This commit is contained in:
Chenxi 2024-04-21 00:03:53 -04:00 committed by GitHub
commit ad18fe1a5c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
18 changed files with 528 additions and 2 deletions

View File

@ -0,0 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.0.1
torchaudio==2.0.2
xformers==0.0.22
tensorboard==2.16.2
phonemizer==3.2.1
datasets==2.16.0
torchmetrics==0.11.1

View File

@ -0,0 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.0.1
torchaudio==2.0.2
xformers==0.0.22
tensorboard==2.16.2
phonemizer==3.2.1
datasets==2.16.0
torchmetrics==0.11.1

View File

@ -0,0 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.0.1
torchaudio==2.0.2
xformers==0.0.22
tensorboard==2.16.2
phonemizer==3.2.1
datasets==2.16.0
torchmetrics==0.11.1

View File

@ -0,0 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.0.1
torchaudio==2.0.2
xformers==0.0.22
tensorboard==2.16.2
phonemizer==3.2.1
datasets==2.16.0
torchmetrics==0.11.1

View File

@ -0,0 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.0.1
torchaudio==2.0.2
xformers==0.0.22
tensorboard==2.16.2
phonemizer==3.2.1
datasets==2.16.0
torchmetrics==0.11.1

View File

@ -0,0 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.0.1
torchaudio==2.0.2
xformers==0.0.22
tensorboard==2.16.2
phonemizer==3.2.1
datasets==2.16.0
torchmetrics==0.11.1

17
.dockerignore Normal file
View File

@ -0,0 +1,17 @@
# The .dockerignore file excludes files from the container build process.
#
# https://docs.docker.com/engine/reference/builder/#dockerignore-file
# Exclude Git files
.git
.github
.gitignore
# Exclude Python cache files
__pycache__
.mypy_cache
.pytest_cache
.ruff_cache
# Exclude Python virtual environment
/venv

4
.gitignore vendored
View File

@ -27,4 +27,6 @@ thumbs.db
src/audiocraft
!/demo/
!/demo/*
!/demo/*
.cog/tmp/*

View File

@ -1,5 +1,6 @@
# VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild
[![Paper](https://img.shields.io/badge/arXiv-2301.12503-brightgreen.svg?style=flat-square)](https://jasonppy.github.io/assets/pdfs/VoiceCraft.pdf) [![githubio](https://img.shields.io/badge/GitHub.io-Audio_Samples-blue?logo=Github&style=flat-square)](https://jasonppy.github.io/VoiceCraft_web/) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/pyp1/VoiceCraft_gradio) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1IOjpglQyMTO2C3Y94LD9FY0Ocn-RJRg6?usp=sharing)
[![Paper](https://img.shields.io/badge/arXiv-2301.12503-brightgreen.svg?style=flat-square)](https://jasonppy.github.io/assets/pdfs/VoiceCraft.pdf) [![githubio](https://img.shields.io/badge/GitHub.io-Audio_Samples-blue?logo=Github&style=flat-square)](https://jasonppy.github.io/VoiceCraft_web/) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/pyp1/VoiceCraft_gradio) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1IOjpglQyMTO2C3Y94LD9FY0Ocn-RJRg6?usp=sharing) [![Replicate](https://replicate.com/cjwbw/voicecraft/badge)](https://replicate.com/cjwbw/voicecraft)
### TL;DR
VoiceCraft is a token infilling neural codec language model, that achieves state-of-the-art performance on both **speech editing** and **zero-shot text-to-speech (TTS)** on in-the-wild data including audiobooks, internet videos, and podcasts.

1
audiocraft Submodule

@ -0,0 +1 @@
Subproject commit 69fea8b290ad1b4b40d28f92d1dfc0ab01dbab85

25
cog.yaml Normal file
View File

@ -0,0 +1,25 @@
# Configuration for Cog ⚙️
# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md
build:
gpu: true
system_packages:
- libgl1-mesa-glx
- libglib2.0-0
- ffmpeg
- espeak-ng
python_version: "3.11"
python_packages:
- torch==2.1.0
- torchaudio==2.1.0
- xformers
- phonemizer==3.2.1
- whisperx==3.1.1
- openai-whisper>=20231117
run:
# - git clone https://github.com/facebookresearch/audiocraft && pip install -e ./audiocraft
- pip install -e git+https://github.com/facebookresearch/audiocraft.git@c5157b5bf14bf83449c17ea1eeb66c19fb4bc7f0#egg=audiocraft # use "git clone https://github.com/facebookresearch/audiocraft && pip install -e ./audiocraft" instead if hits audiocraft import error
- pip install "pydantic<2.0.0"
- curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.6.0/pget_linux_x86_64" && chmod +x /usr/local/bin/pget
- mkdir -p /root/.cache/torch/hub/checkpoints/ && wget --output-document "/root/.cache/torch/hub/checkpoints/wav2vec2_fairseq_base_ls960_asr_ls960.pth" "https://download.pytorch.org/torchaudio/models/wav2vec2_fairseq_base_ls960_asr_ls960.pth"
predict: "predict.py:Predictor"

432
predict.py Normal file
View File

@ -0,0 +1,432 @@
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import time
import random
import getpass
import shutil
import subprocess
import torch
import numpy as np
import torchaudio
from whisper.model import Whisper, ModelDimensions
from whisper.tokenizer import get_tokenizer
from cog import BasePredictor, Input, Path, BaseModel
os.environ["USER"] = getpass.getuser()
from data.tokenizer import (
AudioTokenizer,
TextTokenizer,
)
from models import voicecraft
from inference_tts_scale import inference_one_sample
from edit_utils import get_span
from inference_speech_editing_scale import (
inference_one_sample as inference_one_sample_editing,
)
MODEL_URL = "https://weights.replicate.delivery/default/pyp1/VoiceCraft-models.tar" # all the models are cached and uploaded to replicate.delivery for faster booting
MODEL_CACHE = "model_cache"
class ModelOutput(BaseModel):
whisper_transcript_orig_audio: str
generated_audio: Path
class WhisperxAlignModel:
def __init__(self):
from whisperx import load_align_model
self.model, self.metadata = load_align_model(
language_code="en", device="cuda:0"
)
def align(self, segments, audio_path):
from whisperx import align, load_audio
audio = load_audio(audio_path)
return align(
segments,
self.model,
self.metadata,
audio,
device="cuda:0",
return_char_alignments=False,
)["segments"]
class WhisperxModel:
def __init__(self, model_name, align_model: WhisperxAlignModel, device="cuda"):
from whisperx import load_model
# the model weights are cached from Systran/faster-whisper-base.en etc
self.model = load_model(
model_name,
device,
asr_options={
"suppress_numerals": True,
"max_new_tokens": None,
"clip_timestamps": None,
"hallucination_silence_threshold": None,
},
)
self.align_model = align_model
def transcribe(self, audio_path):
segments = self.model.transcribe(audio_path, language="en", batch_size=8)[
"segments"
]
return self.align_model.align(segments, audio_path)
class WhisperModel:
def __init__(self, model_cache, model_name="base.en", device="cuda"):
# the model weights are cached from https://github.com/openai/whisper/blob/ba3f3cd54b0e5b8ce1ab3de13e32122d0d5f98ab/whisper/__init__.py#L17
with open(f"{model_cache}/{model_name}.pt", "rb") as fp:
checkpoint = torch.load(fp, map_location="cpu")
dims = ModelDimensions(**checkpoint["dims"])
self.model = Whisper(dims)
self.model.load_state_dict(checkpoint["model_state_dict"])
self.model.to(device)
tokenizer = get_tokenizer(multilingual=False)
self.supress_tokens = [-1] + [
i
for i in range(tokenizer.eot)
if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" "))
]
def transcribe(self, audio_path):
return self.model.transcribe(
audio_path, suppress_tokens=self.supress_tokens, word_timestamps=True
)["segments"]
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.device = "cuda"
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
encodec_fn = f"{MODEL_CACHE}/encodec_4cb2048_giga.th"
self.models, self.ckpt, self.phn2num = {}, {}, {}
for voicecraft_name in [
"giga830M.pth",
"giga330M.pth",
"gigaHalfLibri330M_TTSEnhanced_max16s.pth",
]:
ckpt_fn = f"{MODEL_CACHE}/{voicecraft_name}"
self.ckpt[voicecraft_name] = torch.load(ckpt_fn, map_location="cpu")
self.models[voicecraft_name] = voicecraft.VoiceCraft(
self.ckpt[voicecraft_name]["config"]
)
self.models[voicecraft_name].load_state_dict(
self.ckpt[voicecraft_name]["model"]
)
self.models[voicecraft_name].to(self.device)
self.models[voicecraft_name].eval()
self.phn2num[voicecraft_name] = self.ckpt[voicecraft_name]["phn2num"]
self.text_tokenizer = TextTokenizer(backend="espeak")
self.audio_tokenizer = AudioTokenizer(signature=encodec_fn, device=self.device)
self.transcribe_models_whisper = {
k: WhisperModel(MODEL_CACHE, k, self.device)
for k in ["base.en", "small.en", "medium.en"]
}
align_model = WhisperxAlignModel()
self.transcribe_models_whisperx = {
k: WhisperxModel(f"{MODEL_CACHE}/whisperx_{k.split('.')[0]}", align_model)
for k in ["base.en", "small.en", "medium.en"]
}
def predict(
self,
task: str = Input(
description="Choose a task",
choices=[
"speech_editing-substitution",
"speech_editing-insertion",
"speech_editing-deletion",
"zero-shot text-to-speech",
],
default="zero-shot text-to-speech",
),
voicecraft_model: str = Input(
description="Choose a model",
choices=["giga830M.pth", "giga330M.pth", "giga330M_TTSEnhanced.pth"],
default="giga330M_TTSEnhanced.pth",
),
orig_audio: Path = Input(
description="Original audio file. WhisperX small.en model will be used for transcription"
),
orig_transcript: str = Input(
description="Optionally provide the transcript of the input audio. Leave it blank to use the whisper model below to generate the transcript. Inaccurate transcription may lead to error TTS or speech editing",
default="",
),
whisper_model: str = Input(
description="If orig_transcript is not provided above, choose a Whisper or WhisperX model. WhisperX model contains extra alignment steps. Inaccurate transcription may lead to error TTS or speech editing. You can modify the generated transcript and provide it directly to ",
choices=[
"whisper-base.en",
"whisper-small.en",
"whisper-medium.en",
"whisperx-base.en",
"whisperx-small.en",
"whisperx-medium.en",
],
default="whisper-base.en",
),
target_transcript: str = Input(
description="Transcript of the target audio file",
),
cut_off_sec: float = Input(
description="Only used for for zero-shot text-to-speech task. The first seconds of the original audio that are used for zero-shot text-to-speech. 3 sec of reference is generally enough for high quality voice cloning, but longer is generally better, try e.g. 3~6 sec",
default=3.01,
),
kvcache: int = Input(
description="Set to 0 to use less VRAM, but with slower inference",
default=1,
),
left_margin: float = Input(
description="Margin to the left of the editing segment",
default=0.08,
),
right_margin: float = Input(
description="Margin to the right of the editing segment",
default=0.08,
),
temperature: float = Input(
description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic. Do not recommend to change",
default=1,
),
top_p: float = Input(
description="When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens",
ge=0.0,
le=1.0,
default=0.8,
),
stop_repetition: int = Input(
default=-1,
description=" -1 means do not adjust prob of silence tokens. if there are long silence or unnaturally stretched words, increase sample_batch_size to 2, 3 or even 4",
),
sample_batch_size: int = Input(
description="The higher the number, the faster the output will be. Under the hood, the model will generate this many samples and choose the shortest one",
default=4,
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
) -> ModelOutput:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
seed_everything(seed)
whisper_model, whisper_model_size = whisper_model.split("-")
if whisper_model == "whisper":
segments = self.transcribe_models_whisper[whisper_model_size].transcribe(
str(orig_audio)
)
else:
segments = self.transcribe_models_whisperx[whisper_model_size].transcribe(
str(orig_audio)
)
state = get_transcribe_state(segments)
whisper_transcript = state["transcript"].strip()
if len(orig_transcript.strip()) == 0:
orig_transcript = whisper_transcript
print(f"The transcript from the Whisper model: {whisper_transcript}")
temp_folder = "exp_dir"
if os.path.exists(temp_folder):
shutil.rmtree(temp_folder)
os.makedirs(temp_folder)
filename = "orig_audio"
audio_fn = str(orig_audio)
info = torchaudio.info(audio_fn)
audio_dur = info.num_frames / info.sample_rate
# hyperparameters for inference
codec_audio_sr = 16000
codec_sr = 50
top_k = 0
silence_tokens = [1388, 1898, 131]
if voicecraft_model == "giga330M_TTSEnhanced.pth":
voicecraft_model = "gigaHalfLibri330M_TTSEnhanced_max16s.pth"
if task == "zero-shot text-to-speech":
assert (
cut_off_sec < audio_dur
), f"cut_off_sec {cut_off_sec} is larger than the audio duration {audio_dur}"
prompt_end_frame = int(cut_off_sec * info.sample_rate)
idx = find_closest_cut_off_word(state["word_bounds"], cut_off_sec)
orig_transcript_until_cutoff_time = "".join(
[word_bound["word"] for word_bound in state["word_bounds"][:idx]]
)
else:
edit_type = task.split("-")[-1]
orig_span, new_span = get_span(
orig_transcript, target_transcript, edit_type
)
if orig_span[0] > orig_span[1]:
RuntimeError(f"example {audio_fn} failed")
if orig_span[0] == orig_span[1]:
orig_span_save = [orig_span[0]]
else:
orig_span_save = orig_span
if new_span[0] == new_span[1]:
new_span_save = [new_span[0]]
else:
new_span_save = new_span
orig_span_save = ",".join([str(item) for item in orig_span_save])
new_span_save = ",".join([str(item) for item in new_span_save])
start, end = get_mask_interval_from_word_bounds(
state["word_bounds"], orig_span_save, edit_type
)
# span in codec frames
morphed_span = (
max(start - left_margin, 1 / codec_sr),
min(end + right_margin, audio_dur),
) # in seconds
mask_interval = [
[round(morphed_span[0] * codec_sr), round(morphed_span[1] * codec_sr)]
]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
decode_config = {
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"stop_repetition": stop_repetition,
"kvcache": kvcache,
"codec_audio_sr": codec_audio_sr,
"codec_sr": codec_sr,
"silence_tokens": silence_tokens,
}
if task == "zero-shot text-to-speech":
decode_config["sample_batch_size"] = sample_batch_size
_, gen_audio = inference_one_sample(
self.models[voicecraft_model],
self.ckpt[voicecraft_model]["config"],
self.phn2num[voicecraft_model],
self.text_tokenizer,
self.audio_tokenizer,
audio_fn,
orig_transcript_until_cutoff_time.strip()
+ ""
+ target_transcript.strip(),
self.device,
decode_config,
prompt_end_frame,
)
else:
_, gen_audio = inference_one_sample_editing(
self.models[voicecraft_model],
self.ckpt[voicecraft_model]["config"],
self.phn2num[voicecraft_model],
self.text_tokenizer,
self.audio_tokenizer,
audio_fn,
target_transcript,
mask_interval,
self.device,
decode_config,
)
# save segments for comparison
gen_audio = gen_audio[0].cpu()
out = "/tmp/out.wav"
torchaudio.save(out, gen_audio, codec_audio_sr)
return ModelOutput(
generated_audio=Path(out), whisper_transcript_orig_audio=whisper_transcript
)
def seed_everything(seed):
os.environ["PYTHONHASHSEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def get_transcribe_state(segments):
words_info = [word_info for segment in segments for word_info in segment["words"]]
return {
"transcript": " ".join([segment["text"].strip() for segment in segments]),
"word_bounds": [
{"word": word["word"], "start": word["start"], "end": word["end"]}
for word in words_info
],
}
def find_closest_cut_off_word(word_bounds, cut_off_sec):
min_distance = float("inf")
for i, word_bound in enumerate(word_bounds):
distance = abs(word_bound["start"] - cut_off_sec)
if distance < min_distance:
min_distance = distance
if word_bound["end"] > cut_off_sec:
break
return i
def get_mask_interval_from_word_bounds(word_bounds, word_span_ind, editType):
tmp = word_span_ind.split(",")
s, e = int(tmp[0]), int(tmp[-1])
start = None
for j, item in enumerate(word_bounds):
if j == s:
if editType == "insertion":
start = float(item["end"])
else:
start = float(item["start"])
if j == e:
if editType == "insertion":
end = float(item["start"])
else:
end = float(item["end"])
assert start != None
break
return (start, end)