mirror of
https://github.com/jasonppy/VoiceCraft.git
synced 2025-06-05 21:49:11 +02:00
init
This commit is contained in:
0
models/modules/__init__.py
Normal file
0
models/modules/__init__.py
Normal file
653
models/modules/activation.py
Normal file
653
models/modules/activation.py
Normal file
@ -0,0 +1,653 @@
|
||||
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py, modified by Puyuan Peng, 2024
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn import Linear, Module
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
||||
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
||||
from torch.nn.parameter import Parameter
|
||||
import logging
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
from torch.types import _dtype as DType
|
||||
else:
|
||||
# The JIT doesn't understand Union, nor torch.dtype here
|
||||
DType = int
|
||||
|
||||
def _canonical_mask(
|
||||
mask: Optional[Tensor],
|
||||
mask_name: str,
|
||||
other_type: Optional[DType],
|
||||
other_name: str,
|
||||
target_type: DType,
|
||||
check_other: bool = True,
|
||||
) -> Optional[Tensor]:
|
||||
|
||||
if mask is not None:
|
||||
_mask_dtype = mask.dtype
|
||||
_mask_is_float = torch.is_floating_point(mask)
|
||||
if _mask_dtype != torch.bool and not _mask_is_float:
|
||||
raise AssertionError(
|
||||
f"only bool and floating types of {mask_name} are supported")
|
||||
if check_other and other_type is not None:
|
||||
if _mask_dtype != other_type:
|
||||
warnings.warn(
|
||||
f"Support for mismatched {mask_name} and {other_name} "
|
||||
"is deprecated. Use same type for both instead."
|
||||
)
|
||||
if not _mask_is_float:
|
||||
mask = (
|
||||
torch.zeros_like(mask, dtype=target_type)
|
||||
.masked_fill_(mask, float("-inf"))
|
||||
)
|
||||
return mask
|
||||
|
||||
def _in_projection_packed(
|
||||
q: Tensor,
|
||||
k: Tensor,
|
||||
v: Tensor,
|
||||
w: Tensor,
|
||||
b: Optional[Tensor] = None,
|
||||
) -> List[Tensor]:
|
||||
r"""
|
||||
Performs the in-projection step of the attention operation, using packed weights.
|
||||
Output is a triple containing projection tensors for query, key and value.
|
||||
|
||||
Args:
|
||||
q, k, v: query, key and value tensors to be projected. For self-attention,
|
||||
these are typically the same tensor; for encoder-decoder attention,
|
||||
k and v are typically the same tensor. (We take advantage of these
|
||||
identities for performance if they are present.) Regardless, q, k and v
|
||||
must share a common embedding dimension; otherwise their shapes may vary.
|
||||
w: projection weights for q, k and v, packed into a single tensor. Weights
|
||||
are packed along dimension 0, in q, k, v order.
|
||||
b: optional projection biases for q, k and v, packed into a single tensor
|
||||
in q, k, v order.
|
||||
|
||||
Shape:
|
||||
Inputs:
|
||||
- q: :math:`(..., E)` where E is the embedding dimension
|
||||
- k: :math:`(..., E)` where E is the embedding dimension
|
||||
- v: :math:`(..., E)` where E is the embedding dimension
|
||||
- w: :math:`(E * 3, E)` where E is the embedding dimension
|
||||
- b: :math:`E * 3` where E is the embedding dimension
|
||||
|
||||
Output:
|
||||
- in output list :math:`[q', k', v']`, each output tensor will have the
|
||||
same shape as the corresponding input tensor.
|
||||
"""
|
||||
E = q.size(-1)
|
||||
if k is v:
|
||||
if q is k:
|
||||
# self-attention
|
||||
proj = F.linear(q, w, b)
|
||||
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
|
||||
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
||||
return proj[0], proj[1], proj[2]
|
||||
else:
|
||||
# encoder-decoder attention
|
||||
w_q, w_kv = w.split([E, E * 2])
|
||||
if b is None:
|
||||
b_q = b_kv = None
|
||||
else:
|
||||
b_q, b_kv = b.split([E, E * 2])
|
||||
q_proj = F.linear(q, w_q, b_q)
|
||||
kv_proj = F.linear(k, w_kv, b_kv)
|
||||
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
|
||||
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
||||
return (q_proj, kv_proj[0], kv_proj[1])
|
||||
else:
|
||||
w_q, w_k, w_v = w.chunk(3)
|
||||
if b is None:
|
||||
b_q = b_k = b_v = None
|
||||
else:
|
||||
b_q, b_k, b_v = b.chunk(3)
|
||||
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)
|
||||
|
||||
def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
|
||||
if input is None:
|
||||
return None
|
||||
elif isinstance(input, torch.Tensor):
|
||||
return input.dtype
|
||||
raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
|
||||
class MultiheadAttention(Module):
|
||||
r"""Allows the model to jointly attend to information
|
||||
from different representation subspaces as described in the paper:
|
||||
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
||||
|
||||
Multi-Head Attention is defined as:
|
||||
|
||||
.. math::
|
||||
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
||||
|
||||
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
||||
|
||||
``forward()`` will use a special optimized implementation if all of the following
|
||||
conditions are met:
|
||||
|
||||
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
|
||||
restriction will be loosened in the future.)
|
||||
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
||||
- training is disabled (using ``.eval()``)
|
||||
- dropout is 0
|
||||
- ``add_bias_kv`` is ``False``
|
||||
- ``add_zero_attn`` is ``False``
|
||||
- ``batch_first`` is ``True`` and the input is batched
|
||||
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
||||
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
|
||||
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
||||
nor ``attn_mask`` is passed
|
||||
|
||||
If the optimized implementation is in use, a
|
||||
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
||||
``query``/``key``/``value`` to represent padding more efficiently than using a
|
||||
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
||||
will be returned, and an additional speedup proportional to the fraction of the input
|
||||
that is padding can be expected.
|
||||
|
||||
Args:
|
||||
embed_dim: Total dimension of the model.
|
||||
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
||||
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
||||
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
||||
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
||||
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
||||
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
||||
Default: ``False``.
|
||||
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
||||
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
||||
batch_first: If ``True``, then the input and output tensors are provided
|
||||
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
||||
|
||||
Examples::
|
||||
|
||||
>>> # xdoctest: +SKIP
|
||||
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
||||
|
||||
"""
|
||||
__constants__ = ["batch_first"]
|
||||
bias_k: Optional[torch.Tensor]
|
||||
bias_v: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
linear1_cls=Linear,
|
||||
linear2_cls=Linear,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(MultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.kdim = kdim if kdim is not None else embed_dim
|
||||
self.vdim = vdim if vdim is not None else embed_dim
|
||||
self._qkv_same_embed_dim = (
|
||||
self.kdim == embed_dim and self.vdim == embed_dim
|
||||
)
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.batch_first = batch_first
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
if add_bias_kv:
|
||||
self.bias_k = Parameter(
|
||||
torch.empty((1, 1, embed_dim), **factory_kwargs)
|
||||
)
|
||||
self.bias_v = Parameter(
|
||||
torch.empty((1, 1, embed_dim), **factory_kwargs)
|
||||
)
|
||||
else:
|
||||
self.bias_k = self.bias_v = None
|
||||
|
||||
if linear1_cls == Linear:
|
||||
if not self._qkv_same_embed_dim:
|
||||
self.q_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, embed_dim), **factory_kwargs)
|
||||
)
|
||||
self.k_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.kdim), **factory_kwargs)
|
||||
)
|
||||
self.v_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.vdim), **factory_kwargs)
|
||||
)
|
||||
self.register_parameter("in_proj_weight", None)
|
||||
else:
|
||||
# go down this route with voicecraft
|
||||
self.in_proj_weight = Parameter(
|
||||
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
|
||||
)
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias: # True by default
|
||||
self.in_proj_bias = Parameter(
|
||||
torch.empty(3 * embed_dim, **factory_kwargs)
|
||||
)
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
self.out_proj = NonDynamicallyQuantizableLinear(
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
||||
)
|
||||
|
||||
self._reset_parameters()
|
||||
else:
|
||||
if not self._qkv_same_embed_dim:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
self.in_proj_linear = linear1_cls(
|
||||
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
|
||||
)
|
||||
self.in_proj_weight = self.in_proj_linear.weight
|
||||
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = self.in_proj_linear.bias
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
|
||||
self.out_proj = linear2_cls(
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
||||
)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
self.add_zero_attn = add_zero_attn
|
||||
|
||||
def _reset_parameters(self):
|
||||
if self._qkv_same_embed_dim:
|
||||
xavier_uniform_(self.in_proj_weight)
|
||||
else:
|
||||
xavier_uniform_(self.q_proj_weight)
|
||||
xavier_uniform_(self.k_proj_weight)
|
||||
xavier_uniform_(self.v_proj_weight)
|
||||
|
||||
if self.in_proj_bias is not None:
|
||||
constant_(self.in_proj_bias, 0.0)
|
||||
constant_(self.out_proj.bias, 0.0)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
def __setstate__(self, state):
|
||||
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
||||
if "_qkv_same_embed_dim" not in state:
|
||||
state["_qkv_same_embed_dim"] = True
|
||||
|
||||
super(MultiheadAttention, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
past: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
||||
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
||||
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
||||
Queries are compared against key-value pairs to produce the output.
|
||||
See "Attention Is All You Need" for more details.
|
||||
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
||||
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
||||
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
||||
See "Attention Is All You Need" for more details.
|
||||
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
||||
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
||||
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
||||
See "Attention Is All You Need" for more details.
|
||||
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
||||
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
||||
Binary and byte masks are supported.
|
||||
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
||||
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
||||
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
||||
Default: ``True``.
|
||||
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
||||
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
||||
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
||||
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
||||
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
||||
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
||||
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
||||
the attention weight.
|
||||
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
||||
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
||||
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
||||
|
||||
Outputs:
|
||||
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
||||
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
||||
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
||||
embedding dimension ``embed_dim``.
|
||||
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
||||
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
||||
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
||||
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
||||
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
||||
|
||||
.. note::
|
||||
`batch_first` argument is ignored for unbatched inputs.
|
||||
"""
|
||||
is_batched = query.dim() == 3
|
||||
if key_padding_mask is not None:
|
||||
_kpm_dtype = key_padding_mask.dtype
|
||||
if _kpm_dtype != torch.bool and not torch.is_floating_point(
|
||||
key_padding_mask
|
||||
):
|
||||
raise AssertionError(
|
||||
"only bool and floating types of key_padding_mask are supported"
|
||||
)
|
||||
why_not_fast_path = ""
|
||||
if not is_batched:
|
||||
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
||||
elif query is not key or key is not value:
|
||||
# When lifting this restriction, don't forget to either
|
||||
# enforce that the dtypes all match or test cases where
|
||||
# they don't!
|
||||
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
||||
elif (
|
||||
self.in_proj_bias is not None
|
||||
and query.dtype != self.in_proj_bias.dtype
|
||||
):
|
||||
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
||||
elif (
|
||||
self.in_proj_weight is not None
|
||||
and query.dtype != self.in_proj_weight.dtype
|
||||
):
|
||||
# this case will fail anyway, but at least they'll get a useful error message.
|
||||
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
||||
elif self.training:
|
||||
why_not_fast_path = "training is enabled"
|
||||
elif not self.batch_first:
|
||||
why_not_fast_path = "batch_first was not True"
|
||||
elif self.bias_k is not None:
|
||||
why_not_fast_path = "self.bias_k was not None"
|
||||
elif self.bias_v is not None:
|
||||
why_not_fast_path = "self.bias_v was not None"
|
||||
elif self.dropout:
|
||||
why_not_fast_path = f"dropout was {self.dropout}, required zero"
|
||||
elif self.add_zero_attn:
|
||||
why_not_fast_path = "add_zero_attn was enabled"
|
||||
elif not self._qkv_same_embed_dim:
|
||||
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
||||
elif attn_mask is not None:
|
||||
why_not_fast_path = "attn_mask was not None"
|
||||
elif query.is_nested and key_padding_mask is not None:
|
||||
why_not_fast_path = (
|
||||
"key_padding_mask is not supported with NestedTensor input"
|
||||
)
|
||||
elif self.num_heads % 2 == 1:
|
||||
why_not_fast_path = "num_heads is odd"
|
||||
elif torch.is_autocast_enabled():
|
||||
why_not_fast_path = "autocast is enabled"
|
||||
|
||||
if not why_not_fast_path:
|
||||
tensor_args = (
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
)
|
||||
# We have to use list comprehensions below because TorchScript does not support
|
||||
# generator expressions.
|
||||
if torch.overrides.has_torch_function(tensor_args):
|
||||
why_not_fast_path = "some Tensor argument has_torch_function"
|
||||
elif not all(
|
||||
[
|
||||
(x is None or x.is_cuda or "cpu" in str(x.device))
|
||||
for x in tensor_args
|
||||
]
|
||||
):
|
||||
why_not_fast_path = (
|
||||
"some Tensor argument is neither CUDA nor CPU"
|
||||
)
|
||||
elif torch.is_grad_enabled() and any(
|
||||
[x is not None and x.requires_grad for x in tensor_args]
|
||||
):
|
||||
why_not_fast_path = (
|
||||
"grad is enabled and at least one of query or the "
|
||||
"input/output projection weights or biases requires_grad"
|
||||
)
|
||||
if not why_not_fast_path:
|
||||
return torch._native_multi_head_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
key_padding_mask
|
||||
if key_padding_mask is not None
|
||||
else attn_mask,
|
||||
need_weights,
|
||||
average_attn_weights,
|
||||
1
|
||||
if key_padding_mask is not None
|
||||
else 0
|
||||
if attn_mask is not None
|
||||
else None,
|
||||
)
|
||||
|
||||
any_nested = query.is_nested or key.is_nested or value.is_nested
|
||||
assert not any_nested, (
|
||||
"MultiheadAttention does not support NestedTensor outside of its fast path. "
|
||||
+ f"The fast path was not hit because {why_not_fast_path}"
|
||||
)
|
||||
|
||||
if self.batch_first and is_batched:
|
||||
# make sure that the transpose op does not affect the "is" property
|
||||
if key is value:
|
||||
if query is key:
|
||||
query = key = value = query.transpose(1, 0)
|
||||
else:
|
||||
query, key = [x.transpose(1, 0) for x in (query, key)]
|
||||
value = key
|
||||
else:
|
||||
query, key, value = [
|
||||
x.transpose(1, 0) for x in (query, key, value)
|
||||
]
|
||||
|
||||
if not self._qkv_same_embed_dim:
|
||||
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.bias_k,
|
||||
self.bias_v,
|
||||
self.add_zero_attn,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
use_separate_proj_weight=True,
|
||||
q_proj_weight=self.q_proj_weight,
|
||||
k_proj_weight=self.k_proj_weight,
|
||||
v_proj_weight=self.v_proj_weight,
|
||||
average_attn_weights=average_attn_weights,
|
||||
)
|
||||
else:
|
||||
# re-write the self.attention here, to get k, v cache
|
||||
tgt_len, bsz, embed_dim = query.shape
|
||||
src_len, _, _ = key.shape
|
||||
num_heads = self.num_heads
|
||||
key_padding_mask = _canonical_mask(
|
||||
mask=key_padding_mask,
|
||||
mask_name="key_padding_mask",
|
||||
other_type=_none_or_dtype(attn_mask),
|
||||
other_name="attn_mask",
|
||||
target_type=query.dtype
|
||||
)
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=query.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
head_dim = self.embed_dim // self.num_heads
|
||||
assert head_dim * self.num_heads == self.embed_dim, f"embed_dim {self.embed_dim} not divisible by num_heads {self.num_heads}"
|
||||
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
||||
q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)
|
||||
# k_present, v_present = k, v
|
||||
|
||||
#
|
||||
# reshape q, k, v for multihead attention and make em batch first
|
||||
#
|
||||
|
||||
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||||
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1) # (bsz * num_heads, src_len, head_dim)
|
||||
src_len = k.size(1)
|
||||
if past is not None and past.ndim > 2:
|
||||
expected_src_len = src_len + past[0].shape[-2]
|
||||
else:
|
||||
expected_src_len = src_len
|
||||
|
||||
|
||||
# ensure attn_mask's dim is 3
|
||||
if attn_mask.dim() == 2:
|
||||
correct_2d_size = (tgt_len, expected_src_len)
|
||||
if attn_mask.shape != correct_2d_size:
|
||||
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
elif attn_mask.dim() == 3:
|
||||
correct_3d_size = (bsz * num_heads, tgt_len, expected_src_len)
|
||||
if attn_mask.shape != correct_3d_size:
|
||||
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
|
||||
else:
|
||||
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
||||
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.shape == (bsz, expected_src_len), \
|
||||
f"expecting key_padding_mask shape of {(bsz, expected_src_len)}, but got {key_padding_mask.shape}"
|
||||
key_padding_mask = key_padding_mask.view(bsz, 1, 1, expected_src_len). \
|
||||
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, expected_src_len)
|
||||
if attn_mask is None:
|
||||
attn_mask = key_padding_mask
|
||||
else:
|
||||
attn_mask = attn_mask + key_padding_mask
|
||||
|
||||
if not self.training:
|
||||
dropout_p = 0.0
|
||||
else:
|
||||
dropout_p = self.dropout
|
||||
|
||||
if need_weights:
|
||||
raise NotImplementedError("need_weights not implemented for voicecraft")
|
||||
# B, Nt, E = q.shape
|
||||
# q_scaled = q / math.sqrt(E)
|
||||
|
||||
# assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
||||
|
||||
# if attn_mask is not None:
|
||||
# attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
||||
# else:
|
||||
# attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
||||
# attn_output_weights = softmax(attn_output_weights, dim=-1)
|
||||
# if dropout_p > 0.0:
|
||||
# attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
||||
|
||||
# attn_output = torch.bmm(attn_output_weights, v)
|
||||
|
||||
# attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
||||
# attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
# attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
|
||||
# # optionally average attention weights over heads
|
||||
# attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
||||
# if average_attn_weights:
|
||||
# attn_output_weights = attn_output_weights.mean(dim=1)
|
||||
|
||||
# if not is_batched:
|
||||
# # squeeze the output if input was unbatched
|
||||
# attn_output = attn_output.squeeze(1)
|
||||
# attn_output_weights = attn_output_weights.squeeze(0)
|
||||
# return attn_output, attn_output_weights
|
||||
else:
|
||||
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
||||
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
||||
# in order to match the input for SDPA of (N, num_heads, L, S)
|
||||
if attn_mask is not None:
|
||||
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
else:
|
||||
attn_mask = attn_mask.view(bsz, num_heads, -1, expected_src_len)
|
||||
|
||||
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
||||
k = k.view(bsz, num_heads, src_len, head_dim)
|
||||
v = v.view(bsz, num_heads, src_len, head_dim)
|
||||
# logging.info(f"shape of past: {past.shape}")
|
||||
if past is not None:
|
||||
present = torch.stack([k, v], dim=0) # (2, bsz, num_heads, src_len, head_dim)
|
||||
if past.ndim > 2: # this means we use kvcache, otherwise we just pass in a placeholder, but not actually using kvcache
|
||||
pk, pv = past
|
||||
k = torch.cat([pk, k], dim=-2)
|
||||
v = torch.cat([pv, v], dim=-2)
|
||||
else:
|
||||
present = None
|
||||
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal=False)
|
||||
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
||||
|
||||
attn_output = F.linear(attn_output, self.out_proj.weight, self.out_proj.bias)
|
||||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
if not is_batched:
|
||||
# squeeze the output if input was unbatched
|
||||
attn_output = attn_output.squeeze(1)
|
||||
# if self.training:
|
||||
# return attn_output, None
|
||||
# else:
|
||||
# return (attn_output, present), None
|
||||
|
||||
# harded coded, the code do not support returning attn weigths yet
|
||||
attn_output_weights=None
|
||||
if self.batch_first and is_batched:
|
||||
return attn_output.transpose(1, 0), present
|
||||
else:
|
||||
return attn_output, present
|
||||
|
98
models/modules/embedding.py
Normal file
98
models/modules/embedding.py
Normal file
@ -0,0 +1,98 @@
|
||||
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
||||
# Copyright 2023 (authors: Feiteng Li)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim_model: int,
|
||||
vocab_size: int,
|
||||
dropout: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.dim_model = dim_model
|
||||
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
self.word_embeddings = nn.Embedding(self.vocab_size, self.dim_model)
|
||||
|
||||
@property
|
||||
def weight(self) -> torch.Tensor:
|
||||
return self.word_embeddings.weight
|
||||
|
||||
def embedding(self, index: int) -> torch.Tensor:
|
||||
return self.word_embeddings.weight[index : index + 1]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
X = self.word_embeddings(x)
|
||||
X = self.dropout(X)
|
||||
|
||||
return X
|
||||
|
||||
|
||||
class SinePositionalEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim_model: int,
|
||||
dropout: float = 0.0,
|
||||
scale: bool = False,
|
||||
alpha: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim_model = dim_model
|
||||
self.x_scale = math.sqrt(dim_model) if scale else 1.0
|
||||
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
|
||||
self.reverse = False
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
|
||||
|
||||
def extend_pe(self, x):
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.dim_model)
|
||||
if self.reverse:
|
||||
position = torch.arange(
|
||||
x.size(1) - 1, -1, -1.0, dtype=torch.float32
|
||||
).unsqueeze(1)
|
||||
else:
|
||||
position = torch.arange(
|
||||
0, x.size(1), dtype=torch.float32
|
||||
).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.dim_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.dim_model)
|
||||
)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
self.extend_pe(x)
|
||||
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
||||
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
|
||||
return self.dropout(output)
|
63
models/modules/sampling.py
Normal file
63
models/modules/sampling.py
Normal file
@ -0,0 +1,63 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
def top_k_top_p_filtering(
|
||||
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
|
||||
):
|
||||
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
||||
Args:
|
||||
logits: logits distribution shape (batch size, vocabulary size)
|
||||
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
||||
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
||||
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||||
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
||||
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
||||
"""
|
||||
if top_k > 0:
|
||||
top_k = min(
|
||||
max(top_k, min_tokens_to_keep), logits.size(-1)
|
||||
) # Safety check
|
||||
# Remove all tokens with a probability less than the last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cumulative_probs = torch.cumsum(
|
||||
F.softmax(sorted_logits, dim=-1), dim=-1
|
||||
)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
if min_tokens_to_keep > 1:
|
||||
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
||||
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
||||
# Shift the indices to the right to keep also the first token above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
||||
..., :-1
|
||||
].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
1, sorted_indices, sorted_indices_to_remove
|
||||
)
|
||||
logits[indices_to_remove] = filter_value
|
||||
return logits
|
||||
|
||||
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
||||
# temperature: (`optional`) float
|
||||
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
||||
# top_k: (`optional`) int
|
||||
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
||||
# top_p: (`optional`) float
|
||||
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
||||
|
||||
# Temperature (higher temperature => more likely to sample low probability tokens)
|
||||
if temperature != 1.0:
|
||||
logits = logits / temperature
|
||||
# Top-p/top-k filtering
|
||||
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
||||
# Sample
|
||||
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
||||
return token
|
1406
models/modules/scaling.py
Normal file
1406
models/modules/scaling.py
Normal file
File diff suppressed because it is too large
Load Diff
698
models/modules/transformer.py
Normal file
698
models/modules/transformer.py
Normal file
@ -0,0 +1,698 @@
|
||||
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py, modified by Puyuan Peng 2024
|
||||
import copy
|
||||
import numbers
|
||||
from functools import partial
|
||||
from typing import Any, Callable, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .activation import MultiheadAttention
|
||||
from .scaling import ActivationBalancer, BalancedDoubleSwish
|
||||
from .scaling import BasicNorm as _BasicNorm
|
||||
|
||||
_shape_t = Union[int, List[int], torch.Size]
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
||||
normalized_shape: Tuple[int, ...]
|
||||
eps: float
|
||||
elementwise_affine: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
normalized_shape: _shape_t,
|
||||
eps: float = 1e-5,
|
||||
elementwise_affine: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
# mypy error: incompatible types in assignment
|
||||
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
||||
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
if self.elementwise_affine:
|
||||
self.weight = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
self.bias = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
if self.elementwise_affine:
|
||||
nn.init.ones_(self.weight)
|
||||
nn.init.zeros_(self.bias)
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
return (
|
||||
F.layer_norm(
|
||||
input,
|
||||
self.normalized_shape,
|
||||
self.weight,
|
||||
self.bias,
|
||||
self.eps,
|
||||
),
|
||||
embedding,
|
||||
)
|
||||
|
||||
assert embedding is None
|
||||
return F.layer_norm(
|
||||
input, self.normalized_shape, self.weight, self.bias, self.eps
|
||||
)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return (
|
||||
"{normalized_shape}, eps={eps}, "
|
||||
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
||||
)
|
||||
|
||||
|
||||
class AdaptiveLayerNorm(nn.Module):
|
||||
r"""Adaptive Layer Normalization"""
|
||||
|
||||
def __init__(self, d_model, norm) -> None:
|
||||
super(AdaptiveLayerNorm, self).__init__()
|
||||
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
||||
self.norm = norm
|
||||
self.d_model = d_model
|
||||
self.eps = self.norm.eps
|
||||
|
||||
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1,
|
||||
)
|
||||
return (weight * self.norm(input) + bias, embedding)
|
||||
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1,
|
||||
)
|
||||
return weight * self.norm(input) + bias
|
||||
|
||||
|
||||
class BasicNorm(_BasicNorm):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
eps: float = 1e-5,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
super(BasicNorm, self).__init__(d_model, eps=eps)
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
return (
|
||||
super(BasicNorm, self).forward(input),
|
||||
embedding,
|
||||
)
|
||||
|
||||
assert embedding is None
|
||||
return super(BasicNorm, self).forward(input)
|
||||
|
||||
|
||||
class BalancedBasicNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
eps: float = 1e-5,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
super(BalancedBasicNorm, self).__init__()
|
||||
self.balancer = ActivationBalancer(
|
||||
d_model,
|
||||
channel_dim=-1,
|
||||
min_positive=0.45,
|
||||
max_positive=0.55,
|
||||
max_abs=6.0,
|
||||
)
|
||||
self.norm = BasicNorm(d_model, eps, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
return self.norm((self.balancer(input), embedding))
|
||||
|
||||
assert embedding is None
|
||||
return self.norm(self.balancer(input))
|
||||
|
||||
|
||||
class IdentityNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
eps: float = 1e-5,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(IdentityNorm, self).__init__()
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
return input
|
||||
|
||||
assert embedding is None
|
||||
return input
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
__constants__ = ["batch_first", "norm_first"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
||||
batch_first: bool = False,
|
||||
norm_first: bool = False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
linear1_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear2_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear1_feedforward_cls: nn.Module = nn.Linear,
|
||||
linear2_feedforward_cls: nn.Module = nn.Linear,
|
||||
layer_norm_cls: nn.Module = LayerNorm,
|
||||
layer_norm_eps: float = 1e-5,
|
||||
adaptive_layer_norm=False,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
self.self_attn = MultiheadAttention(
|
||||
d_model,
|
||||
nhead,
|
||||
dropout=dropout,
|
||||
batch_first=batch_first,
|
||||
linear1_cls=linear1_self_attention_cls,
|
||||
linear2_cls=linear2_self_attention_cls,
|
||||
**factory_kwargs,
|
||||
)
|
||||
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = linear1_feedforward_cls(
|
||||
d_model, dim_feedforward, **factory_kwargs
|
||||
)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = linear2_feedforward_cls(
|
||||
dim_feedforward, d_model, **factory_kwargs
|
||||
)
|
||||
|
||||
self.norm_first = norm_first
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
# Legacy string support for activation function.
|
||||
if isinstance(activation, str):
|
||||
activation = _get_activation_fn(activation)
|
||||
elif isinstance(activation, partial):
|
||||
activation = activation(d_model)
|
||||
elif activation == BalancedDoubleSwish:
|
||||
activation = BalancedDoubleSwish(d_model)
|
||||
|
||||
# # We can't test self.activation in forward() in TorchScript,
|
||||
# # so stash some information about it instead.
|
||||
# if activation is F.relu or isinstance(activation, torch.nn.ReLU):
|
||||
# self.activation_relu_or_gelu = 1
|
||||
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
|
||||
# self.activation_relu_or_gelu = 2
|
||||
# else:
|
||||
# self.activation_relu_or_gelu = 0
|
||||
self.activation = activation
|
||||
|
||||
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
if layer_norm_cls == IdentityNorm:
|
||||
norm2 = BalancedBasicNorm(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs
|
||||
)
|
||||
else:
|
||||
norm2 = layer_norm_cls(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs
|
||||
)
|
||||
|
||||
if adaptive_layer_norm:
|
||||
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
||||
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
||||
else:
|
||||
self.norm1 = norm1
|
||||
self.norm2 = norm2
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||
if not hasattr(self, "activation"):
|
||||
self.activation = F.relu
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: Optional[bool] = False,
|
||||
past: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
x, stage_embedding = src, None
|
||||
is_src_tuple = False
|
||||
if isinstance(src, tuple):
|
||||
x, stage_embedding = src
|
||||
is_src_tuple = True
|
||||
|
||||
if src_key_padding_mask is not None:
|
||||
_skpm_dtype = src_key_padding_mask.dtype
|
||||
if _skpm_dtype != torch.bool and not torch.is_floating_point(
|
||||
src_key_padding_mask
|
||||
):
|
||||
raise AssertionError(
|
||||
"only bool and floating types of key_padding_mask are supported"
|
||||
)
|
||||
if need_weights:
|
||||
if self.norm_first:
|
||||
out, attn = self._sa_block_attn(
|
||||
self.norm1(x, stage_embedding),
|
||||
src_mask,
|
||||
src_key_padding_mask,
|
||||
past
|
||||
)
|
||||
out, present = out # present is the kvcache of the present timestep
|
||||
x = x + out
|
||||
x = x + self._ff_block(self.norm2(x, stage_embedding))
|
||||
else:
|
||||
out, attn = self._sa_block_attn(x, src_mask, src_key_padding_mask, past)
|
||||
out, present = out # present is the kvcache of the present timestep
|
||||
x = self.norm1(
|
||||
x + out,
|
||||
stage_embedding,
|
||||
)
|
||||
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
||||
assert not is_src_tuple
|
||||
# return (x, stage_embedding)
|
||||
return (x, attn)
|
||||
else:
|
||||
if self.norm_first:
|
||||
out = self._sa_block(
|
||||
self.norm1(x, stage_embedding),
|
||||
src_mask,
|
||||
src_key_padding_mask, past
|
||||
)
|
||||
out, present = out # present is the kvcache of the present timestep
|
||||
x = x + out
|
||||
x = x + self._ff_block(self.norm2(x, stage_embedding))
|
||||
else:
|
||||
out = self._sa_block(x, src_mask, src_key_padding_mask)
|
||||
out, present = out # present is the kvcache of the present timestep
|
||||
x = self.norm1(
|
||||
x + out,
|
||||
stage_embedding, past
|
||||
)
|
||||
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
||||
|
||||
if is_src_tuple:
|
||||
x = (x, stage_embedding)
|
||||
if present != None:
|
||||
x = [x, present]
|
||||
return x
|
||||
|
||||
# self-attention block
|
||||
def _sa_block(
|
||||
self,
|
||||
x: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],
|
||||
past: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
x = self.self_attn(
|
||||
x,
|
||||
x,
|
||||
x,
|
||||
attn_mask=attn_mask,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=False,
|
||||
past=past
|
||||
)
|
||||
x, present = x
|
||||
return self.dropout1(x), present
|
||||
|
||||
# self-attention block, also return attention weights
|
||||
def _sa_block_attn(
|
||||
self,
|
||||
x: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],
|
||||
past: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
x, attn = self.self_attn(
|
||||
x,
|
||||
x,
|
||||
x,
|
||||
attn_mask=attn_mask,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=True,
|
||||
past=past
|
||||
)
|
||||
x, present = x
|
||||
return (self.dropout1(x), present), attn
|
||||
|
||||
# feed forward block
|
||||
def _ff_block(self, x: Tensor) -> Tensor:
|
||||
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
||||
return self.dropout2(x)
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
||||
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
||||
(and convert back on output). This will improve the overall performance of
|
||||
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> out = transformer_encoder(src)
|
||||
"""
|
||||
__constants__ = ["norm"]
|
||||
|
||||
def __init__(self, encoder_layer, num_layers, norm=None):
|
||||
super(TransformerEncoder, self).__init__()
|
||||
self.layers = _get_clones(encoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
return_layer_states: bool = False,
|
||||
need_weights:Optional[bool] = False,
|
||||
past: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
return_layer_states: return layers' state (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
if return_layer_states:
|
||||
assert not need_weights
|
||||
layer_states = [] # layers' output
|
||||
output = src
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
past=past
|
||||
)
|
||||
layer_states.append(output[0])
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return layer_states, output
|
||||
if need_weights:
|
||||
assert not return_layer_states
|
||||
layer_attn = [] # layers' output
|
||||
output = src
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
need_weights=True,
|
||||
past=past
|
||||
)
|
||||
layer_attn.append(output[1])
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return layer_attn, output
|
||||
|
||||
output = src
|
||||
all_present = []
|
||||
for n_layer, mod in enumerate(self.layers):
|
||||
output = mod(
|
||||
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, past=None if past is None else past[n_layer]
|
||||
)
|
||||
if isinstance(output, list):
|
||||
output, present = output
|
||||
all_present.append(present)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
if all_present != []:
|
||||
all_present = torch.stack(all_present, dim=0) # (num_layers, 2, batch_size, num_heads, seq_len, head_dim)
|
||||
output = [output, all_present]
|
||||
return output
|
||||
|
||||
|
||||
class TransformerDecoderLayer(nn.Module):
|
||||
__constants__ = ["batch_first", "norm_first"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
||||
linear1_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear2_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear1_feedforward_cls: nn.Module = nn.Linear,
|
||||
linear2_feedforward_cls: nn.Module = nn.Linear,
|
||||
batch_first: bool = False,
|
||||
norm_first: bool = False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
layer_norm_cls: nn.Module = LayerNorm,
|
||||
layer_norm_eps: float = 1e-5,
|
||||
adaptive_layer_norm=False,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(TransformerDecoderLayer, self).__init__()
|
||||
self.self_attn = MultiheadAttention(
|
||||
d_model,
|
||||
nhead,
|
||||
dropout=dropout,
|
||||
batch_first=batch_first,
|
||||
linear1_cls=linear1_self_attention_cls,
|
||||
linear2_cls=linear2_self_attention_cls,
|
||||
**factory_kwargs,
|
||||
)
|
||||
self.multihead_attn = MultiheadAttention(
|
||||
d_model,
|
||||
nhead,
|
||||
dropout=dropout,
|
||||
batch_first=batch_first,
|
||||
linear1_cls=linear1_self_attention_cls,
|
||||
linear2_cls=linear2_self_attention_cls,
|
||||
**factory_kwargs,
|
||||
)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = linear1_feedforward_cls(
|
||||
d_model, dim_feedforward, **factory_kwargs
|
||||
)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = linear2_feedforward_cls(
|
||||
dim_feedforward, d_model, **factory_kwargs
|
||||
)
|
||||
|
||||
self.norm_first = norm_first
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
|
||||
# Legacy string support for activation function.
|
||||
if isinstance(activation, str):
|
||||
self.activation = _get_activation_fn(activation)
|
||||
elif isinstance(activation, partial):
|
||||
self.activation = activation(d_model)
|
||||
elif activation == BalancedDoubleSwish:
|
||||
self.activation = BalancedDoubleSwish(d_model)
|
||||
else:
|
||||
self.activation = activation
|
||||
|
||||
if adaptive_layer_norm:
|
||||
norm1 = layer_norm_cls(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs
|
||||
)
|
||||
norm2 = layer_norm_cls(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs
|
||||
)
|
||||
norm3 = layer_norm_cls(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs
|
||||
)
|
||||
|
||||
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
||||
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
||||
self.norm3 = AdaptiveLayerNorm(d_model, norm3)
|
||||
else:
|
||||
self.norm1 = layer_norm_cls(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs
|
||||
)
|
||||
self.norm2 = layer_norm_cls(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs
|
||||
)
|
||||
if layer_norm_cls == IdentityNorm:
|
||||
self.norm3 = BalancedBasicNorm(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs
|
||||
)
|
||||
else:
|
||||
self.norm3 = layer_norm_cls(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt: Tensor,
|
||||
memory: Tensor,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
r"""Pass the inputs (and mask) through the decoder layer.
|
||||
|
||||
Args:
|
||||
tgt: the sequence to the decoder layer (required).
|
||||
memory: the sequence from the last layer of the encoder (required).
|
||||
tgt_mask: the mask for the tgt sequence (optional).
|
||||
memory_mask: the mask for the memory sequence (optional).
|
||||
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
||||
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
tgt_is_tuple = False
|
||||
if isinstance(tgt, tuple):
|
||||
x, stage_embedding = tgt
|
||||
tgt_is_tuple = True
|
||||
else:
|
||||
x, stage_embedding = tgt, None
|
||||
|
||||
if self.norm_first:
|
||||
x = x + self._sa_block(
|
||||
self.norm1(x, stage_embedding), tgt_mask, tgt_key_padding_mask
|
||||
)
|
||||
x = x + self._mha_block(
|
||||
self.norm2(x, stage_embedding),
|
||||
memory,
|
||||
memory_mask,
|
||||
memory_key_padding_mask,
|
||||
)
|
||||
x = x + self._ff_block(self.norm3(x, stage_embedding))
|
||||
else:
|
||||
x = self.norm1(
|
||||
x + self._sa_block(x, tgt_mask, tgt_key_padding_mask),
|
||||
stage_embedding,
|
||||
)
|
||||
x = self.norm2(
|
||||
x
|
||||
+ self._mha_block(
|
||||
x, memory, memory_mask, memory_key_padding_mask
|
||||
),
|
||||
stage_embedding,
|
||||
)
|
||||
x = self.norm3(x + self._ff_block(x), stage_embedding)
|
||||
|
||||
if tgt_is_tuple:
|
||||
return (x, stage_embedding)
|
||||
return x
|
||||
|
||||
# self-attention block
|
||||
def _sa_block(
|
||||
self,
|
||||
x: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],
|
||||
) -> Tensor:
|
||||
x = self.self_attn(
|
||||
x,
|
||||
x,
|
||||
x,
|
||||
attn_mask=attn_mask,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=False,
|
||||
)[0]
|
||||
return self.dropout1(x)
|
||||
|
||||
# multihead attention block
|
||||
def _mha_block(
|
||||
self,
|
||||
x: Tensor,
|
||||
mem: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],
|
||||
) -> Tensor:
|
||||
x = self.multihead_attn(
|
||||
x,
|
||||
mem,
|
||||
mem,
|
||||
attn_mask=attn_mask,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=False,
|
||||
)[0]
|
||||
return self.dropout2(x)
|
||||
|
||||
# feed forward block
|
||||
def _ff_block(self, x: Tensor) -> Tensor:
|
||||
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
||||
return self.dropout3(x)
|
||||
|
||||
|
||||
def _get_clones(module, N):
|
||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
||||
|
||||
|
||||
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
|
||||
if activation == "relu":
|
||||
return F.relu
|
||||
elif activation == "gelu":
|
||||
return F.gelu
|
||||
|
||||
raise RuntimeError(
|
||||
"activation should be relu/gelu, not {}".format(activation)
|
||||
)
|
37
models/modules/utils.py
Normal file
37
models/modules/utils.py
Normal file
@ -0,0 +1,37 @@
|
||||
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py, modified by Puyuan Peng
|
||||
import torch
|
||||
|
||||
|
||||
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
lengths:
|
||||
A 1-D tensor containing sentence lengths.
|
||||
max_len:
|
||||
The length of masks.
|
||||
Returns:
|
||||
Return a 2-D bool tensor, where masked positions
|
||||
are filled with `True` and non-masked positions are
|
||||
filled with `False`.
|
||||
|
||||
>>> lengths = torch.tensor([1, 3, 2, 5])
|
||||
>>> make_pad_mask(lengths)
|
||||
tensor([[False, True, True, True, True],
|
||||
[False, False, False, True, True],
|
||||
[False, False, True, True, True],
|
||||
[False, False, False, False, False]])
|
||||
"""
|
||||
assert lengths.ndim == 1, lengths.ndim
|
||||
max_len = max(max_len, lengths.max())
|
||||
n = lengths.size(0)
|
||||
seq_range = torch.arange(0, max_len, device=lengths.device)
|
||||
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
||||
|
||||
return expaned_lengths >= lengths.unsqueeze(-1)
|
||||
|
||||
def generate_partial_autoregressive_mask(sz, start, end):
|
||||
mask = torch.zeros(sz, sz).bool()
|
||||
mask[start:end, start:end] = torch.triu(torch.ones(end-start, end-start,dtype=torch.bool), diagonal=1)
|
||||
mask[:start, start:end] = True
|
||||
mask[end:, start:end] = True
|
||||
return mask
|
Reference in New Issue
Block a user