1406 lines
49 KiB
Python
1406 lines
49 KiB
Python
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/scaling.py
|
|
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import collections
|
|
import logging
|
|
import random
|
|
import math
|
|
from functools import reduce
|
|
from itertools import repeat
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch import Tensor
|
|
from torch.nn import Embedding as ScaledEmbedding
|
|
|
|
# from valle.utils import Transpose
|
|
|
|
class Transpose(nn.Identity):
|
|
"""(N, T, D) -> (N, D, T)"""
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
return input.transpose(1, 2)
|
|
|
|
class ActivationBalancerFunction(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
x: Tensor,
|
|
scale_factor: Tensor,
|
|
sign_factor: Optional[Tensor],
|
|
channel_dim: int,
|
|
) -> Tensor:
|
|
if channel_dim < 0:
|
|
channel_dim += x.ndim
|
|
ctx.channel_dim = channel_dim
|
|
xgt0 = x > 0
|
|
if sign_factor is None:
|
|
ctx.save_for_backward(xgt0, scale_factor)
|
|
else:
|
|
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
|
|
if len(ctx.saved_tensors) == 3:
|
|
xgt0, scale_factor, sign_factor = ctx.saved_tensors
|
|
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
|
scale_factor = scale_factor.unsqueeze(-1)
|
|
sign_factor = sign_factor.unsqueeze(-1)
|
|
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
|
else:
|
|
xgt0, scale_factor = ctx.saved_tensors
|
|
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
|
scale_factor = scale_factor.unsqueeze(-1)
|
|
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
|
neg_delta_grad = x_grad.abs() * factor
|
|
return (
|
|
x_grad - neg_delta_grad,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
|
|
|
|
def _compute_scale_factor(
|
|
x: Tensor,
|
|
channel_dim: int,
|
|
min_abs: float,
|
|
max_abs: float,
|
|
gain_factor: float,
|
|
max_factor: float,
|
|
) -> Tensor:
|
|
if channel_dim < 0:
|
|
channel_dim += x.ndim
|
|
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
|
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
|
|
|
|
if min_abs == 0.0:
|
|
below_threshold = 0.0
|
|
else:
|
|
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
|
|
# x_abs)_mean , min_abs.
|
|
below_threshold = (
|
|
(min_abs - x_abs_mean) * (gain_factor / min_abs)
|
|
).clamp(min=0, max=max_factor)
|
|
|
|
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
|
|
min=0, max=max_factor
|
|
)
|
|
|
|
return below_threshold - above_threshold
|
|
|
|
|
|
def _compute_sign_factor(
|
|
x: Tensor,
|
|
channel_dim: int,
|
|
min_positive: float,
|
|
max_positive: float,
|
|
gain_factor: float,
|
|
max_factor: float,
|
|
) -> Tensor:
|
|
if channel_dim < 0:
|
|
channel_dim += x.ndim
|
|
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
|
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
|
|
if min_positive == 0.0:
|
|
factor1 = 0.0
|
|
else:
|
|
# 0 if proportion_positive >= min_positive, else can be
|
|
# as large as max_factor.
|
|
factor1 = (
|
|
(min_positive - proportion_positive) * (gain_factor / min_positive)
|
|
).clamp_(min=0, max=max_factor)
|
|
|
|
if max_positive == 1.0:
|
|
factor2 = 0.0
|
|
else:
|
|
# 0 if self.proportion_positive <= max_positive, else can be
|
|
# as large as -max_factor.
|
|
factor2 = (
|
|
(proportion_positive - max_positive)
|
|
* (gain_factor / (1.0 - max_positive))
|
|
).clamp_(min=0, max=max_factor)
|
|
sign_factor = factor1 - factor2
|
|
# require min_positive != 0 or max_positive != 1:
|
|
assert not isinstance(sign_factor, float)
|
|
return sign_factor
|
|
|
|
|
|
class ActivationScaleBalancerFunction(torch.autograd.Function):
|
|
"""
|
|
This object is used in class ActivationBalancer when the user specified
|
|
min_positive=0, max_positive=1, so there are no constraints on the signs
|
|
of the activations and only the absolute value has a constraint.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
x: Tensor,
|
|
sign_factor: Tensor,
|
|
scale_factor: Tensor,
|
|
channel_dim: int,
|
|
) -> Tensor:
|
|
if channel_dim < 0:
|
|
channel_dim += x.ndim
|
|
ctx.channel_dim = channel_dim
|
|
xgt0 = x > 0
|
|
ctx.save_for_backward(xgt0, sign_factor, scale_factor)
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
|
|
xgt0, sign_factor, scale_factor = ctx.saved_tensors
|
|
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
|
sign_factor = sign_factor.unsqueeze(-1)
|
|
scale_factor = scale_factor.unsqueeze(-1)
|
|
|
|
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
|
neg_delta_grad = x_grad.abs() * factor
|
|
return (
|
|
x_grad - neg_delta_grad,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
|
|
|
|
class RandomClampFunction(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
x: Tensor,
|
|
min: Optional[float],
|
|
max: Optional[float],
|
|
prob: float,
|
|
reflect: float,
|
|
) -> Tensor:
|
|
x_clamped = torch.clamp(x, min=min, max=max)
|
|
mask = torch.rand_like(x) < prob
|
|
ans = torch.where(mask, x_clamped, x)
|
|
if x.requires_grad:
|
|
ctx.save_for_backward(ans == x)
|
|
ctx.reflect = reflect
|
|
if reflect != 0.0:
|
|
ans = ans * (1.0 + reflect) - (x * reflect)
|
|
return ans
|
|
|
|
@staticmethod
|
|
def backward(
|
|
ctx, ans_grad: Tensor
|
|
) -> Tuple[Tensor, None, None, None, None]:
|
|
(is_same,) = ctx.saved_tensors
|
|
x_grad = ans_grad * is_same.to(ans_grad.dtype)
|
|
reflect = ctx.reflect
|
|
if reflect != 0.0:
|
|
x_grad = x_grad * (1.0 + reflect) - (ans_grad * reflect)
|
|
return x_grad, None, None, None, None
|
|
|
|
|
|
def random_clamp(
|
|
x: Tensor,
|
|
min: Optional[float] = None,
|
|
max: Optional[float] = None,
|
|
prob: float = 0.5,
|
|
reflect: float = 0.0,
|
|
):
|
|
return RandomClampFunction.apply(x, min, max, prob, reflect)
|
|
|
|
|
|
def random_cast_to_half(x: Tensor, min_abs: float = 5.0e-06) -> Tensor:
|
|
"""
|
|
A randomized way of casting a floating point value to half precision.
|
|
"""
|
|
if x.dtype == torch.float16:
|
|
return x
|
|
x_abs = x.abs()
|
|
is_too_small = x_abs < min_abs
|
|
# for elements where is_too_small is true, random_val will contain +-min_abs with
|
|
# probability (x.abs() / min_abs), and 0.0 otherwise. [so this preserves expectations,
|
|
# for those elements].
|
|
random_val = min_abs * x.sign() * (torch.rand_like(x) * min_abs < x_abs)
|
|
return torch.where(is_too_small, random_val, x).to(torch.float16)
|
|
|
|
|
|
class RandomGradFunction(torch.autograd.Function):
|
|
"""
|
|
Does nothing in forward pass; in backward pass, gets rid of very small grads using
|
|
randomized approach that preserves expectations (intended to reduce roundoff).
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, x: Tensor, min_abs: float) -> Tensor:
|
|
ctx.min_abs = min_abs
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None]:
|
|
if ans_grad.dtype == torch.float16:
|
|
return (
|
|
random_cast_to_half(
|
|
ans_grad.to(torch.float32), min_abs=ctx.min_abs
|
|
),
|
|
None,
|
|
)
|
|
else:
|
|
return ans_grad, None
|
|
|
|
|
|
class RandomGrad(torch.nn.Module):
|
|
"""
|
|
Gets rid of very small gradients using an expectation-preserving method, intended to increase
|
|
accuracy of training when using amp (automatic mixed precision)
|
|
"""
|
|
|
|
def __init__(self, min_abs: float = 5.0e-06):
|
|
super(RandomGrad, self).__init__()
|
|
self.min_abs = min_abs
|
|
|
|
def forward(self, x: Tensor):
|
|
if (
|
|
torch.jit.is_scripting()
|
|
or not self.training
|
|
or torch.jit.is_tracing()
|
|
):
|
|
return x
|
|
else:
|
|
return RandomGradFunction.apply(x, self.min_abs)
|
|
|
|
|
|
class SoftmaxFunction(torch.autograd.Function):
|
|
"""
|
|
Tries to handle half-precision derivatives in a randomized way that should
|
|
be more accurate for training than the default behavior.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, x: Tensor, dim: int):
|
|
ans = x.softmax(dim=dim)
|
|
# if x dtype is float16, x.softmax() returns a float32 because
|
|
# (presumably) that op does not support float16, and autocast
|
|
# is enabled.
|
|
if torch.is_autocast_enabled():
|
|
ans = ans.to(torch.float16)
|
|
ctx.save_for_backward(ans)
|
|
ctx.x_dtype = x.dtype
|
|
ctx.dim = dim
|
|
return ans
|
|
|
|
@staticmethod
|
|
def backward(ctx, ans_grad: Tensor):
|
|
(ans,) = ctx.saved_tensors
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
ans_grad = ans_grad.to(torch.float32)
|
|
ans = ans.to(torch.float32)
|
|
x_grad = ans_grad * ans
|
|
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True)
|
|
return x_grad, None
|
|
|
|
|
|
def softmax(x: Tensor, dim: int):
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
return x.softmax(dim)
|
|
|
|
return SoftmaxFunction.apply(x, dim)
|
|
|
|
|
|
class MaxEigLimiterFunction(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
x: Tensor,
|
|
coeffs: Tensor,
|
|
direction: Tensor,
|
|
channel_dim: int,
|
|
grad_scale: float,
|
|
) -> Tensor:
|
|
ctx.channel_dim = channel_dim
|
|
ctx.grad_scale = grad_scale
|
|
ctx.save_for_backward(x.detach(), coeffs.detach(), direction.detach())
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, x_grad, *args):
|
|
with torch.enable_grad():
|
|
(x_orig, coeffs, new_direction) = ctx.saved_tensors
|
|
x_orig.requires_grad = True
|
|
num_channels = x_orig.shape[ctx.channel_dim]
|
|
x = x_orig.transpose(ctx.channel_dim, -1).reshape(-1, num_channels)
|
|
new_direction.requires_grad = False
|
|
x = x - x.mean(dim=0)
|
|
x_var = (x ** 2).mean()
|
|
x_residual = x - coeffs * new_direction
|
|
x_residual_var = (x_residual ** 2).mean()
|
|
# `variance_proportion` is the proportion of the variance accounted for
|
|
# by the top eigen-direction. This is to be minimized.
|
|
variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20)
|
|
variance_proportion.backward()
|
|
x_orig_grad = x_orig.grad
|
|
x_extra_grad = (
|
|
x_orig.grad
|
|
* ctx.grad_scale
|
|
* x_grad.norm()
|
|
/ (x_orig_grad.norm() + 1.0e-20)
|
|
)
|
|
return x_grad + x_extra_grad.detach(), None, None, None, None
|
|
|
|
|
|
class BasicNorm(torch.nn.Module):
|
|
"""
|
|
This is intended to be a simpler, and hopefully cheaper, replacement for
|
|
LayerNorm. The observation this is based on, is that Transformer-type
|
|
networks, especially with pre-norm, sometimes seem to set one of the
|
|
feature dimensions to a large constant value (e.g. 50), which "defeats"
|
|
the LayerNorm because the output magnitude is then not strongly dependent
|
|
on the other (useful) features. Presumably the weight and bias of the
|
|
LayerNorm are required to allow it to do this.
|
|
|
|
So the idea is to introduce this large constant value as an explicit
|
|
parameter, that takes the role of the "eps" in LayerNorm, so the network
|
|
doesn't have to do this trick. We make the "eps" learnable.
|
|
|
|
Args:
|
|
num_channels: the number of channels, e.g. 512.
|
|
channel_dim: the axis/dimension corresponding to the channel,
|
|
interprted as an offset from the input's ndim if negative.
|
|
shis is NOT the num_channels; it should typically be one of
|
|
{-2, -1, 0, 1, 2, 3}.
|
|
eps: the initial "epsilon" that we add as ballast in:
|
|
scale = ((input_vec**2).mean() + epsilon)**-0.5
|
|
Note: our epsilon is actually large, but we keep the name
|
|
to indicate the connection with conventional LayerNorm.
|
|
learn_eps: if true, we learn epsilon; if false, we keep it
|
|
at the initial value.
|
|
eps_min: float
|
|
eps_max: float
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_channels: int,
|
|
channel_dim: int = -1, # CAUTION: see documentation.
|
|
eps: float = 0.25,
|
|
learn_eps: bool = True,
|
|
eps_min: float = -3.0,
|
|
eps_max: float = 3.0,
|
|
) -> None:
|
|
super(BasicNorm, self).__init__()
|
|
self.num_channels = num_channels
|
|
self.channel_dim = channel_dim
|
|
if learn_eps:
|
|
self.eps = nn.Parameter(torch.tensor(eps).log().detach())
|
|
else:
|
|
self.register_buffer("eps", torch.tensor(eps).log().detach())
|
|
self.eps_min = eps_min
|
|
self.eps_max = eps_max
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
assert x.shape[self.channel_dim] == self.num_channels
|
|
eps = self.eps
|
|
if self.training and random.random() < 0.25:
|
|
# with probability 0.25, in training mode, clamp eps between the min
|
|
# and max; this will encourage it to learn parameters within the
|
|
# allowed range by making parameters that are outside the allowed
|
|
# range noisy.
|
|
|
|
# gradients to allow the parameter to get back into the allowed region if it happens to exit it.
|
|
eps = eps.clamp(min=self.eps_min, max=self.eps_max)
|
|
scales = (
|
|
torch.mean(x ** 2, dim=self.channel_dim, keepdim=True) + eps.exp()
|
|
) ** -0.5
|
|
return x * scales
|
|
|
|
|
|
def ScaledLinear(*args, initial_scale: float = 1.0, **kwargs) -> nn.Linear:
|
|
"""
|
|
Behaves like a constructor of a modified version of nn.Linear
|
|
that gives an easy way to set the default initial parameter scale.
|
|
|
|
Args:
|
|
Accepts the standard args and kwargs that nn.Linear accepts
|
|
e.g. in_features, out_features, bias=False.
|
|
|
|
initial_scale: you can override this if you want to increase
|
|
or decrease the initial magnitude of the module's output
|
|
(affects the initialization of weight_scale and bias_scale).
|
|
Another option, if you want to do something like this, is
|
|
to re-initialize the parameters.
|
|
"""
|
|
ans = nn.Linear(*args, **kwargs)
|
|
with torch.no_grad():
|
|
ans.weight[:] *= initial_scale
|
|
if ans.bias is not None:
|
|
torch.nn.init.uniform_(
|
|
ans.bias, -0.1 * initial_scale, 0.1 * initial_scale
|
|
)
|
|
return ans
|
|
|
|
|
|
def ScaledConv1d(
|
|
*args,
|
|
initial_scale: float = 1.0,
|
|
kernel_size: int = 3,
|
|
padding: str = "same",
|
|
**kwargs,
|
|
) -> nn.Conv1d:
|
|
"""
|
|
Behaves like a constructor of a modified version of nn.Conv1d
|
|
that gives an easy way to set the default initial parameter scale.
|
|
|
|
Args:
|
|
Accepts the standard args and kwargs that nn.Linear accepts
|
|
e.g. in_features, out_features, bias=False.
|
|
|
|
initial_scale: you can override this if you want to increase
|
|
or decrease the initial magnitude of the module's output
|
|
(affects the initialization of weight_scale and bias_scale).
|
|
Another option, if you want to do something like this, is
|
|
to re-initialize the parameters.
|
|
"""
|
|
ans = nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs)
|
|
with torch.no_grad():
|
|
ans.weight[:] *= initial_scale
|
|
if ans.bias is not None:
|
|
torch.nn.init.uniform_(
|
|
ans.bias, -0.1 * initial_scale, 0.1 * initial_scale
|
|
)
|
|
return ans
|
|
|
|
|
|
def TransposeScaledConv1d(
|
|
*args,
|
|
initial_scale: float = 1.0,
|
|
kernel_size: int = 3,
|
|
padding: str = "same",
|
|
**kwargs,
|
|
) -> nn.Sequential:
|
|
"""
|
|
Transpose -> ScaledConv1d
|
|
"""
|
|
return nn.Sequential(
|
|
Transpose(),
|
|
ScaledConv1d(
|
|
*args,
|
|
initial_scale=initial_scale,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
**kwargs,
|
|
),
|
|
)
|
|
|
|
|
|
def ScaledConv1dTranspose(
|
|
*args,
|
|
initial_scale: float = 1.0,
|
|
kernel_size: int = 3,
|
|
padding: str = "same",
|
|
**kwargs,
|
|
) -> nn.Sequential:
|
|
"""
|
|
Transpose -> ScaledConv1d
|
|
"""
|
|
return nn.Sequential(
|
|
ScaledConv1d(
|
|
*args,
|
|
initial_scale=initial_scale,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
**kwargs,
|
|
),
|
|
Transpose(),
|
|
)
|
|
|
|
|
|
def TransposeConv1d(
|
|
*args, kernel_size: int = 3, padding: str = "same", **kwargs
|
|
) -> nn.Sequential:
|
|
"""
|
|
Transpose -> Conv1d
|
|
"""
|
|
return nn.Sequential(
|
|
Transpose(),
|
|
nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
|
|
)
|
|
|
|
|
|
def Conv1dTranspose(
|
|
*args, kernel_size: int = 3, padding: str = "same", **kwargs
|
|
) -> nn.Sequential:
|
|
"""
|
|
ScaledConv1d -> Transpose
|
|
"""
|
|
return nn.Sequential(
|
|
nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
|
|
Transpose(),
|
|
)
|
|
|
|
|
|
class SRLinear(nn.Linear):
|
|
"""https://arxiv.org/abs/2303.06296
|
|
Stabilizing Transformer Training by Preventing Attention Entropy Collapse
|
|
"""
|
|
|
|
def __init__(self, in_features, out_features, bias=True, **kwargs):
|
|
super().__init__(in_features, out_features, bias=bias, **kwargs)
|
|
self.register_buffer(
|
|
"u", nn.functional.normalize(torch.randn(in_features), dim=0)
|
|
)
|
|
with torch.no_grad():
|
|
sigma = self.get_sigma()
|
|
self.register_buffer("spectral_norm", sigma)
|
|
self.sigma = nn.Parameter(torch.ones(1))
|
|
|
|
def get_sigma(self):
|
|
with torch.no_grad():
|
|
u = self.u
|
|
v = self.weight.mv(u)
|
|
v = nn.functional.normalize(v, dim=0)
|
|
u = self.weight.T.mv(v)
|
|
u = nn.functional.normalize(u, dim=0)
|
|
self.u.data.copy_(u)
|
|
return torch.einsum("c,cd,d->", v, self.weight, u)
|
|
|
|
def get_weight(self):
|
|
sigma = self.get_sigma()
|
|
if self.training:
|
|
self.spectral_norm.data.copy_(sigma)
|
|
weight = (self.sigma / sigma) * self.weight
|
|
return weight
|
|
|
|
def forward(self, x):
|
|
return nn.functional.linear(x, self.get_weight(), self.bias)
|
|
|
|
|
|
class SRConv1d(SRLinear):
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
out_features,
|
|
kernel_size,
|
|
stride: int = 1,
|
|
padding: str = "same",
|
|
bias: bool = True,
|
|
**kwargs,
|
|
):
|
|
in_features = in_features * kernel_size
|
|
super().__init__(in_features, out_features, bias=bias, **kwargs)
|
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
|
self.kernel_size = kernel_size
|
|
self.stride = stride
|
|
self.padding = padding
|
|
|
|
def forward(self, x):
|
|
in_features = self.in_features // self.kernel_size
|
|
weight = self.get_weight().view(
|
|
self.out_features, in_features, self.kernel_size
|
|
)
|
|
return nn.functional.conv1d(
|
|
x, weight, bias=self.bias, stride=self.stride, padding=self.padding
|
|
)
|
|
|
|
|
|
def TransposeSRConv1d(
|
|
*args, kernel_size: int = 3, padding: str = "same", **kwargs
|
|
) -> nn.Sequential:
|
|
"""
|
|
Transpose -> SRConv1d
|
|
"""
|
|
return nn.Sequential(
|
|
Transpose(),
|
|
SRConv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
|
|
)
|
|
|
|
|
|
def SRConv1dTranspose(
|
|
*args, kernel_size: int = 3, padding: str = "same", **kwargs
|
|
) -> nn.Sequential:
|
|
"""
|
|
SRConv1d -> Transpose
|
|
"""
|
|
return nn.Sequential(
|
|
SRConv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
|
|
Transpose(),
|
|
)
|
|
|
|
|
|
class ActivationBalancer(torch.nn.Module):
|
|
"""
|
|
Modifies the backpropped derivatives of a function to try to encourage, for
|
|
each channel, that it is positive at least a proportion `threshold` of the
|
|
time. It does this by multiplying negative derivative values by up to
|
|
(1+max_factor), and positive derivative values by up to (1-max_factor),
|
|
interpolated from 1 at the threshold to those extremal values when none
|
|
of the inputs are positive.
|
|
|
|
Args:
|
|
num_channels: the number of channels
|
|
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
|
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
|
min_positive: the minimum, per channel, of the proportion of the time
|
|
that (x > 0), below which we start to modify the derivatives.
|
|
max_positive: the maximum, per channel, of the proportion of the time
|
|
that (x > 0), above which we start to modify the derivatives.
|
|
max_factor: the maximum factor by which we modify the derivatives for
|
|
either the sign constraint or the magnitude constraint;
|
|
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
|
values in the range [0.98..1.02].
|
|
sign_gain_factor: determines the 'gain' with which we increase the
|
|
change in gradient once the constraints on min_positive and max_positive
|
|
are violated.
|
|
scale_gain_factor: determines the 'gain' with which we increase the
|
|
change in gradient once the constraints on min_abs and max_abs
|
|
are violated.
|
|
min_abs: the minimum average-absolute-value difference from the mean
|
|
value per channel, which we allow, before we start to modify
|
|
the derivatives to prevent this.
|
|
max_abs: the maximum average-absolute-value difference from the mean
|
|
value per channel, which we allow, before we start to modify
|
|
the derivatives to prevent this.
|
|
min_prob: determines the minimum probability with which we modify the
|
|
gradients for the {min,max}_positive and {min,max}_abs constraints,
|
|
on each forward(). This is done randomly to prevent all layers
|
|
from doing it at the same time. Early in training we may use
|
|
higher probabilities than this; it will decay to this value.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_channels: int,
|
|
channel_dim: int,
|
|
min_positive: float = 0.05,
|
|
max_positive: float = 0.95,
|
|
max_factor: float = 0.04,
|
|
sign_gain_factor: float = 0.01,
|
|
scale_gain_factor: float = 0.02,
|
|
min_abs: float = 0.2,
|
|
max_abs: float = 100.0,
|
|
min_prob: float = 0.1,
|
|
):
|
|
super(ActivationBalancer, self).__init__()
|
|
self.num_channels = num_channels
|
|
self.channel_dim = channel_dim
|
|
self.min_positive = min_positive
|
|
self.max_positive = max_positive
|
|
self.max_factor = max_factor
|
|
self.min_abs = min_abs
|
|
self.max_abs = max_abs
|
|
self.min_prob = min_prob
|
|
self.sign_gain_factor = sign_gain_factor
|
|
self.scale_gain_factor = scale_gain_factor
|
|
|
|
# count measures how many times the forward() function has been called.
|
|
# We occasionally sync this to a tensor called `count`, that exists to
|
|
# make sure it is synced to disk when we load and save the model.
|
|
self.cpu_count = 0
|
|
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
if (
|
|
torch.jit.is_scripting()
|
|
or not x.requires_grad
|
|
or torch.jit.is_tracing()
|
|
):
|
|
return _no_op(x)
|
|
|
|
count = self.cpu_count
|
|
self.cpu_count += 1
|
|
|
|
if random.random() < 0.01:
|
|
# Occasionally sync self.cpu_count with self.count.
|
|
# count affects the decay of 'prob'. don't do this on every iter,
|
|
# because syncing with the GPU is slow.
|
|
self.cpu_count = max(self.cpu_count, self.count.item())
|
|
self.count.fill_(self.cpu_count)
|
|
|
|
# the prob of doing some work exponentially decreases from 0.5 till it hits
|
|
# a floor at min_prob (==0.1, by default)
|
|
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
|
|
|
|
if random.random() < prob:
|
|
sign_gain_factor = 0.5
|
|
if self.min_positive != 0.0 or self.max_positive != 1.0:
|
|
sign_factor = _compute_sign_factor(
|
|
x,
|
|
self.channel_dim,
|
|
self.min_positive,
|
|
self.max_positive,
|
|
gain_factor=self.sign_gain_factor / prob,
|
|
max_factor=self.max_factor,
|
|
)
|
|
else:
|
|
sign_factor = None
|
|
|
|
scale_factor = _compute_scale_factor(
|
|
x.detach(),
|
|
self.channel_dim,
|
|
min_abs=self.min_abs,
|
|
max_abs=self.max_abs,
|
|
gain_factor=self.scale_gain_factor / prob,
|
|
max_factor=self.max_factor,
|
|
)
|
|
return ActivationBalancerFunction.apply(
|
|
x,
|
|
scale_factor,
|
|
sign_factor,
|
|
self.channel_dim,
|
|
)
|
|
else:
|
|
return _no_op(x)
|
|
|
|
|
|
def penalize_abs_values_gt(x: Tensor, limit: float, penalty: float) -> Tensor:
|
|
"""
|
|
Returns x unmodified, but in backprop will put a penalty for the excess of
|
|
the absolute values of elements of x over the limit "limit". E.g. if
|
|
limit == 10.0, then if x has any values over 10 it will get a penalty.
|
|
|
|
Caution: the value of this penalty will be affected by grad scaling used
|
|
in automatic mixed precision training. For this reasons we use this,
|
|
it shouldn't really matter, or may even be helpful; we just use this
|
|
to disallow really implausible values of scores to be given to softmax.
|
|
"""
|
|
x_sign = x.sign()
|
|
over_limit = (x.abs() - limit) > 0
|
|
# The following is a memory efficient way to penalize the absolute values of
|
|
# x that's over the limit. (The memory efficiency comes when you think
|
|
# about which items torch needs to cache for the autograd, and which ones it
|
|
# can throw away). The numerical value of aux_loss as computed here will
|
|
# actually be larger than it should be, by limit * over_limit.sum(), but it
|
|
# has the same derivative as the real aux_loss which is penalty * (x.abs() -
|
|
# limit).relu().
|
|
aux_loss = penalty * ((x_sign * over_limit).to(torch.int8) * x)
|
|
# note: we don't do sum() here on aux)_loss, but it's as if we had done
|
|
# sum() due to how with_loss() works.
|
|
x = with_loss(x, aux_loss)
|
|
# you must use x for something, or this will be ineffective.
|
|
return x
|
|
|
|
|
|
def _diag(x: Tensor): # like .diag(), but works for tensors with 3 dims.
|
|
if x.ndim == 2:
|
|
return x.diag()
|
|
else:
|
|
(batch, dim, dim) = x.shape
|
|
x = x.reshape(batch, dim * dim)
|
|
x = x[:, :: dim + 1]
|
|
assert x.shape == (batch, dim)
|
|
return x
|
|
|
|
|
|
def _whitening_metric(x: Tensor, num_groups: int):
|
|
"""
|
|
Computes the "whitening metric", a value which will be 1.0 if all the eigenvalues of
|
|
of the centered feature covariance are the same within each group's covariance matrix
|
|
and also between groups.
|
|
Args:
|
|
x: a Tensor of shape (*, num_channels)
|
|
num_groups: the number of groups of channels, a number >=1 that divides num_channels
|
|
Returns:
|
|
Returns a scalar Tensor that will be 1.0 if the data is "perfectly white" and
|
|
greater than 1.0 otherwise.
|
|
"""
|
|
assert x.dtype != torch.float16
|
|
x = x.reshape(-1, x.shape[-1])
|
|
(num_frames, num_channels) = x.shape
|
|
assert num_channels % num_groups == 0
|
|
channels_per_group = num_channels // num_groups
|
|
x = x.reshape(num_frames, num_groups, channels_per_group).transpose(0, 1)
|
|
# x now has shape (num_groups, num_frames, channels_per_group)
|
|
# subtract the mean so we use the centered, not uncentered, covariance.
|
|
# My experience has been that when we "mess with the gradients" like this,
|
|
# it's better not do anything that tries to move the mean around, because
|
|
# that can easily cause instability.
|
|
x = x - x.mean(dim=1, keepdim=True)
|
|
# x_covar: (num_groups, channels_per_group, channels_per_group)
|
|
x_covar = torch.matmul(x.transpose(1, 2), x)
|
|
x_covar_mean_diag = _diag(x_covar).mean()
|
|
# the following expression is what we'd get if we took the matrix product
|
|
# of each covariance and measured the mean of its trace, i.e.
|
|
# the same as _diag(torch.matmul(x_covar, x_covar)).mean().
|
|
x_covarsq_mean_diag = (x_covar ** 2).sum() / (
|
|
num_groups * channels_per_group
|
|
)
|
|
# this metric will be >= 1.0; the larger it is, the less 'white' the data was.
|
|
metric = x_covarsq_mean_diag / (x_covar_mean_diag ** 2 + 1.0e-20)
|
|
return metric
|
|
|
|
|
|
class WhiteningPenaltyFunction(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
x: Tensor,
|
|
num_groups: int,
|
|
whitening_limit: float,
|
|
grad_scale: float,
|
|
) -> Tensor:
|
|
ctx.save_for_backward(x)
|
|
ctx.num_groups = num_groups
|
|
ctx.whitening_limit = whitening_limit
|
|
ctx.grad_scale = grad_scale
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, x_grad: Tensor):
|
|
(x_orig,) = ctx.saved_tensors
|
|
with torch.enable_grad():
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
x_detached = x_orig.to(torch.float32).detach()
|
|
x_detached.requires_grad = True
|
|
|
|
metric = _whitening_metric(x_detached, ctx.num_groups)
|
|
|
|
if random.random() < 0.005 or __name__ == "__main__":
|
|
logging.info(
|
|
f"Whitening: num_groups={ctx.num_groups}, num_channels={x_orig.shape[-1]}, "
|
|
f"metric={metric.item():.2f} vs. limit={ctx.whitening_limit}"
|
|
)
|
|
|
|
(metric - ctx.whitening_limit).relu().backward()
|
|
penalty_grad = x_detached.grad
|
|
scale = ctx.grad_scale * (
|
|
x_grad.to(torch.float32).norm()
|
|
/ (penalty_grad.norm() + 1.0e-20)
|
|
)
|
|
penalty_grad = penalty_grad * scale
|
|
return x_grad + penalty_grad.to(x_grad.dtype), None, None, None
|
|
|
|
|
|
class Whiten(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_groups: int,
|
|
whitening_limit: float,
|
|
prob: Union[float, Tuple[float, float]],
|
|
grad_scale: float,
|
|
):
|
|
"""
|
|
Args:
|
|
num_groups: the number of groups to divide the channel dim into before
|
|
whitening. We will attempt to make the feature covariance
|
|
within each group, after mean subtraction, as "white" as possible,
|
|
while having the same trace across all groups.
|
|
whitening_limit: a value greater than 1.0, that dictates how much
|
|
freedom we have to violate the constraints. 1.0 would mean perfectly
|
|
white, with exactly the same trace across groups; larger values
|
|
give more freedom. E.g. 2.0.
|
|
prob: the probability with which we apply the gradient modification
|
|
(also affects the grad scale). May be supplied as a float,
|
|
or as a pair (min_prob, max_prob)
|
|
|
|
grad_scale: determines the scale on the gradient term from this object,
|
|
relative to the rest of the gradient on the attention weights.
|
|
E.g. 0.02 (you may want to use smaller values than this if prob is large)
|
|
"""
|
|
super(Whiten, self).__init__()
|
|
assert num_groups >= 1
|
|
assert whitening_limit >= 1
|
|
assert grad_scale >= 0
|
|
self.num_groups = num_groups
|
|
self.whitening_limit = whitening_limit
|
|
if isinstance(prob, float):
|
|
assert 0 < prob <= 1
|
|
self.prob = prob
|
|
else:
|
|
(self.min_prob, self.max_prob) = prob
|
|
assert 0 < self.min_prob < self.max_prob <= 1
|
|
self.prob = self.max_prob
|
|
|
|
self.grad_scale = grad_scale
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
"""
|
|
In the forward pass, this function just returns the input unmodified.
|
|
In the backward pass, it will modify the gradients to ensure that the
|
|
distribution in each group has close to (lambda times I) as the covariance
|
|
after mean subtraction, with the same lambda across groups.
|
|
For whitening_limit > 1, there will be more freedom to violate this
|
|
constraint.
|
|
|
|
Args:
|
|
x: the input of shape (*, num_channels)
|
|
|
|
Returns:
|
|
x, unmodified. You should make sure
|
|
you use the returned value, or the graph will be freed
|
|
and nothing will happen in backprop.
|
|
"""
|
|
if (
|
|
not x.requires_grad
|
|
or random.random() > self.prob
|
|
or self.grad_scale == 0
|
|
):
|
|
return _no_op(x)
|
|
else:
|
|
if hasattr(self, "min_prob") and random.random() < 0.25:
|
|
# occasionally switch between min_prob and max_prob, based on whether
|
|
# we are above or below the threshold.
|
|
if (
|
|
_whitening_metric(x.to(torch.float32), self.num_groups)
|
|
> self.whitening_limit
|
|
):
|
|
# there would be a change to the grad.
|
|
self.prob = self.max_prob
|
|
else:
|
|
self.prob = self.min_prob
|
|
|
|
return WhiteningPenaltyFunction.apply(
|
|
x, self.num_groups, self.whitening_limit, self.grad_scale
|
|
)
|
|
|
|
|
|
class WithLoss(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x: Tensor, y: Tensor):
|
|
ctx.y_shape = y.shape
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, ans_grad: Tensor):
|
|
return ans_grad, torch.ones(
|
|
ctx.y_shape, dtype=ans_grad.dtype, device=ans_grad.device
|
|
)
|
|
|
|
|
|
def with_loss(x, y):
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
return x
|
|
# returns x but adds y.sum() to the loss function.
|
|
return WithLoss.apply(x, y)
|
|
|
|
|
|
def _no_op(x: Tensor) -> Tensor:
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
return x
|
|
else:
|
|
# a no-op function that will have a node in the autograd graph,
|
|
# to avoid certain bugs relating to backward hooks
|
|
return x.chunk(1, dim=-1)[0]
|
|
|
|
|
|
class Identity(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Identity, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return _no_op(x)
|
|
|
|
|
|
class MaxEig(torch.nn.Module):
|
|
"""
|
|
Modifies the backpropped derivatives of a function to try to discourage
|
|
that any given direction in activation space accounts for more than
|
|
a specified proportion of the covariance (e.g. 0.2).
|
|
|
|
|
|
Args:
|
|
num_channels: the number of channels
|
|
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
|
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
|
max_var_per_eig: the maximum proportion of the variance of the
|
|
features/channels, after mean subtraction, that can come from
|
|
any given eigenvalue.
|
|
min_prob: the minimum probability with which we apply this during any invocation
|
|
of forward(), assuming last time we applied the constraint it was
|
|
not active; supplied for speed.
|
|
scale: determines the scale with which we modify the gradients, relative
|
|
to the existing / unmodified gradients
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_channels: int,
|
|
channel_dim: int,
|
|
max_var_per_eig: float = 0.2,
|
|
min_prob: float = 0.01,
|
|
scale: float = 0.01,
|
|
):
|
|
super(MaxEig, self).__init__()
|
|
self.num_channels = num_channels
|
|
self.channel_dim = channel_dim
|
|
self.scale = scale
|
|
assert max_var_per_eig == 0.0 or max_var_per_eig > 1.0 / num_channels
|
|
self.max_var_per_eig = max_var_per_eig
|
|
|
|
# we figure out the dominant direction using the power method: starting with
|
|
# a random vector, keep multiplying by the covariance and renormalizing.
|
|
with torch.no_grad():
|
|
# arbitrary.. would use randn() but want to leave the rest of the model's
|
|
# random parameters unchanged for comparison
|
|
direction = torch.arange(num_channels).to(torch.float)
|
|
direction = direction / direction.norm()
|
|
self.register_buffer("max_eig_direction", direction)
|
|
|
|
self.min_prob = min_prob
|
|
# cur_prob is the current probability we'll use to apply the ActivationBalancer.
|
|
# We'll regress this towards prob, each tiem we try to apply it and it is not
|
|
# active.
|
|
self.cur_prob = 1.0
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
if (
|
|
torch.jit.is_scripting()
|
|
or self.max_var_per_eig <= 0
|
|
or random.random() > self.cur_prob
|
|
or torch.jit.is_tracing()
|
|
):
|
|
return _no_op(x)
|
|
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
eps = 1.0e-20
|
|
orig_x = x
|
|
x = x.to(torch.float32)
|
|
with torch.no_grad():
|
|
x = x.transpose(self.channel_dim, -1).reshape(
|
|
-1, self.num_channels
|
|
)
|
|
x = x - x.mean(dim=0)
|
|
new_direction, coeffs = self._find_direction_coeffs(
|
|
x, self.max_eig_direction
|
|
)
|
|
x_var = (x ** 2).mean()
|
|
x_residual = x - coeffs * new_direction
|
|
x_residual_var = (x_residual ** 2).mean()
|
|
|
|
# `variance_proportion` is the proportion of the variance accounted for
|
|
# by the top eigen-direction.
|
|
variance_proportion = (x_var - x_residual_var) / (
|
|
x_var + 1.0e-20
|
|
)
|
|
|
|
# ensure new direction is nonzero even if x == 0, by including `direction`.
|
|
self._set_direction(
|
|
0.1 * self.max_eig_direction + new_direction
|
|
)
|
|
|
|
if random.random() < 0.01 or __name__ == "__main__":
|
|
logging.info(
|
|
f"variance_proportion = {variance_proportion.item()}, shape={tuple(orig_x.shape)}, cur_prob={self.cur_prob}"
|
|
)
|
|
|
|
if variance_proportion >= self.max_var_per_eig:
|
|
# The constraint is active. Note, we should quite rarely
|
|
# reach here, only near the beginning of training if we are
|
|
# starting to diverge, should this constraint be active.
|
|
cur_prob = self.cur_prob
|
|
self.cur_prob = (
|
|
1.0 # next time, do the update with probability 1.0.
|
|
)
|
|
return MaxEigLimiterFunction.apply(
|
|
orig_x, coeffs, new_direction, self.channel_dim, self.scale
|
|
)
|
|
else:
|
|
# let self.cur_prob exponentially approach self.min_prob, as
|
|
# long as the constraint is inactive.
|
|
self.cur_prob = 0.75 * self.cur_prob + 0.25 * self.min_prob
|
|
return orig_x
|
|
|
|
def _set_direction(self, direction: Tensor):
|
|
"""
|
|
Sets self.max_eig_direction to a normalized version of `direction`
|
|
"""
|
|
direction = direction.detach()
|
|
direction = direction / direction.norm()
|
|
direction_sum = direction.sum().item()
|
|
if direction_sum - direction_sum == 0: # no inf/nan
|
|
self.max_eig_direction[:] = direction
|
|
else:
|
|
logging.info(
|
|
f"Warning: sum of direction in MaxEig is {direction_sum}, "
|
|
"num_channels={self.num_channels}, channel_dim={self.channel_dim}"
|
|
)
|
|
|
|
def _find_direction_coeffs(
|
|
self, x: Tensor, prev_direction: Tensor
|
|
) -> Tuple[Tensor, Tensor, Tensor]:
|
|
"""
|
|
Figure out (an approximation to) the proportion of the variance of a set of
|
|
feature vectors that can be attributed to the top eigen-direction.
|
|
Args:
|
|
x: a Tensor of shape (num_frames, num_channels), with num_frames > 1.
|
|
prev_direction: a Tensor of shape (num_channels,), that is our previous estimate
|
|
of the top eigen-direction, or a random direction if this is the first
|
|
iteration. Does not have to be normalized, but should be nonzero.
|
|
|
|
Returns: (cur_direction, coeffs), where:
|
|
cur_direction: a Tensor of shape (num_channels,) that is the current
|
|
estimate of the top eigen-direction.
|
|
coeffs: a Tensor of shape (num_frames, 1) that minimizes, or
|
|
approximately minimizes, (x - coeffs * cur_direction).norm()
|
|
"""
|
|
(num_frames, num_channels) = x.shape
|
|
assert num_channels > 1 and num_frames > 1
|
|
assert prev_direction.shape == (num_channels,)
|
|
# `coeffs` are the coefficients of `prev_direction` in x.
|
|
# actually represent the coeffs up to a constant positive factor.
|
|
coeffs = (x * prev_direction).sum(dim=1, keepdim=True) + 1.0e-10
|
|
cur_direction = (x * coeffs).sum(dim=0) / (
|
|
(coeffs ** 2).sum() + 1.0e-20
|
|
)
|
|
return cur_direction, coeffs
|
|
|
|
|
|
class DoubleSwishFunction(torch.autograd.Function):
|
|
"""
|
|
double_swish(x) = x * torch.sigmoid(x-1)
|
|
This is a definition, originally motivated by its close numerical
|
|
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
|
|
|
|
Memory-efficient derivative computation:
|
|
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
|
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
|
Now, s'(x) = s(x) * (1-s(x)).
|
|
double_swish'(x) = x * s'(x) + s(x).
|
|
= x * s(x) * (1-s(x)) + s(x).
|
|
= double_swish(x) * (1-s(x)) + s(x)
|
|
... so we just need to remember s(x) but not x itself.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, x: Tensor) -> Tensor:
|
|
requires_grad = x.requires_grad
|
|
x_dtype = x.dtype
|
|
if x.dtype == torch.float16:
|
|
x = x.to(torch.float32)
|
|
|
|
s = torch.sigmoid(x - 1.0)
|
|
y = x * s
|
|
|
|
if requires_grad:
|
|
deriv = y * (1 - s) + s
|
|
# notes on derivative of x * sigmoid(x - 1):
|
|
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
|
|
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
|
|
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
|
|
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
|
|
# floors), should be expectation-preserving.
|
|
floor = -0.043637
|
|
ceil = 1.2
|
|
d_scaled = (deriv - floor) * (
|
|
255.0 / (ceil - floor)
|
|
) + torch.rand_like(deriv)
|
|
if __name__ == "__main__":
|
|
# for self-testing only.
|
|
assert d_scaled.min() >= 0.0
|
|
assert d_scaled.max() < 256.0
|
|
d_int = d_scaled.to(torch.uint8)
|
|
ctx.save_for_backward(d_int)
|
|
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
|
y = y.to(torch.float16)
|
|
return y
|
|
|
|
@staticmethod
|
|
def backward(ctx, y_grad: Tensor) -> Tensor:
|
|
(d,) = ctx.saved_tensors
|
|
# the same constants as used in forward pass.
|
|
floor = -0.043637
|
|
ceil = 1.2
|
|
d = d * ((ceil - floor) / 255.0) + floor
|
|
return y_grad * d
|
|
|
|
|
|
class DoubleSwish(torch.nn.Module):
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
|
that we approximate closely with x * sigmoid(x-1).
|
|
"""
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
return x * torch.sigmoid(x - 1.0)
|
|
return DoubleSwishFunction.apply(x)
|
|
|
|
|
|
def BalancedDoubleSwish(
|
|
d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
|
|
) -> nn.Sequential:
|
|
"""
|
|
ActivationBalancer -> DoubleSwish
|
|
"""
|
|
balancer = ActivationBalancer(
|
|
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
|
|
)
|
|
return nn.Sequential(
|
|
balancer,
|
|
DoubleSwish(),
|
|
)
|
|
|
|
|
|
def _test_max_eig():
|
|
for proportion in [0.1, 0.5, 10.0]:
|
|
logging.info(f"proportion = {proportion}")
|
|
x = torch.randn(100, 128)
|
|
direction = torch.randn(128)
|
|
coeffs = torch.randn(100, 1)
|
|
x += proportion * direction * coeffs
|
|
|
|
x.requires_grad = True
|
|
|
|
num_channels = 128
|
|
m = MaxEig(
|
|
num_channels, 1, 0.5, scale=0.1 # channel_dim # max_var_per_eig
|
|
) # grad_scale
|
|
|
|
for _ in range(4):
|
|
y = m(x)
|
|
|
|
y_grad = torch.randn_like(x)
|
|
y.backward(gradient=y_grad)
|
|
|
|
if proportion < 0.2:
|
|
assert torch.allclose(x.grad, y_grad, atol=1.0e-02)
|
|
elif proportion > 1.0:
|
|
assert not torch.allclose(x.grad, y_grad)
|
|
|
|
|
|
def _test_whiten():
|
|
for proportion in [0.1, 0.5, 10.0]:
|
|
logging.info(f"_test_whiten(): proportion = {proportion}")
|
|
x = torch.randn(100, 128)
|
|
direction = torch.randn(128)
|
|
coeffs = torch.randn(100, 1)
|
|
x += proportion * direction * coeffs
|
|
|
|
x.requires_grad = True
|
|
|
|
num_channels = 128
|
|
m = Whiten(
|
|
1, 5.0, prob=1.0, grad_scale=0.1 # num_groups # whitening_limit,
|
|
) # grad_scale
|
|
|
|
for _ in range(4):
|
|
y = m(x)
|
|
|
|
y_grad = torch.randn_like(x)
|
|
y.backward(gradient=y_grad)
|
|
|
|
if proportion < 0.2:
|
|
assert torch.allclose(x.grad, y_grad)
|
|
elif proportion > 1.0:
|
|
assert not torch.allclose(x.grad, y_grad)
|
|
|
|
|
|
def _test_activation_balancer_sign():
|
|
probs = torch.arange(0, 1, 0.01)
|
|
N = 1000
|
|
x = 1.0 * (
|
|
(2.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))) - 1.0
|
|
)
|
|
x = x.detach()
|
|
x.requires_grad = True
|
|
m = ActivationBalancer(
|
|
probs.numel(),
|
|
channel_dim=0,
|
|
min_positive=0.05,
|
|
max_positive=0.95,
|
|
max_factor=0.2,
|
|
min_abs=0.0,
|
|
)
|
|
|
|
y_grad = torch.sign(torch.randn(probs.numel(), N))
|
|
|
|
y = m(x)
|
|
y.backward(gradient=y_grad)
|
|
print("_test_activation_balancer_sign: x = ", x)
|
|
print("_test_activation_balancer_sign: y grad = ", y_grad)
|
|
print("_test_activation_balancer_sign: x grad = ", x.grad)
|
|
|
|
|
|
def _test_activation_balancer_magnitude():
|
|
magnitudes = torch.arange(0, 1, 0.01)
|
|
N = 1000
|
|
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(
|
|
-1
|
|
)
|
|
x = x.detach()
|
|
x.requires_grad = True
|
|
m = ActivationBalancer(
|
|
magnitudes.numel(),
|
|
channel_dim=0,
|
|
min_positive=0.0,
|
|
max_positive=1.0,
|
|
max_factor=0.2,
|
|
min_abs=0.2,
|
|
max_abs=0.8,
|
|
min_prob=1.0,
|
|
)
|
|
|
|
y_grad = torch.sign(torch.randn(magnitudes.numel(), N))
|
|
|
|
y = m(x)
|
|
y.backward(gradient=y_grad)
|
|
print("_test_activation_balancer_magnitude: x = ", x)
|
|
print("_test_activation_balancer_magnitude: y grad = ", y_grad)
|
|
print("_test_activation_balancer_magnitude: x grad = ", x.grad)
|
|
|
|
|
|
def _test_basic_norm():
|
|
num_channels = 128
|
|
m = BasicNorm(num_channels=num_channels, channel_dim=1)
|
|
|
|
x = torch.randn(500, num_channels)
|
|
|
|
y = m(x)
|
|
|
|
assert y.shape == x.shape
|
|
x_rms = (x ** 2).mean().sqrt()
|
|
y_rms = (y ** 2).mean().sqrt()
|
|
print("x rms = ", x_rms)
|
|
print("y rms = ", y_rms)
|
|
assert y_rms < x_rms
|
|
assert y_rms > 0.5 * x_rms
|
|
|
|
|
|
def _test_double_swish_deriv():
|
|
x = torch.randn(10, 12, dtype=torch.double) * 3.0
|
|
x.requires_grad = True
|
|
m = DoubleSwish()
|
|
|
|
tol = (1.2 - (-0.043637)) / 255.0
|
|
torch.autograd.gradcheck(m, x, atol=tol)
|
|
|
|
# for self-test.
|
|
x = torch.randn(1000, 1000, dtype=torch.double) * 3.0
|
|
x.requires_grad = True
|
|
y = m(x)
|
|
|
|
|
|
def _test_softmax():
|
|
a = torch.randn(2, 10, dtype=torch.float64)
|
|
b = a.clone()
|
|
a.requires_grad = True
|
|
b.requires_grad = True
|
|
a.softmax(dim=1)[:, 0].sum().backward()
|
|
print("a grad = ", a.grad)
|
|
softmax(b, dim=1)[:, 0].sum().backward()
|
|
print("b grad = ", b.grad)
|
|
assert torch.allclose(a.grad, b.grad)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.getLogger().setLevel(logging.INFO)
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
_test_softmax()
|
|
_test_whiten()
|
|
_test_max_eig()
|
|
_test_activation_balancer_sign()
|
|
_test_activation_balancer_magnitude()
|
|
_test_basic_norm()
|
|
_test_double_swish_deriv() |