Automate instalation of dependencies in notebook.

Add a note in README about running in docker too to reduce cruft on your
host box.

Good luck, be nice!
This commit is contained in:
John W. Leimgruber III 2024-03-29 15:27:12 -04:00
parent 7c9ac6174e
commit bd8c747c91
3 changed files with 156 additions and 265 deletions

View File

@ -10,6 +10,35 @@ To clone or edit an unseen voice, VoiceCraft needs only a few seconds of referen
## News
:star: 03/28/2024: Model weights are up on HuggingFace🤗 [here](https://huggingface.co/pyp1/VoiceCraft/tree/main)!
## QuickStart
For Linux only, or likely Windows Subsystem for Linux (WSL) ubuntu.
```bash
# 1. clone the repo on in a directory on a drive with plenty of free space
git clone git@github.com:jasonppy/VoiceCraft.git
cd VoiceCraft
# 2. assumes you have docker installed with nvidia container container-toolkit
# https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/1.13.5/install-guide.html
# sudo apt-get install -y nvidia-container-toolkit-base || yay -Syu nvidia-container-toolkit || echo etc...
# 3. Try to start an existing container otherwise create a new one passing in all GPUs
./start-jupyter.sh
# 4. now open a webpage on the host box to the URL shown at the bottom of:
docker logs jupyter
# 5. optionally look inside from another terminal
docker exec -it jupyter /bin/bash
export USER=(your_linux_username_used_above)
export HOME=/home/$USER
sudo apt-get update
# 6. confirm video card(s) are visible inside container
nvidia-smi
# 7. Now in browser, open inference_tts.ipynb and work through one cell at a time
echo GOOD LUCK AND BE NICE
```
## TODO
The TODOs left will be completed by the end of March 2024.

File diff suppressed because one or more lines are too long

21
start-jupyter.sh Executable file
View File

@ -0,0 +1,21 @@
#!/usr/bin/env bash
## Assumes you have docker installed with nvidia container container-toolkit
# https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/1.13.5/install-guide.html
# sudo apt-get install -y nvidia-container-toolkit-base || yay -Syu nvidia-container-toolkit || echo etc...
## Try to start an existing container otherwise create a new one
docker start jupyter 2> /dev/null || \
docker run -it \
-d \
--gpus all \
-p 8888:8888 \
--name jupyter \
--user root \
-e NB_USER="$USER" \
-e CHOWN_HOME=yes \
-e GRANT_SUDO=yes \
-w "/home/${NB_USER}" \
-v "$PWD":"/home/$USER/work" \
jupyter/base-notebook
## `docker logs jupyter` to get the URL link and token e.g.
## http://127.0.0.1:8888/lab?token=blahblahblahblabhlaabhalbhalbhal