38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
|
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py, modified by Puyuan Peng
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||
|
"""
|
||
|
Args:
|
||
|
lengths:
|
||
|
A 1-D tensor containing sentence lengths.
|
||
|
max_len:
|
||
|
The length of masks.
|
||
|
Returns:
|
||
|
Return a 2-D bool tensor, where masked positions
|
||
|
are filled with `True` and non-masked positions are
|
||
|
filled with `False`.
|
||
|
|
||
|
>>> lengths = torch.tensor([1, 3, 2, 5])
|
||
|
>>> make_pad_mask(lengths)
|
||
|
tensor([[False, True, True, True, True],
|
||
|
[False, False, False, True, True],
|
||
|
[False, False, True, True, True],
|
||
|
[False, False, False, False, False]])
|
||
|
"""
|
||
|
assert lengths.ndim == 1, lengths.ndim
|
||
|
max_len = max(max_len, lengths.max())
|
||
|
n = lengths.size(0)
|
||
|
seq_range = torch.arange(0, max_len, device=lengths.device)
|
||
|
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
||
|
|
||
|
return expaned_lengths >= lengths.unsqueeze(-1)
|
||
|
|
||
|
def generate_partial_autoregressive_mask(sz, start, end):
|
||
|
mask = torch.zeros(sz, sz).bool()
|
||
|
mask[start:end, start:end] = torch.triu(torch.ones(end-start, end-start,dtype=torch.bool), diagonal=1)
|
||
|
mask[:start, start:end] = True
|
||
|
mask[end:, start:end] = True
|
||
|
return mask
|