Compare commits
13 Commits
7610071742
...
135793c812
Author | SHA1 | Date |
---|---|---|
zuev-stepan | 135793c812 | |
Stepan Zuev | 21b69ad676 | |
Stepan Zuev | 6f71fa65fb | |
Stepan Zuev | 871ae700df | |
Stepan Zuev | 94e9f9bd42 | |
Puyuan Peng | 0d19fa5d03 | |
Puyuan Peng | 97b1f51947 | |
zuev-stepan | bbe3437b8d | |
Stepan Zuev | 3d3f32ba7e | |
Stepan Zuev | 1a219cf6da | |
Stepan Zuev | f9fed26b15 | |
Stepan Zuev | 74fa65979d | |
Stepan Zuev | 5cef625c1b |
40
README.md
40
README.md
|
@ -86,6 +86,10 @@ conda install -c conda-forge montreal-forced-aligner=2.2.17 openfst=1.8.2 kaldi=
|
||||||
|
|
||||||
# to run ipynb
|
# to run ipynb
|
||||||
conda install -n voicecraft ipykernel --no-deps --force-reinstall
|
conda install -n voicecraft ipykernel --no-deps --force-reinstall
|
||||||
|
|
||||||
|
# below is only needed if you want to run gradio_app.py
|
||||||
|
sudo apt-get install espeak # NOTE: only required if you want to use gradio_app, which is used by whisperx for forced alignment
|
||||||
|
sudo apt-get install libespeak-dev # NOTE: only required if you want to use gradio_app, which is used by whisperx for forced alignment
|
||||||
```
|
```
|
||||||
|
|
||||||
If you have encountered version issues when running things, checkout [environment.yml](./environment.yml) for exact matching.
|
If you have encountered version issues when running things, checkout [environment.yml](./environment.yml) for exact matching.
|
||||||
|
@ -93,6 +97,42 @@ If you have encountered version issues when running things, checkout [environmen
|
||||||
## Inference Examples
|
## Inference Examples
|
||||||
Checkout [`inference_speech_editing.ipynb`](./inference_speech_editing.ipynb) and [`inference_tts.ipynb`](./inference_tts.ipynb)
|
Checkout [`inference_speech_editing.ipynb`](./inference_speech_editing.ipynb) and [`inference_tts.ipynb`](./inference_tts.ipynb)
|
||||||
|
|
||||||
|
## Gradio
|
||||||
|
After environment setup install additional dependencies:
|
||||||
|
```bash
|
||||||
|
apt-get install -y espeak espeak-data libespeak1 libespeak-dev
|
||||||
|
apt-get install -y festival*
|
||||||
|
apt-get install -y build-essential
|
||||||
|
apt-get install -y flac libasound2-dev libsndfile1-dev vorbis-tools
|
||||||
|
apt-get install -y libxml2-dev libxslt-dev zlib1g-dev
|
||||||
|
pip install -r gradio_requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
Run gradio server from terminal or [`gradio_app.ipynb`](./gradio_app.ipynb):
|
||||||
|
```bash
|
||||||
|
python gradio_app.py
|
||||||
|
TMP_PATH=/tmp python gradio_app.py # if you want to change tmp folder path
|
||||||
|
```
|
||||||
|
It is ready to use on [default url](http://127.0.0.1:7860).
|
||||||
|
|
||||||
|
### How to use it
|
||||||
|
1. (optionally) Select models
|
||||||
|
2. Load models
|
||||||
|
3. Transcribe
|
||||||
|
4. (optionally) Tweak some parameters
|
||||||
|
5. Run
|
||||||
|
6. (optionally) Rerun part-by-part in Long TTS mode
|
||||||
|
|
||||||
|
### Some features
|
||||||
|
Smart transcript: write only what you want to generate
|
||||||
|
|
||||||
|
TTS mode: Zero-shot TTS
|
||||||
|
|
||||||
|
Edit mode: Speech editing
|
||||||
|
|
||||||
|
Long TTS mode: Easy TTS on long texts
|
||||||
|
|
||||||
|
|
||||||
## Training
|
## Training
|
||||||
To train an VoiceCraft model, you need to prepare the following parts:
|
To train an VoiceCraft model, you need to prepare the following parts:
|
||||||
1. utterances and their transcripts
|
1. utterances and their transcripts
|
||||||
|
|
|
@ -0,0 +1,87 @@
|
||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "9b6a0c92",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Only do the below if you are using docker"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "961faa43",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!source ~/.bashrc && \\\n",
|
||||||
|
" apt-get update && \\\n",
|
||||||
|
" apt-get install -y espeak espeak-data libespeak1 libespeak-dev && \\\n",
|
||||||
|
" apt-get install -y festival* && \\\n",
|
||||||
|
" apt-get install -y build-essential && \\\n",
|
||||||
|
" apt-get install -y flac libasound2-dev libsndfile1-dev vorbis-tools && \\\n",
|
||||||
|
" apt-get install -y libxml2-dev libxslt-dev zlib1g-dev"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "598d75cf",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!source ~/.bashrc && \\\n",
|
||||||
|
" conda activate voicecraft && \\\n",
|
||||||
|
" pip install -r gradio_requirements.txt"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "8b9c4436",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# STOP\n",
|
||||||
|
"You have to do this part manually using the mouse/keyboard and the tabs at the top.\n",
|
||||||
|
"\n",
|
||||||
|
"* Refresh your browser to make sure it picks up the new kernel.\n",
|
||||||
|
"* Kernel -> Change Kernel -> Select Kernel -> voicecraft\n",
|
||||||
|
"* Kernel -> Restart Kernel -> Yes\n",
|
||||||
|
"\n",
|
||||||
|
"Now you can run the rest of the notebook and get an audio sample output. It will automatically download more models and such. The next time you use this container, you can just start below here as the dependencies will remain available until you delete the docker container."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "f089aa96",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from gradio_app import app\n",
|
||||||
|
"app.launch()"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "voicecraft",
|
||||||
|
"language": "python",
|
||||||
|
"name": "voicecraft"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.19"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
|
@ -0,0 +1,593 @@
|
||||||
|
import os
|
||||||
|
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||||
|
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" # for local use
|
||||||
|
import gradio as gr
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from data.tokenizer import (
|
||||||
|
AudioTokenizer,
|
||||||
|
TextTokenizer,
|
||||||
|
)
|
||||||
|
from models import voicecraft
|
||||||
|
import io
|
||||||
|
import numpy as np
|
||||||
|
import random
|
||||||
|
import uuid
|
||||||
|
|
||||||
|
|
||||||
|
TMP_PATH = os.getenv("TMP_PATH", "./demo/temp")
|
||||||
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
whisper_model, align_model, voicecraft_model = None, None, None
|
||||||
|
|
||||||
|
|
||||||
|
def get_random_string():
|
||||||
|
return "".join(str(uuid.uuid4()).split("-"))
|
||||||
|
|
||||||
|
|
||||||
|
def seed_everything(seed):
|
||||||
|
if seed != -1:
|
||||||
|
os.environ['PYTHONHASHSEED'] = str(seed)
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed(seed)
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
|
||||||
|
|
||||||
|
class WhisperxAlignModel:
|
||||||
|
def __init__(self):
|
||||||
|
from whisperx import load_align_model
|
||||||
|
self.model, self.metadata = load_align_model(language_code="en", device=device)
|
||||||
|
|
||||||
|
def align(self, segments, audio_path):
|
||||||
|
from whisperx import align, load_audio
|
||||||
|
audio = load_audio(audio_path)
|
||||||
|
return align(segments, self.model, self.metadata, audio, device, return_char_alignments=False)["segments"]
|
||||||
|
|
||||||
|
|
||||||
|
class WhisperModel:
|
||||||
|
def __init__(self, model_name):
|
||||||
|
from whisper import load_model
|
||||||
|
self.model = load_model(model_name, device)
|
||||||
|
|
||||||
|
from whisper.tokenizer import get_tokenizer
|
||||||
|
tokenizer = get_tokenizer(multilingual=False)
|
||||||
|
self.supress_tokens = [-1] + [
|
||||||
|
i
|
||||||
|
for i in range(tokenizer.eot)
|
||||||
|
if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" "))
|
||||||
|
]
|
||||||
|
|
||||||
|
def transcribe(self, audio_path):
|
||||||
|
return self.model.transcribe(audio_path, suppress_tokens=self.supress_tokens, word_timestamps=True)["segments"]
|
||||||
|
|
||||||
|
|
||||||
|
class WhisperxModel:
|
||||||
|
def __init__(self, model_name, align_model: WhisperxAlignModel):
|
||||||
|
from whisperx import load_model
|
||||||
|
self.model = load_model(model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None})
|
||||||
|
self.align_model = align_model
|
||||||
|
|
||||||
|
def transcribe(self, audio_path):
|
||||||
|
segments = self.model.transcribe(audio_path, batch_size=8)["segments"]
|
||||||
|
return self.align_model.align(segments, audio_path)
|
||||||
|
|
||||||
|
|
||||||
|
def load_models(whisper_backend_name, whisper_model_name, alignment_model_name, voicecraft_model_name):
|
||||||
|
global transcribe_model, align_model, voicecraft_model
|
||||||
|
|
||||||
|
if alignment_model_name is not None:
|
||||||
|
align_model = WhisperxAlignModel()
|
||||||
|
|
||||||
|
if whisper_model_name is not None:
|
||||||
|
if whisper_backend_name == "whisper":
|
||||||
|
transcribe_model = WhisperModel(whisper_model_name)
|
||||||
|
else:
|
||||||
|
if align_model is None:
|
||||||
|
raise gr.Error("Align model required for whisperx backend")
|
||||||
|
transcribe_model = WhisperxModel(whisper_model_name, align_model)
|
||||||
|
|
||||||
|
voicecraft_name = f"{voicecraft_model_name}.pth"
|
||||||
|
ckpt_fn = f"./pretrained_models/{voicecraft_name}"
|
||||||
|
encodec_fn = "./pretrained_models/encodec_4cb2048_giga.th"
|
||||||
|
if not os.path.exists(ckpt_fn):
|
||||||
|
os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{voicecraft_name}\?download\=true")
|
||||||
|
os.system(f"mv {voicecraft_name}\?download\=true ./pretrained_models/{voicecraft_name}")
|
||||||
|
if not os.path.exists(encodec_fn):
|
||||||
|
os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/encodec_4cb2048_giga.th")
|
||||||
|
os.system(f"mv encodec_4cb2048_giga.th ./pretrained_models/encodec_4cb2048_giga.th")
|
||||||
|
|
||||||
|
ckpt = torch.load(ckpt_fn, map_location="cpu")
|
||||||
|
model = voicecraft.VoiceCraft(ckpt["config"])
|
||||||
|
model.load_state_dict(ckpt["model"])
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
voicecraft_model = {
|
||||||
|
"ckpt": ckpt,
|
||||||
|
"model": model,
|
||||||
|
"text_tokenizer": TextTokenizer(backend="espeak"),
|
||||||
|
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
|
||||||
|
}
|
||||||
|
|
||||||
|
return gr.Accordion()
|
||||||
|
|
||||||
|
|
||||||
|
def get_transcribe_state(segments):
|
||||||
|
words_info = [word_info for segment in segments for word_info in segment["words"]]
|
||||||
|
return {
|
||||||
|
"segments": segments,
|
||||||
|
"transcript": " ".join([segment["text"] for segment in segments]),
|
||||||
|
"words_info": words_info,
|
||||||
|
"transcript_with_start_time": " ".join([f"{word['start']} {word['word']}" for word in words_info]),
|
||||||
|
"transcript_with_end_time": " ".join([f"{word['word']} {word['end']}" for word in words_info]),
|
||||||
|
"word_bounds": [f"{word['start']} {word['word']} {word['end']}" for word in words_info]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def transcribe(seed, audio_path):
|
||||||
|
if transcribe_model is None:
|
||||||
|
raise gr.Error("Transcription model not loaded")
|
||||||
|
seed_everything(seed)
|
||||||
|
|
||||||
|
segments = transcribe_model.transcribe(audio_path)
|
||||||
|
state = get_transcribe_state(segments)
|
||||||
|
|
||||||
|
return [
|
||||||
|
state["transcript"], state["transcript_with_start_time"], state["transcript_with_end_time"],
|
||||||
|
gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # prompt_to_word
|
||||||
|
gr.Dropdown(value=state["word_bounds"][0], choices=state["word_bounds"], interactive=True), # edit_from_word
|
||||||
|
gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # edit_to_word
|
||||||
|
state
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def align_segments(transcript, audio_path):
|
||||||
|
from aeneas.executetask import ExecuteTask
|
||||||
|
from aeneas.task import Task
|
||||||
|
import json
|
||||||
|
config_string = 'task_language=eng|os_task_file_format=json|is_text_type=plain'
|
||||||
|
|
||||||
|
tmp_transcript_path = os.path.join(TMP_PATH, f"{get_random_string()}.txt")
|
||||||
|
tmp_sync_map_path = os.path.join(TMP_PATH, f"{get_random_string()}.json")
|
||||||
|
with open(tmp_transcript_path, "w") as f:
|
||||||
|
f.write(transcript)
|
||||||
|
|
||||||
|
task = Task(config_string=config_string)
|
||||||
|
task.audio_file_path_absolute = os.path.abspath(audio_path)
|
||||||
|
task.text_file_path_absolute = os.path.abspath(tmp_transcript_path)
|
||||||
|
task.sync_map_file_path_absolute = os.path.abspath(tmp_sync_map_path)
|
||||||
|
ExecuteTask(task).execute()
|
||||||
|
task.output_sync_map_file()
|
||||||
|
|
||||||
|
with open(tmp_sync_map_path, "r") as f:
|
||||||
|
return json.load(f)
|
||||||
|
|
||||||
|
|
||||||
|
def align(seed, transcript, audio_path):
|
||||||
|
if align_model is None:
|
||||||
|
raise gr.Error("Align model not loaded")
|
||||||
|
seed_everything(seed)
|
||||||
|
|
||||||
|
fragments = align_segments(transcript, audio_path)
|
||||||
|
segments = [{
|
||||||
|
"start": float(fragment["begin"]),
|
||||||
|
"end": float(fragment["end"]),
|
||||||
|
"text": " ".join(fragment["lines"])
|
||||||
|
} for fragment in fragments["fragments"]]
|
||||||
|
segments = align_model.align(segments, audio_path)
|
||||||
|
state = get_transcribe_state(segments)
|
||||||
|
|
||||||
|
return [
|
||||||
|
state["transcript_with_start_time"], state["transcript_with_end_time"],
|
||||||
|
gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # prompt_to_word
|
||||||
|
gr.Dropdown(value=state["word_bounds"][0], choices=state["word_bounds"], interactive=True), # edit_from_word
|
||||||
|
gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # edit_to_word
|
||||||
|
state
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def get_output_audio(audio_tensors, codec_audio_sr):
|
||||||
|
result = torch.cat(audio_tensors, 1)
|
||||||
|
buffer = io.BytesIO()
|
||||||
|
torchaudio.save(buffer, result, int(codec_audio_sr), format="wav")
|
||||||
|
buffer.seek(0)
|
||||||
|
return buffer.read()
|
||||||
|
|
||||||
|
|
||||||
|
def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature,
|
||||||
|
stop_repetition, sample_batch_size, kvcache, silence_tokens,
|
||||||
|
audio_path, transcribe_state, transcript, smart_transcript,
|
||||||
|
mode, prompt_end_time, edit_start_time, edit_end_time,
|
||||||
|
split_text, selected_sentence, previous_audio_tensors):
|
||||||
|
if voicecraft_model is None:
|
||||||
|
raise gr.Error("VoiceCraft model not loaded")
|
||||||
|
if smart_transcript and (transcribe_state is None):
|
||||||
|
raise gr.Error("Can't use smart transcript: whisper transcript not found")
|
||||||
|
|
||||||
|
seed_everything(seed)
|
||||||
|
if mode == "Long TTS":
|
||||||
|
if split_text == "Newline":
|
||||||
|
sentences = transcript.split('\n')
|
||||||
|
else:
|
||||||
|
from nltk.tokenize import sent_tokenize
|
||||||
|
sentences = sent_tokenize(transcript.replace("\n", " "))
|
||||||
|
elif mode == "Rerun":
|
||||||
|
colon_position = selected_sentence.find(':')
|
||||||
|
selected_sentence_idx = int(selected_sentence[:colon_position])
|
||||||
|
sentences = [selected_sentence[colon_position + 1:]]
|
||||||
|
else:
|
||||||
|
sentences = [transcript.replace("\n", " ")]
|
||||||
|
|
||||||
|
info = torchaudio.info(audio_path)
|
||||||
|
audio_dur = info.num_frames / info.sample_rate
|
||||||
|
|
||||||
|
audio_tensors = []
|
||||||
|
inference_transcript = ""
|
||||||
|
for sentence in sentences:
|
||||||
|
decode_config = {"top_k": top_k, "top_p": top_p, "temperature": temperature, "stop_repetition": stop_repetition,
|
||||||
|
"kvcache": kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr,
|
||||||
|
"silence_tokens": silence_tokens, "sample_batch_size": sample_batch_size}
|
||||||
|
if mode != "Edit":
|
||||||
|
from inference_tts_scale import inference_one_sample
|
||||||
|
|
||||||
|
if smart_transcript:
|
||||||
|
target_transcript = ""
|
||||||
|
for word in transcribe_state["words_info"]:
|
||||||
|
if word["end"] < prompt_end_time:
|
||||||
|
target_transcript += word["word"] + (" " if word["word"][-1] != " " else "")
|
||||||
|
elif (word["start"] + word["end"]) / 2 < prompt_end_time:
|
||||||
|
# include part of the word it it's big, but adjust prompt_end_time
|
||||||
|
target_transcript += word["word"] + (" " if word["word"][-1] != " " else "")
|
||||||
|
prompt_end_time = word["end"]
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
target_transcript += f" {sentence}"
|
||||||
|
else:
|
||||||
|
target_transcript = sentence
|
||||||
|
|
||||||
|
inference_transcript += target_transcript + "\n"
|
||||||
|
|
||||||
|
prompt_end_frame = int(min(audio_dur, prompt_end_time) * info.sample_rate)
|
||||||
|
_, gen_audio = inference_one_sample(voicecraft_model["model"],
|
||||||
|
voicecraft_model["ckpt"]["config"],
|
||||||
|
voicecraft_model["ckpt"]["phn2num"],
|
||||||
|
voicecraft_model["text_tokenizer"], voicecraft_model["audio_tokenizer"],
|
||||||
|
audio_path, target_transcript, device, decode_config,
|
||||||
|
prompt_end_frame)
|
||||||
|
else:
|
||||||
|
from inference_speech_editing_scale import inference_one_sample
|
||||||
|
|
||||||
|
if smart_transcript:
|
||||||
|
target_transcript = ""
|
||||||
|
for word in transcribe_state["words_info"]:
|
||||||
|
if word["start"] < edit_start_time:
|
||||||
|
target_transcript += word["word"] + (" " if word["word"][-1] != " " else "")
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
target_transcript += f" {sentence}"
|
||||||
|
for word in transcribe_state["words_info"]:
|
||||||
|
if word["end"] > edit_end_time:
|
||||||
|
target_transcript += word["word"] + (" " if word["word"][-1] != " " else "")
|
||||||
|
else:
|
||||||
|
target_transcript = sentence
|
||||||
|
|
||||||
|
inference_transcript += target_transcript + "\n"
|
||||||
|
|
||||||
|
morphed_span = (max(edit_start_time - left_margin, 1 / codec_sr), min(edit_end_time + right_margin, audio_dur))
|
||||||
|
mask_interval = [[round(morphed_span[0]*codec_sr), round(morphed_span[1]*codec_sr)]]
|
||||||
|
mask_interval = torch.LongTensor(mask_interval)
|
||||||
|
|
||||||
|
_, gen_audio = inference_one_sample(voicecraft_model["model"],
|
||||||
|
voicecraft_model["ckpt"]["config"],
|
||||||
|
voicecraft_model["ckpt"]["phn2num"],
|
||||||
|
voicecraft_model["text_tokenizer"], voicecraft_model["audio_tokenizer"],
|
||||||
|
audio_path, target_transcript, mask_interval, device, decode_config)
|
||||||
|
gen_audio = gen_audio[0].cpu()
|
||||||
|
audio_tensors.append(gen_audio)
|
||||||
|
|
||||||
|
if mode != "Rerun":
|
||||||
|
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
||||||
|
sentences = [f"{idx}: {text}" for idx, text in enumerate(sentences)]
|
||||||
|
component = gr.Dropdown(choices=sentences, value=sentences[0])
|
||||||
|
return output_audio, inference_transcript, component, audio_tensors
|
||||||
|
else:
|
||||||
|
previous_audio_tensors[selected_sentence_idx] = audio_tensors[0]
|
||||||
|
output_audio = get_output_audio(previous_audio_tensors, codec_audio_sr)
|
||||||
|
sentence_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
||||||
|
return output_audio, inference_transcript, sentence_audio, previous_audio_tensors
|
||||||
|
|
||||||
|
|
||||||
|
def update_input_audio(audio_path):
|
||||||
|
if audio_path is None:
|
||||||
|
return 0, 0, 0
|
||||||
|
|
||||||
|
info = torchaudio.info(audio_path)
|
||||||
|
max_time = round(info.num_frames / info.sample_rate, 2)
|
||||||
|
return [
|
||||||
|
gr.Slider(maximum=max_time, value=max_time),
|
||||||
|
gr.Slider(maximum=max_time, value=0),
|
||||||
|
gr.Slider(maximum=max_time, value=max_time),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def change_mode(mode):
|
||||||
|
tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor
|
||||||
|
return [
|
||||||
|
gr.Group(visible=mode != "Edit"),
|
||||||
|
gr.Group(visible=mode == "Edit"),
|
||||||
|
gr.Radio(visible=mode == "Edit"),
|
||||||
|
gr.Radio(visible=mode == "Long TTS"),
|
||||||
|
gr.Group(visible=mode == "Long TTS"),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def load_sentence(selected_sentence, codec_audio_sr, audio_tensors):
|
||||||
|
if selected_sentence is None:
|
||||||
|
return None
|
||||||
|
colon_position = selected_sentence.find(':')
|
||||||
|
selected_sentence_idx = int(selected_sentence[:colon_position])
|
||||||
|
return get_output_audio([audio_tensors[selected_sentence_idx]], codec_audio_sr)
|
||||||
|
|
||||||
|
|
||||||
|
def update_bound_word(is_first_word, selected_word, edit_word_mode):
|
||||||
|
if selected_word is None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
word_start_time = float(selected_word.split(' ')[0])
|
||||||
|
word_end_time = float(selected_word.split(' ')[-1])
|
||||||
|
if edit_word_mode == "Replace half":
|
||||||
|
bound_time = (word_start_time + word_end_time) / 2
|
||||||
|
elif is_first_word:
|
||||||
|
bound_time = word_start_time
|
||||||
|
else:
|
||||||
|
bound_time = word_end_time
|
||||||
|
|
||||||
|
return bound_time
|
||||||
|
|
||||||
|
|
||||||
|
def update_bound_words(from_selected_word, to_selected_word, edit_word_mode):
|
||||||
|
return [
|
||||||
|
update_bound_word(True, from_selected_word, edit_word_mode),
|
||||||
|
update_bound_word(False, to_selected_word, edit_word_mode),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
smart_transcript_info = """
|
||||||
|
If enabled, the target transcript will be constructed for you:</br>
|
||||||
|
- In TTS and Long TTS mode just write the text you want to synthesize.</br>
|
||||||
|
- In Edit mode just write the text to replace selected editing segment.</br>
|
||||||
|
If disabled, you should write the target transcript yourself:</br>
|
||||||
|
- In TTS mode write prompt transcript followed by generation transcript.</br>
|
||||||
|
- In Long TTS select split by newline (<b>SENTENCE SPLIT WON'T WORK</b>) and start each line with a prompt transcript.</br>
|
||||||
|
- In Edit mode write full prompt</br>
|
||||||
|
"""
|
||||||
|
|
||||||
|
demo_original_transcript = " But when I had approached so near to them, the common object, which the sense deceives, lost not by distance any of its marks."
|
||||||
|
|
||||||
|
demo_text = {
|
||||||
|
"TTS": {
|
||||||
|
"smart": "I cannot believe that the same model can also do text to speech synthesis as well!",
|
||||||
|
"regular": "But when I had approached so near to them, the common I cannot believe that the same model can also do text to speech synthesis as well!"
|
||||||
|
},
|
||||||
|
"Edit": {
|
||||||
|
"smart": "saw the mirage of the lake in the distance,",
|
||||||
|
"regular": "But when I saw the mirage of the lake in the distance, which the sense deceives, Lost not by distance any of its marks,"
|
||||||
|
},
|
||||||
|
"Long TTS": {
|
||||||
|
"smart": "You can run TTS on a big text!\n"
|
||||||
|
"Just write it line-by-line. Or sentence-by-sentence.\n"
|
||||||
|
"If some sentences sound odd, just rerun TTS on them, no need to generate the whole text again!",
|
||||||
|
"regular": "But when I had approached so near to them, the common You can run TTS on a big text!\n"
|
||||||
|
"But when I had approached so near to them, the common Just write it line-by-line. Or sentence-by-sentence.\n"
|
||||||
|
"But when I had approached so near to them, the common If some sentences sound odd, just rerun TTS on them, no need to generate the whole text again!"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
all_demo_texts = {vv for k, v in demo_text.items() for kk, vv in v.items()}
|
||||||
|
|
||||||
|
demo_words = [
|
||||||
|
'0.029 But 0.149', '0.189 when 0.33', '0.43 I 0.49', '0.53 had 0.65', '0.711 approached 1.152', '1.352 so 1.593',
|
||||||
|
'1.693 near 1.933', '1.994 to 2.074', '2.134 them, 2.354', '2.535 the 2.655', '2.695 common 3.016', '3.196 object, 3.577',
|
||||||
|
'3.717 which 3.898', '3.958 the 4.058', '4.098 sense 4.359', '4.419 deceives, 4.92', '5.101 lost 5.481', '5.682 not 5.963',
|
||||||
|
'6.043 by 6.183', '6.223 distance 6.644', '6.905 any 7.065', '7.125 of 7.185', '7.245 its 7.346', '7.406 marks. 7.727'
|
||||||
|
]
|
||||||
|
|
||||||
|
demo_words_info = [
|
||||||
|
{'word': 'But', 'start': 0.029, 'end': 0.149, 'score': 0.834}, {'word': 'when', 'start': 0.189, 'end': 0.33, 'score': 0.879},
|
||||||
|
{'word': 'I', 'start': 0.43, 'end': 0.49, 'score': 0.984}, {'word': 'had', 'start': 0.53, 'end': 0.65, 'score': 0.998},
|
||||||
|
{'word': 'approached', 'start': 0.711, 'end': 1.152, 'score': 0.822}, {'word': 'so', 'start': 1.352, 'end': 1.593, 'score': 0.822},
|
||||||
|
{'word': 'near', 'start': 1.693, 'end': 1.933, 'score': 0.752}, {'word': 'to', 'start': 1.994, 'end': 2.074, 'score': 0.924},
|
||||||
|
{'word': 'them,', 'start': 2.134, 'end': 2.354, 'score': 0.914}, {'word': 'the', 'start': 2.535, 'end': 2.655, 'score': 0.818},
|
||||||
|
{'word': 'common', 'start': 2.695, 'end': 3.016, 'score': 0.971}, {'word': 'object,', 'start': 3.196, 'end': 3.577, 'score': 0.823},
|
||||||
|
{'word': 'which', 'start': 3.717, 'end': 3.898, 'score': 0.701}, {'word': 'the', 'start': 3.958, 'end': 4.058, 'score': 0.798},
|
||||||
|
{'word': 'sense', 'start': 4.098, 'end': 4.359, 'score': 0.797}, {'word': 'deceives,', 'start': 4.419, 'end': 4.92, 'score': 0.802},
|
||||||
|
{'word': 'lost', 'start': 5.101, 'end': 5.481, 'score': 0.71}, {'word': 'not', 'start': 5.682, 'end': 5.963, 'score': 0.781},
|
||||||
|
{'word': 'by', 'start': 6.043, 'end': 6.183, 'score': 0.834}, {'word': 'distance', 'start': 6.223, 'end': 6.644, 'score': 0.899},
|
||||||
|
{'word': 'any', 'start': 6.905, 'end': 7.065, 'score': 0.893}, {'word': 'of', 'start': 7.125, 'end': 7.185, 'score': 0.772},
|
||||||
|
{'word': 'its', 'start': 7.245, 'end': 7.346, 'score': 0.778}, {'word': 'marks.', 'start': 7.406, 'end': 7.727, 'score': 0.955}
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def update_demo(mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word):
|
||||||
|
if transcript not in all_demo_texts:
|
||||||
|
return transcript, edit_from_word, edit_to_word
|
||||||
|
|
||||||
|
replace_half = edit_word_mode == "Replace half"
|
||||||
|
change_edit_from_word = edit_from_word == demo_words[2] or edit_from_word == demo_words[3]
|
||||||
|
change_edit_to_word = edit_to_word == demo_words[11] or edit_to_word == demo_words[12]
|
||||||
|
demo_edit_from_word_value = demo_words[2] if replace_half else demo_words[3]
|
||||||
|
demo_edit_to_word_value = demo_words[12] if replace_half else demo_words[11]
|
||||||
|
return [
|
||||||
|
demo_text[mode]["smart" if smart_transcript else "regular"],
|
||||||
|
demo_edit_from_word_value if change_edit_from_word else edit_from_word,
|
||||||
|
demo_edit_to_word_value if change_edit_to_word else edit_to_word,
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
with gr.Blocks() as app:
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column(scale=2):
|
||||||
|
load_models_btn = gr.Button(value="Load models")
|
||||||
|
with gr.Column(scale=5):
|
||||||
|
with gr.Accordion("Select models", open=False) as models_selector:
|
||||||
|
with gr.Row():
|
||||||
|
voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", choices=["giga330M", "giga830M"])
|
||||||
|
whisper_backend_choice = gr.Radio(label="Whisper backend", value="whisperX", choices=["whisper", "whisperX"])
|
||||||
|
whisper_model_choice = gr.Radio(label="Whisper model", value="base.en",
|
||||||
|
choices=[None, "base.en", "small.en", "medium.en", "large"])
|
||||||
|
align_model_choice = gr.Radio(label="Forced alignment model", value="whisperX", choices=[None, "whisperX"])
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column(scale=2):
|
||||||
|
input_audio = gr.Audio(value="./demo/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=True)
|
||||||
|
with gr.Group():
|
||||||
|
original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript,
|
||||||
|
info="Use whisper model to get the transcript. Fix and align it if necessary.")
|
||||||
|
with gr.Accordion("Word start time", open=False):
|
||||||
|
transcript_with_start_time = gr.Textbox(label="Start time", lines=5, interactive=False, info="Start time before each word")
|
||||||
|
with gr.Accordion("Word end time", open=False):
|
||||||
|
transcript_with_end_time = gr.Textbox(label="End time", lines=5, interactive=False, info="End time after each word")
|
||||||
|
|
||||||
|
transcribe_btn = gr.Button(value="Transcribe")
|
||||||
|
align_btn = gr.Button(value="Align")
|
||||||
|
|
||||||
|
with gr.Column(scale=3):
|
||||||
|
with gr.Group():
|
||||||
|
transcript = gr.Textbox(label="Text", lines=7, value=demo_text["TTS"]["smart"])
|
||||||
|
with gr.Row():
|
||||||
|
smart_transcript = gr.Checkbox(label="Smart transcript", value=True)
|
||||||
|
with gr.Accordion(label="?", open=False):
|
||||||
|
info = gr.Markdown(value=smart_transcript_info)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
mode = gr.Radio(label="Mode", choices=["TTS", "Edit", "Long TTS"], value="TTS")
|
||||||
|
split_text = gr.Radio(label="Split text", choices=["Newline", "Sentence"], value="Newline",
|
||||||
|
info="Split text into parts and run TTS for each part.", visible=False)
|
||||||
|
edit_word_mode = gr.Radio(label="Edit word mode", choices=["Replace half", "Replace all"], value="Replace half",
|
||||||
|
info="What to do with first and last word", visible=False)
|
||||||
|
|
||||||
|
with gr.Group() as tts_mode_controls:
|
||||||
|
prompt_to_word = gr.Dropdown(label="Last word in prompt", choices=demo_words, value=demo_words[10], interactive=True)
|
||||||
|
prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.001, value=3.016)
|
||||||
|
|
||||||
|
with gr.Group(visible=False) as edit_mode_controls:
|
||||||
|
with gr.Row():
|
||||||
|
edit_from_word = gr.Dropdown(label="First word to edit", choices=demo_words, value=demo_words[2], interactive=True)
|
||||||
|
edit_to_word = gr.Dropdown(label="Last word to edit", choices=demo_words, value=demo_words[12], interactive=True)
|
||||||
|
with gr.Row():
|
||||||
|
edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=7.93, step=0.001, value=0.46)
|
||||||
|
edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=7.93, step=0.001, value=3.808)
|
||||||
|
|
||||||
|
run_btn = gr.Button(value="Run")
|
||||||
|
|
||||||
|
with gr.Column(scale=2):
|
||||||
|
output_audio = gr.Audio(label="Output Audio")
|
||||||
|
with gr.Accordion("Inference transcript", open=False):
|
||||||
|
inference_transcript = gr.Textbox(label="Inference transcript", lines=5, interactive=False,
|
||||||
|
info="Inference was performed on this transcript.")
|
||||||
|
with gr.Group(visible=False) as long_tts_sentence_editor:
|
||||||
|
sentence_selector = gr.Dropdown(label="Sentence", value=None,
|
||||||
|
info="Select sentence you want to regenerate")
|
||||||
|
sentence_audio = gr.Audio(label="Sentence Audio", scale=2)
|
||||||
|
rerun_btn = gr.Button(value="Rerun")
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False):
|
||||||
|
stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=3,
|
||||||
|
info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled")
|
||||||
|
sample_batch_size = gr.Number(label="speech rate", value=4, precision=0,
|
||||||
|
info="The higher the number, the faster the output will be. Under the hood, the model will generate this many samples and choose the shortest one")
|
||||||
|
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
|
||||||
|
kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1,
|
||||||
|
info="set to 0 to use less VRAM, but with slower inference")
|
||||||
|
left_margin = gr.Number(label="left_margin", value=0.08, info="margin to the left of the editing segment")
|
||||||
|
right_margin = gr.Number(label="right_margin", value=0.08, info="margin to the right of the editing segment")
|
||||||
|
top_p = gr.Number(label="top_p", value=0.8, info="0.8 is a good value, 0.9 is also good")
|
||||||
|
temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not recommend to change")
|
||||||
|
top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling")
|
||||||
|
codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, Do not change')
|
||||||
|
codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, Do not change')
|
||||||
|
silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change")
|
||||||
|
|
||||||
|
|
||||||
|
audio_tensors = gr.State()
|
||||||
|
transcribe_state = gr.State(value={"words_info": demo_words_info})
|
||||||
|
|
||||||
|
|
||||||
|
mode.change(fn=update_demo,
|
||||||
|
inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word],
|
||||||
|
outputs=[transcript, edit_from_word, edit_to_word])
|
||||||
|
edit_word_mode.change(fn=update_demo,
|
||||||
|
inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word],
|
||||||
|
outputs=[transcript, edit_from_word, edit_to_word])
|
||||||
|
smart_transcript.change(fn=update_demo,
|
||||||
|
inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word],
|
||||||
|
outputs=[transcript, edit_from_word, edit_to_word])
|
||||||
|
|
||||||
|
load_models_btn.click(fn=load_models,
|
||||||
|
inputs=[whisper_backend_choice, whisper_model_choice, align_model_choice, voicecraft_model_choice],
|
||||||
|
outputs=[models_selector])
|
||||||
|
|
||||||
|
input_audio.upload(fn=update_input_audio,
|
||||||
|
inputs=[input_audio],
|
||||||
|
outputs=[prompt_end_time, edit_start_time, edit_end_time])
|
||||||
|
transcribe_btn.click(fn=transcribe,
|
||||||
|
inputs=[seed, input_audio],
|
||||||
|
outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time,
|
||||||
|
prompt_to_word, edit_from_word, edit_to_word, transcribe_state])
|
||||||
|
align_btn.click(fn=align,
|
||||||
|
inputs=[seed, original_transcript, input_audio],
|
||||||
|
outputs=[transcript_with_start_time, transcript_with_end_time,
|
||||||
|
prompt_to_word, edit_from_word, edit_to_word, transcribe_state])
|
||||||
|
|
||||||
|
mode.change(fn=change_mode,
|
||||||
|
inputs=[mode],
|
||||||
|
outputs=[tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor])
|
||||||
|
|
||||||
|
run_btn.click(fn=run,
|
||||||
|
inputs=[
|
||||||
|
seed, left_margin, right_margin,
|
||||||
|
codec_audio_sr, codec_sr,
|
||||||
|
top_k, top_p, temperature,
|
||||||
|
stop_repetition, sample_batch_size,
|
||||||
|
kvcache, silence_tokens,
|
||||||
|
input_audio, transcribe_state, transcript, smart_transcript,
|
||||||
|
mode, prompt_end_time, edit_start_time, edit_end_time,
|
||||||
|
split_text, sentence_selector, audio_tensors
|
||||||
|
],
|
||||||
|
outputs=[output_audio, inference_transcript, sentence_selector, audio_tensors])
|
||||||
|
|
||||||
|
sentence_selector.change(fn=load_sentence,
|
||||||
|
inputs=[sentence_selector, codec_audio_sr, audio_tensors],
|
||||||
|
outputs=[sentence_audio])
|
||||||
|
rerun_btn.click(fn=run,
|
||||||
|
inputs=[
|
||||||
|
seed, left_margin, right_margin,
|
||||||
|
codec_audio_sr, codec_sr,
|
||||||
|
top_k, top_p, temperature,
|
||||||
|
stop_repetition, sample_batch_size,
|
||||||
|
kvcache, silence_tokens,
|
||||||
|
input_audio, transcribe_state, transcript, smart_transcript,
|
||||||
|
gr.State(value="Rerun"), prompt_end_time, edit_start_time, edit_end_time,
|
||||||
|
split_text, sentence_selector, audio_tensors
|
||||||
|
],
|
||||||
|
outputs=[output_audio, inference_transcript, sentence_audio, audio_tensors])
|
||||||
|
|
||||||
|
prompt_to_word.change(fn=update_bound_word,
|
||||||
|
inputs=[gr.State(False), prompt_to_word, gr.State("Replace all")],
|
||||||
|
outputs=[prompt_end_time])
|
||||||
|
edit_from_word.change(fn=update_bound_word,
|
||||||
|
inputs=[gr.State(True), edit_from_word, edit_word_mode],
|
||||||
|
outputs=[edit_start_time])
|
||||||
|
edit_to_word.change(fn=update_bound_word,
|
||||||
|
inputs=[gr.State(False), edit_to_word, edit_word_mode],
|
||||||
|
outputs=[edit_end_time])
|
||||||
|
edit_word_mode.change(fn=update_bound_words,
|
||||||
|
inputs=[edit_from_word, edit_to_word, edit_word_mode],
|
||||||
|
outputs=[edit_start_time, edit_end_time])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
app.launch()
|
|
@ -0,0 +1,5 @@
|
||||||
|
gradio==3.50.2
|
||||||
|
nltk>=3.8.1
|
||||||
|
openai-whisper>=20231117
|
||||||
|
aeneas>=1.7.3.0
|
||||||
|
whisperx>=3.1.1
|
|
@ -5,6 +5,7 @@ echo Creating and running the Jupyter container...
|
||||||
docker run -it -d ^
|
docker run -it -d ^
|
||||||
--gpus all ^
|
--gpus all ^
|
||||||
-p 8888:8888 ^
|
-p 8888:8888 ^
|
||||||
|
-p 7860:7860 ^
|
||||||
--name jupyter ^
|
--name jupyter ^
|
||||||
--user root ^
|
--user root ^
|
||||||
-e NB_USER="%username%" ^
|
-e NB_USER="%username%" ^
|
||||||
|
|
|
@ -8,6 +8,7 @@ docker run -it \
|
||||||
-d \
|
-d \
|
||||||
--gpus all \
|
--gpus all \
|
||||||
-p 8888:8888 \
|
-p 8888:8888 \
|
||||||
|
-p 7860:7860 \
|
||||||
--name jupyter \
|
--name jupyter \
|
||||||
--user root \
|
--user root \
|
||||||
-e NB_USER="$USER" \
|
-e NB_USER="$USER" \
|
||||||
|
|
Loading…
Reference in New Issue