpy as np
from typing import List
from scipy.stats import lognorm
import logging
class StatefulDistributedSampler(Sampler[int]):
def __init__(self, dataset, batch_size, num_replicas = None, rank = None, shuffle = True, seed = 0, drop_last = False):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
if rank >= num_replicas or rank < 0:
raise ValueError(
"Invalid rank {}, rank should be in the interval"
" [0, {}]".format(rank, num_replicas - 1))
self.dataset = dataset
self.batch_size = batch_size
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.cur_epoch = 0
self.drop_last = drop_last
# If the dataset length is evenly divisible by # of replicas, then there
# is no need to drop any data, since the dataset will be split equally.
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
# Split to nearest available length that is evenly divisible.
# This is to ensure each rank receives the same amount of data when
# using this Sampler.
self.num_samples = math.ceil(
(len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type]
)
else:
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
self.seed = seed
self.continue_flag = False
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
r"""
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
use a different random ordering for each epoch. Otherwise, the next iteration of this
sampler will yield the same ordering.
Args:
epoch (int): Epoch number.
"""
self.epoch = epoch
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[:self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
self.indices = indices
if self.continue_flag:
self.indices = self.indices[int(self.cur_step*self.batch_size):]
self.num_samples = len(self.indices)
self.continue_flag = False
def __iter__(self):
for idx in self.indices:
yield idx
def set_epoch_resume(self, epoch, cur_step):
self.epoch = epoch
self.cur_step = cur_step
self.continue_flag = True
class StatefulSampler(Sampler):
def __init__(self, data_source_length, batch_size, use_random=True, seed=1, epoch=0):
self.use_random = use_random
self.data_source_length = data_source_length
self.num_samples = self.data_source_length
self.batch_size = batch_size
self.continue_flag = False
self.seed = seed
self.epoch = epoch
self.cur_step = 0
def __len__(self):
return self.num_samples
def __iter__(self):
for idx in self.indices:
yield idx
def set_epoch(self, epoch):
self.epoch = epoch
if self.use_random:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
self.indices = torch.randperm(self.data_source_length, generator=g).tolist() # type: ignore[arg-type]
else:
self.indices = list(range(self.data_source_length)) # type: ignore[arg-type]
if self.continue_flag == True:
self.continue_flag = False
self.indices = self.indices[int(self.cur_step*self.batch_size):]
self.num_samples = len(self.indices)
def set_epoch_resume(self, epoch, cur_step):
self.epoch = epoch
self.cur_step = cur_step
self.continue_flag = True
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def print_model_info(model, print_model = False, print_params = True):
if print_model:
logging.info(model)
if print_params:
all_params = {}
for name, p in model.named_parameters():
name = name.split(".")[0]
if name in all_params:
all_params[name] += p.numel()
else:
all_params[name] = p.numel()
logging.info("num of parameters of each components:")
for name in all_params:
logging.info(f"{name}: {all_params[name]/1000000.:.2f}m")
class DistributedDynamicBatchSampler(Sampler):
"""
modified from SpeechBrian, https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/dataio/sampler.py#L307
This BatchSampler batches examples together by grouping them by their length.
Every example in the batch have approximately the same length and
thus padding is minimized.
This enables faster training on datasets
where length of examples can vary significantly (e.g Librispeech).
Inspired by: https://www.tensorflow.org/api_docs/python/tf/data/experimental/bucket_by_sequence_length
Dynamic batching is performed by specifying a max_batch_length which is the
upper limit for the sum of the length of examples in a batch:
e.g., if ex1 has length 4, ex2 length 5 and if max_batch_length is set to 6
ex1 and ex2 will be placed, alone, in two distinct batches.
Length for each example can be obtained in two manners.
If the input dataset is a DynamicItemDataset it can be obtained by specifying a
length_func. Default assumes a "duration" entry is in the annotation.
Length for each example can also be passed to this class upon instantiation
by specifying a list containing the length for each example and passing it to
lengths_list.
Examples are grouped together by defining a set of possible discrete intervals
(buckets). Examples whose length fall into these intervals can be batched together.
The number of buckets can be specified by using the arg num_buckets.
There is usually an optimal range for the value of this argument.
If num_buckets == 1, all examples can be batched together. You have maximum randomization
but your training speed will be slower due to the fact that a large amount of the values will be padding
as long and short examples can be batched together.
As the number of buckets grows only examples with similar
length can be grouped together.
This trades-off speed with randomization.
TLDR: Low number -> better randomization, High number -> faster training.
NOTE THAT: if set too high the training speed will decrease. If num_buckets -> number of examples in the dataset the batch size
will be small impacting training speed and possibly performance.
The buckets can also be specified by passing a list to the bucket_boundaries
argument instead of specifying a left_bucket_length and a bucket_length_multiplier.
Example
-------
>>> import torch
>>> import speechbrain as sb
>>> from speechbrain.dataio.sampler import DynamicBatchSampler
>>> from speechbrain.dataio.dataset import DynamicItemDataset
>>> from speechbrain.dataio.dataloader import SaveableDataLoader
>>> from speechbrain.dataio.batch import PaddedBatch
>>> import numpy as np
>>> item_lengths = sorted([np.random.randint(10, 100) for x in range(20)])
>>> dataset = {"ex_{}".format(x) : {"wav" :torch.randn(x)} for x in item_lengths}
>>> dataset = DynamicItemDataset(dataset)
>>> dataset.set_output_keys(["wav"])
>>> length_func = lambda x : len(x) # trivial in this example
>>> bsampler = DynamicBatchSampler(dataset, 20, 4, length_func, shuffle=False, batch_ordering='descending')
>>> dataloader = SaveableDataLoader(dataset, batch_sampler=bsampler, collate_fn=PaddedBatch)
>>> for i, b in enumerate(dataloader):
... data, length = b["wav"]
>>> assert data.shape[-1] == max(item_lengths)
Arguments
---------
dataset : torch.utils.data.Dataset
Pytorch Dataset from which elements will be sampled.
max_batch_length : int
Upper limit for the sum of the length of examples in a batch.
Should be chosen based on your GPU memory.
num_buckets : int
Number of discrete buckets used to group examples together.
If num_buckets == 1, all examples can be batched together. As the number of buckets grows only examples with similar
length can be grouped together. This trades-off speed with randomization.
Low number -> better randomization, High number -> faster training.
However if set too high the training speed will decrease. If num_buckets -> number of examples in the dataset the batch size
will be small impacting training speed and possibly performance.
NOTE: you have either to specify manually the bucket_boundaries or the number of buckets.
length_func : callable
Function used to get length of each example from the dataset.
This argument can be used only when the dataset is a Speechbrain DynamicItemDataset object.
Can be anything: e.g. lambda x: x["duration"]*16000 returns number of samples
if duration key in the annotation is in seconds and the file has 16kHz sampling freq.
shuffle : bool
Whether or not shuffle examples between each epoch.
batch_ordering : string
If ``random``, batches are randomly permuted; otherwise ``ascending`` or ``descending`` sorted by length.
max_batch_ex: int
If set, it limits the maximum number of examples that can be in a batch superseeding max_batch_length
in instances where the amount of examples will exceeed the value specified here.
E.g. you have a lot of short examples and the batch size for those will be too high, you can use this argument
to limit the batch size for these short examples.
bucket_boundaries : list
Overrides bucket_length_multiplier and left_bucket_length by specifying manually
the buckets right boundaries.
lengths_list: list
Overrides length_func by passing a list containing the length of each example
in the dataset. This argument must be set when the dataset is a plain
Pytorch Dataset object and not a DynamicItemDataset object as length_func
cannot be used on Pytorch Datasets.
epoch : int
The epoch to start at.
drop_last : bool
If ``True``, the sampler will drop the last examples which
have not been grouped.
verbose: bool
If ``True``, log also the stats for each batch at the first epoch.
"""
def __init__(
self,
dataset,
args,
num_replicas = None,
rank = None,
shuffle = True,
seed = 0,
drop_last = False,
length_func=lambda x: x["duration"],
batch_ordering: str = "random",
max_batch_ex: int = None,
bucket_boundaries: List[int] = [],
lengths_list: List[int] = None,
epoch: int = 0,
verbose: bool = False,
):
self.args = args
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
if rank >= num_replicas or rank < 0:
raise ValueError(
"Invalid rank {}, rank should be in the interval"
" [0, {}]".format(rank, num_replicas - 1))
self.num_replicas = num_replicas
self.rank = rank
max_batch_length = self.args.max_num_tokens if dataset.split == "train" else self.args.val_max_num_tokens
logging.info(f"max_num_tokens per GPU for {dataset.split} split: {max_batch_length}")
num_buckets = self.args.num_buckets
#############
self._dataset = dataset
self._ex_lengths = {}
# ex_ids = self._dataset.data_ids
self.verbose = verbose
# We do not put a default on num_buckets to encourage users to play with this parameter
if num_buckets is None and len(bucket_boundaries) == 0:
raise RuntimeError(
"Please specify either num_buckets or bucket boundaries."
"Check the docs, and/or the tutorial !"
)
assert lengths_list != None
max_len = int(self.args.audio_max_length * self.args.encodec_sr)
lengths_list = [min(l, max_len) for l in lengths_list] # replace all utt whose length is longer than max_len to max_len, will also do this in __getitem__ in dataset
for indx in range(len(lengths_list)):
self._ex_lengths[str(indx)] = lengths_list[indx]
# if lengths_list is not None:
# # take length of examples from this argument and bypass length_key
# for indx in range(len(lengths_list)):
# self._ex_lengths[str(indx)] = lengths_list[indx]
# else:
# # use length func
# if not isinstance(dataset, DynamicItemDataset):
# raise NotImplementedError(
# "Dataset should be a Speechbrain DynamicItemDataset when using length function"
# )
# for indx in range(len(self._dataset)):
# self._ex_lengths[str(indx)] = length_func(
# self._dataset.data[ex_ids[indx]]
# )
if len(bucket_boundaries) > 0:
if not all([x >= 0 for x in bucket_boundaries]):
raise ValueError(
"All elements in bucket boundaries should be non-negative (>= 0)."
)
if not len(set(bucket_boundaries)) == len(bucket_boundaries):
raise ValueError(
"Bucket_boundaries should not contain duplicates."
)
np.testing.assert_array_equal(
np.array(bucket_boundaries),
np.array(sorted(bucket_boundaries)),
err_msg="The arg bucket_boundaries should be an ascending sorted list of non negative values values!",
)
self._bucket_boundaries = np.array(sorted(bucket_boundaries))
else:
# use num_buckets
self._bucket_boundaries = np.array(
self._get_boundaries_through_warping(
# max_batch_length=max_batch_length,
max_batch_length=max(lengths_list),
num_quantiles=num_buckets,
)
)
self._max_batch_length = max_batch_length
self._shuffle_ex = shuffle
self._batch_ordering = batch_ordering
self._seed = seed
self._drop_last = drop_last
if max_batch_ex is None:
max_batch_ex = np.inf
self._max_batch_ex = max_batch_ex
# Calculate bucket lengths - how often does one bucket boundary fit into max_batch_length?
self._bucket_lens = [
max(1, int(max_batch_length / self._bucket_boundaries[i]))
for i in range(len(self._bucket_boundaries))
] + [1]
self._epoch = epoch
self._cur_step = 0
self.continue_flag = False
self._generate_batches()
self.num_samples = int(math.floor(len(self._batches) / self.num_replicas))
self.total_size = int(self.num_samples * self.num_replicas)
self._replica_batches = self._batches[self.rank:self.total_size:self.num_replicas]
assert len(self._replica_batches) == self.num_samples, f"len(self._batches): {len(self._batches)}, self.total_size: {self.total_size}, self.num_samples: {self.num_samples},len(self._replica_batches): {len(self._replica_batches)}"
logging.info(f"len(self._batches): {len(self._batches)}")
logging.info(f"self.num_replicas: {self.num_replicas}")
logging.info(f"num of batches on each replica: {self.num_samples}")
def get_durations(self, batch):
"""Gets durations of the elements in the batch."""
return [self._ex_lengths[str(idx)] for idx in batch]
def _get_boundaries_through_warping(
self, max_batch_length: int, num_quantiles: int,
) -> List[int]:
# NOTE: the following lines do not cover that there is only one example in the dataset
# warp frames (duration) distribution of train data
logging.info("Batch quantisation in latent space")
# linspace set-up
num_boundaries = num_quantiles + 1
# create latent linearly equal spaced buckets
latent_boundaries = np.linspace(
1 / num_boundaries, num_quantiles / num_boundaries, num_quantiles,
)
# get quantiles using lognormal distribution
quantiles = lognorm.ppf(latent_boundaries, 1)
# scale up to to max_batch_length
bucket_boundaries = quantiles * max_batch_length / quantiles[-1]
# compute resulting bucket length multipliers
length_multipliers = [
bucket_boundaries[x + 1] / bucket_boundaries[x]
for x in range(num_quantiles - 1)
]
# logging
logging.debug(
"Latent bucket boundary - buckets: {} - length multipliers: {}".format(
list(map("{:.2f}".format, bucket_boundaries)),
list(map("{:.2f}".format, length_multipliers)),
)
)
return list(sorted(bucket_boundaries))
def _permute_batches(self):
if self._batch_ordering == "random":
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self._seed + self._epoch) # since the random seed is based on self._seed and self._epoch, it should be the same for different processes when using DDP, and therefore the generated order should be the same across different process, this is important, because each replica will only take a portion of it, we want to make sure they take a non-overlapping portion, and all of them constitute the entire dataset
sampler = torch.randperm(
len(self._batches), generator=g
).tolist() # type: ignore
tmp = []
for idx in sampler:
tmp.append(self._batches[idx])
self._batches = tmp
elif self._batch_ordering == "ascending":
self._batches = sorted(
self._batches,
key=lambda x: max([self._ex_lengths[str(idx)] for idx in x]),
)
elif self._batch_ordering == "descending":
self._batches = sorted(
self._batches,
key=lambda x: max([self._ex_lengths[str(idx)] for idx in x]),
reverse=True,
)
else:
raise NotImplementedError
def _generate_batches(self):
logging.info("DynamicBatchSampler: Generating dynamic batches")
if self._shuffle_ex:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self._seed + self._epoch) # since the random seed is based on self._seed and self._epoch, it should be the same for different processes when using DDP, and therefore the generated order should be the same across different process, this is important, because each replica will only take a portion of it, we want to make sure they take a non-overlapping portion, and all of them constitute the entire dataset
sampler = torch.randperm(len(self._dataset), generator=g).tolist() # type: ignore
# pyp note: this is actually randomly permoted indices
else:
# take examples as they are: e.g. they have been sorted
sampler = range(len(self._dataset)) # type: ignore
self._batches = []
bucket_batches = [[] for i in self._bucket_lens]
stats_tracker = [
{"min": np.inf, "max": -np.inf, "tot": 0, "n_ex": 0}
for i in self._bucket_lens
]
for idx in sampler:
# length of pre-sampled audio
item_len = self._ex_lengths[str(idx)]
# bucket to fill up most padding
bucket_id = np.searchsorted(self._bucket_boundaries, item_len)
# fill audio's duration into that bucket
bucket_batches[bucket_id].append(idx)
stats_tracker[bucket_id]["min"] = min(
stats_tracker[bucket_id]["min"], item_len
)
stats_tracker[bucket_id]["max"] = max(
stats_tracker[bucket_id]["max"], item_len
)
stats_tracker[bucket_id]["tot"] += item_len
stats_tracker[bucket_id]["n_ex"] += 1
# track #samples - why not duration/#frames; rounded up?
# keep track of durations, if necessary
if (
len(bucket_batches[bucket_id]) >= self._bucket_lens[bucket_id]
or len(bucket_batches[bucket_id]) >= self._max_batch_ex
):
self._batches.append(bucket_batches[bucket_id])
bucket_batches[bucket_id] = []
# keep track of durations
# Dump remaining batches
if not self._drop_last:
for batch in bucket_batches:
if batch:
self._batches.append(batch)
self._permute_batches() # possibly reorder batches
if self._epoch == 0: # only log at first epoch
# frames per batch & their padding remaining
boundaries = [0] + self._bucket_boundaries.tolist()
for bucket_indx in range(len(self._bucket_boundaries)):
try:
num_batches = stats_tracker[bucket_indx]["tot"] // (
self._max_batch_length
)
pad_factor = (
stats_tracker[bucket_indx]["max"]
- stats_tracker[bucket_indx]["min"]
) / (
stats_tracker[bucket_indx]["tot"]
/ stats_tracker[bucket_indx]["n_ex"]
)
except ZeroDivisionError:
num_batches = 0
pad_factor = 0
logging.debug(
(
"DynamicBatchSampler: Bucket {} with boundary {:.1f}-{:.1f} and "
+ "batch_size {}: Num Examples {:.1f}, Num Full Batches {:.3f}, Pad Factor {:.3f}."
).format(
bucket_indx,
boundaries[bucket_indx],
boundaries[bucket_indx + 1],
self._bucket_lens[bucket_indx],
stats_tracker[bucket_indx]["n_ex"],
num_batches,
pad_factor * 100,
)
)
if self.verbose:
batch_stats = {
"tot_frames": [],
"tot_pad_frames": [],
"pad_%": [],
}
for batch in self._batches:
tot_frames = sum(
[self._ex_lengths[str(idx)] for idx in batch]
)
batch_stats["tot_frames"].append(tot_frames)
max_frames = max(
[self._ex_lengths[str(idx)] for idx in batch]
)
tot_pad = sum(
[
max_frames - self._ex_lengths[str(idx)]
for idx in batch
]
)
batch_stats["tot_pad_frames"].append(tot_pad)
batch_stats["pad_%"].append(tot_pad / tot_frames * 100)
padding_details = "Batch {} with {:.1f} frames with {} files - {:.1f} padding, {:.2f} (%) of total."
padding_details = "DynamicBatchSampler: " + padding_details
for i in range(len(self._batches)):
logging.debug(
padding_details.format(
i,
batch_stats["tot_frames"][i],
len(self._batches[i]),
batch_stats["tot_pad_frames"][i],
batch_stats["pad_%"][i],
)
)
def __iter__(self):
for batch in self._replica_batches:
yield batch
# if self._shuffle_ex: # re-generate examples if ex_ordering == "random"
# self._generate_batches()
# if self._batch_ordering == "random":
# # we randomly permute the batches only --> faster
# self._permute_batches()
def set_epoch(self, epoch):
"""
You can also just access self.epoch, but we maintain this interface
to mirror torch.utils.data.distributed.DistributedSampler
"""
self._epoch = epoch
self._generate_batches()
self._replica_batches = self._batches[self.rank:self.total_size:self.num_replicas]
self.num_samples = int(math.floor(len(self._batches) / self.num_replicas))
assert len(self._replica_batches) == self.num_samples, f"len(self._batches): {len(self._batches)}, self.total_size: {self.total_size}, self.num_samples: {self.num_samples},len(self._replica_batches): {len(self._replica_batches)}"
if self.continue_flag:
self.continue_flag = False
self._replica_batches = self._replica_batches[self._cur_step:]
self.num_samples = len(self._replica_batches)
def __len__(self):
return self.num_samples
def set_epoch_resume(self, epoch, cur_step):
self.continue_flag = True
self._epoch = epoch
self._cur_step = cur_step