mirror of
https://github.com/jasonppy/VoiceCraft.git
synced 2025-06-05 21:49:11 +02:00
init
This commit is contained in:
63
models/modules/sampling.py
Normal file
63
models/modules/sampling.py
Normal file
@ -0,0 +1,63 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
def top_k_top_p_filtering(
|
||||
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
|
||||
):
|
||||
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
||||
Args:
|
||||
logits: logits distribution shape (batch size, vocabulary size)
|
||||
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
||||
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
||||
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||||
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
||||
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
||||
"""
|
||||
if top_k > 0:
|
||||
top_k = min(
|
||||
max(top_k, min_tokens_to_keep), logits.size(-1)
|
||||
) # Safety check
|
||||
# Remove all tokens with a probability less than the last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cumulative_probs = torch.cumsum(
|
||||
F.softmax(sorted_logits, dim=-1), dim=-1
|
||||
)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
if min_tokens_to_keep > 1:
|
||||
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
||||
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
||||
# Shift the indices to the right to keep also the first token above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
||||
..., :-1
|
||||
].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
1, sorted_indices, sorted_indices_to_remove
|
||||
)
|
||||
logits[indices_to_remove] = filter_value
|
||||
return logits
|
||||
|
||||
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
||||
# temperature: (`optional`) float
|
||||
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
||||
# top_k: (`optional`) int
|
||||
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
||||
# top_p: (`optional`) float
|
||||
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
||||
|
||||
# Temperature (higher temperature => more likely to sample low probability tokens)
|
||||
if temperature != 1.0:
|
||||
logits = logits / temperature
|
||||
# Top-p/top-k filtering
|
||||
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
||||
# Sample
|
||||
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
||||
return token
|
Reference in New Issue
Block a user