VoiceCraft/predict.py

362 lines
13 KiB
Python
Raw Normal View History

2024-04-05 17:20:11 +02:00
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
2024-04-14 14:15:23 +02:00
import stat
2024-04-05 17:20:11 +02:00
import time
2024-04-14 14:15:23 +02:00
import warnings
2024-04-05 17:20:11 +02:00
import random
import getpass
import shutil
import subprocess
2024-04-14 14:15:23 +02:00
import torch
import numpy as np
import torchaudio
from whisper.model import Whisper, ModelDimensions
from whisper.tokenizer import get_tokenizer
from cog import BasePredictor, Input, Path, BaseModel
2024-04-05 17:20:11 +02:00
2024-04-05 19:23:39 +02:00
warnings.filterwarnings("ignore", category=UserWarning)
2024-04-05 17:20:11 +02:00
os.environ["USER"] = getpass.getuser()
from data.tokenizer import (
AudioTokenizer,
TextTokenizer,
)
from models import voicecraft
from inference_tts_scale import inference_one_sample
2024-04-05 19:23:39 +02:00
from edit_utils import get_span
from inference_speech_editing_scale import get_mask_interval
from inference_speech_editing_scale import (
inference_one_sample as inference_one_sample_editing,
)
2024-04-05 17:20:11 +02:00
ENV_NAME = "myenv"
2024-04-05 19:23:39 +02:00
2024-04-14 14:15:23 +02:00
MODEL_URL = "https://weights.replicate.delivery/default/pyp1/VoiceCraft.tar"
2024-04-05 17:20:11 +02:00
MODEL_CACHE = "model_cache"
2024-04-14 14:15:23 +02:00
class ModelOutput(BaseModel):
whisper_transcript_orig_audio: str
generated_audio: Path
class WhisperModel:
def __init__(self, model_cache, model_name="base.en", device="cuda"):
with open(f"{model_cache}/{model_name}.pt", "rb") as fp:
checkpoint = torch.load(fp, map_location="cpu")
dims = ModelDimensions(**checkpoint["dims"])
self.model = Whisper(dims)
self.model.load_state_dict(checkpoint["model_state_dict"])
self.model.to(device)
tokenizer = get_tokenizer(multilingual=False)
self.supress_tokens = [-1] + [
i
for i in range(tokenizer.eot)
if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" "))
]
def transcribe(self, audio_path):
return self.model.transcribe(
audio_path, suppress_tokens=self.supress_tokens, word_timestamps=True
)["segments"]
2024-04-05 17:20:11 +02:00
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.device = "cuda"
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
encodec_fn = f"{MODEL_CACHE}/encodec_4cb2048_giga.th"
2024-04-14 14:15:23 +02:00
self.models, self.ckpt, self.phn2num = {}, {}, {}
for voicecraft_name in [
"giga830M.pth",
"giga330M.pth",
"gigaHalfLibri330M_TTSEnhanced_max16s.pth",
]:
ckpt_fn = f"{MODEL_CACHE}/{voicecraft_name}"
self.ckpt[voicecraft_name] = torch.load(ckpt_fn, map_location="cpu")
self.models[voicecraft_name] = voicecraft.VoiceCraft(
self.ckpt[voicecraft_name]["config"]
)
self.models[voicecraft_name].load_state_dict(
self.ckpt[voicecraft_name]["model"]
)
self.models[voicecraft_name].to(self.device)
self.models[voicecraft_name].eval()
2024-04-05 17:20:11 +02:00
2024-04-14 14:15:23 +02:00
self.phn2num[voicecraft_name] = self.ckpt[voicecraft_name]["phn2num"]
2024-04-05 17:20:11 +02:00
self.text_tokenizer = TextTokenizer(backend="espeak")
self.audio_tokenizer = AudioTokenizer(signature=encodec_fn, device=self.device)
2024-04-14 14:15:23 +02:00
self.transcribe_models = {
k: WhisperModel(MODEL_CACHE, k, self.device)
for k in ["base.en", "small.en", "medium.en"]
}
2024-04-05 17:20:11 +02:00
def predict(
self,
2024-04-05 19:23:39 +02:00
task: str = Input(
2024-04-14 14:15:23 +02:00
description="Choose a task",
2024-04-05 19:23:39 +02:00
choices=[
"speech_editing-substitution",
"speech_editing-insertion",
2024-04-05 19:58:09 +02:00
"speech_editing-deletion",
2024-04-05 19:23:39 +02:00
"zero-shot text-to-speech",
],
2024-04-14 14:15:23 +02:00
default="zero-shot text-to-speech",
),
voicecraft_model: str = Input(
description="Choose a model",
choices=["giga830M.pth", "giga330M.pth", "giga330M_TTSEnhanced.pth"],
default="giga330M_TTSEnhanced.pth",
),
orig_audio: Path = Input(
description="Original audio file. WhisperX small.en model will be used for transcription"
2024-04-05 19:23:39 +02:00
),
2024-04-05 17:20:11 +02:00
orig_transcript: str = Input(
2024-04-14 14:15:23 +02:00
description="Optionally provide the transcript of the input audio. Leave it blank to use the whisper model below to generate the transcript. Inaccurate transcription may lead to error TTS or speech editing",
default="",
),
whisper_model: str = Input(
description="If orig_transcript is not provided above, choose a Whisper model. Inaccurate transcription may lead to error TTS or speech editing. You can modify the generated transcript and provide it directly to ",
choices=["base.en", "small.en", "medium.en"],
default="base.en",
2024-04-05 17:20:11 +02:00
),
2024-04-05 19:23:39 +02:00
target_transcript: str = Input(
description="Transcript of the target audio file",
),
2024-04-05 17:20:11 +02:00
cut_off_sec: float = Input(
2024-04-14 14:15:23 +02:00
description="Only used for for zero-shot text-to-speech task. The first seconds of the original audio that are used for zero-shot text-to-speech. 3 sec of reference is generally enough for high quality voice cloning, but longer is generally better, try e.g. 3~6 sec",
default=3.01,
),
kvcache: int = Input(
description="Set to 0 to use less VRAM, but with slower inference",
default=1,
),
left_margin: float = Input(
description="Margin to the left of the editing segment",
default=0.08,
2024-04-05 17:20:11 +02:00
),
2024-04-14 14:15:23 +02:00
right_margin: float = Input(
description="Margin to the right of the editing segment",
default=0.08,
2024-04-05 17:20:11 +02:00
),
temperature: float = Input(
2024-04-14 14:15:23 +02:00
description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic. Do not recommend to change",
2024-04-05 17:20:11 +02:00
default=1,
),
top_p: float = Input(
description="When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens",
ge=0.0,
le=1.0,
default=0.8,
),
2024-04-05 19:23:39 +02:00
stop_repetition: int = Input(
default=-1,
2024-04-14 14:15:23 +02:00
description=" -1 means do not adjust prob of silence tokens. if there are long silence or unnaturally stretched words, increase sample_batch_size to 2, 3 or even 4",
2024-04-05 19:23:39 +02:00
),
2024-04-14 14:15:23 +02:00
sample_batch_size: int = Input(
description="The higher the number, the faster the output will be. Under the hood, the model will generate this many samples and choose the shortest one",
default=4,
2024-04-05 17:20:11 +02:00
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
2024-04-14 14:15:23 +02:00
) -> ModelOutput:
2024-04-05 17:20:11 +02:00
"""Run a single prediction on the model"""
2024-04-05 19:23:39 +02:00
2024-04-05 17:20:11 +02:00
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
seed_everything(seed)
2024-04-14 14:15:23 +02:00
segments = self.transcribe_models[whisper_model].transcribe(str(orig_audio))
state = get_transcribe_state(segments)
whisper_transcript = state["transcript"].strip()
if len(orig_transcript.strip()) == 0:
orig_transcript = whisper_transcript
print(f"The transcript from the Whisper model: {whisper_transcript}")
2024-04-05 19:23:39 +02:00
temp_folder = "exp_dir"
2024-04-05 17:20:11 +02:00
if os.path.exists(temp_folder):
shutil.rmtree(temp_folder)
os.makedirs(temp_folder)
2024-04-05 19:23:39 +02:00
filename = "orig_audio"
shutil.copy(orig_audio, f"{temp_folder}/{filename}.wav")
with open(f"{temp_folder}/{filename}.txt", "w") as f:
2024-04-05 17:20:11 +02:00
f.write(orig_transcript)
# run MFA to get the alignment
align_temp = f"{temp_folder}/mfa_alignments"
command = f'/bin/bash -c "source /cog/miniconda/bin/activate && conda activate {ENV_NAME} && mfa align -v --clean -j 1 --output_format csv {temp_folder} english_us_arpa english_us_arpa {align_temp}"'
try:
subprocess.run(command, shell=True, check=True)
except subprocess.CalledProcessError as e:
print("Error:", e)
2024-04-05 19:23:39 +02:00
raise RuntimeError("Error running Alignment")
2024-04-05 17:20:11 +02:00
print("Alignment done!")
2024-04-05 19:23:39 +02:00
align_fn = f"{align_temp}/{filename}.csv"
audio_fn = f"{temp_folder}/{filename}.wav"
2024-04-05 17:20:11 +02:00
info = torchaudio.info(audio_fn)
audio_dur = info.num_frames / info.sample_rate
2024-04-05 19:23:39 +02:00
# hyperparameters for inference
2024-04-14 14:15:23 +02:00
codec_audio_sr = 16000
2024-04-05 17:20:11 +02:00
codec_sr = 50
top_k = 0
silence_tokens = [1388, 1898, 131]
2024-04-14 14:15:23 +02:00
if voicecraft_model == "giga330M_TTSEnhanced.pth":
voicecraft_model = "gigaHalfLibri330M_TTSEnhanced_max16s.pth"
2024-04-05 17:20:11 +02:00
2024-04-05 19:58:09 +02:00
if task == "zero-shot text-to-speech":
2024-04-05 19:23:39 +02:00
assert (
cut_off_sec < audio_dur
), f"cut_off_sec {cut_off_sec} is larger than the audio duration {audio_dur}"
prompt_end_frame = int(cut_off_sec * info.sample_rate)
2024-04-14 14:15:23 +02:00
idx = find_closest_cut_off_word(state["word_bounds"], cut_off_sec)
orig_transcript_until_cutoff_time = "".join(
[word_bound["word"] for word_bound in state["word_bounds"][:idx]]
)
2024-04-05 19:23:39 +02:00
else:
edit_type = task.split("-")[-1]
orig_span, new_span = get_span(
orig_transcript, target_transcript, edit_type
)
if orig_span[0] > orig_span[1]:
RuntimeError(f"example {audio_fn} failed")
if orig_span[0] == orig_span[1]:
orig_span_save = [orig_span[0]]
else:
orig_span_save = orig_span
if new_span[0] == new_span[1]:
new_span_save = [new_span[0]]
else:
new_span_save = new_span
orig_span_save = ",".join([str(item) for item in orig_span_save])
new_span_save = ",".join([str(item) for item in new_span_save])
start, end = get_mask_interval(align_fn, orig_span_save, edit_type)
# span in codec frames
morphed_span = (
max(start - left_margin, 1 / codec_sr),
min(end + right_margin, audio_dur),
) # in seconds
mask_interval = [
[round(morphed_span[0] * codec_sr), round(morphed_span[1] * codec_sr)]
]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
2024-04-05 17:20:11 +02:00
decode_config = {
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"stop_repetition": stop_repetition,
"kvcache": kvcache,
2024-04-14 14:15:23 +02:00
"codec_audio_sr": codec_audio_sr,
2024-04-05 17:20:11 +02:00
"codec_sr": codec_sr,
"silence_tokens": silence_tokens,
}
2024-04-05 19:23:39 +02:00
if task == "zero-shot text-to-speech":
decode_config["sample_batch_size"] = sample_batch_size
2024-04-14 14:15:23 +02:00
_, gen_audio = inference_one_sample(
self.models[voicecraft_model],
self.ckpt[voicecraft_model]["config"],
self.phn2num[voicecraft_model],
2024-04-05 19:23:39 +02:00
self.text_tokenizer,
self.audio_tokenizer,
audio_fn,
orig_transcript_until_cutoff_time.strip()
+ ""
+ target_transcript.strip(),
self.device,
decode_config,
prompt_end_frame,
)
else:
2024-04-14 14:15:23 +02:00
_, gen_audio = inference_one_sample_editing(
self.models[voicecraft_model],
self.ckpt[voicecraft_model]["config"],
self.phn2num[voicecraft_model],
2024-04-05 19:23:39 +02:00
self.text_tokenizer,
self.audio_tokenizer,
audio_fn,
target_transcript,
mask_interval,
self.device,
decode_config,
)
2024-04-05 17:20:11 +02:00
# save segments for comparison
2024-04-05 19:23:39 +02:00
gen_audio = gen_audio[0].cpu()
2024-04-05 17:20:11 +02:00
out = "/tmp/out.wav"
2024-04-14 14:15:23 +02:00
torchaudio.save(out, gen_audio, codec_audio_sr)
return ModelOutput(
generated_audio=Path(out), whisper_transcript_orig_audio=whisper_transcript
)
2024-04-05 17:20:11 +02:00
def seed_everything(seed):
os.environ["PYTHONHASHSEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
2024-04-14 14:15:23 +02:00
def get_transcribe_state(segments):
words_info = [word_info for segment in segments for word_info in segment["words"]]
return {
"transcript": " ".join([segment["text"].strip() for segment in segments]),
"word_bounds": [
{"word": word["word"], "start": word["start"], "end": word["end"]}
for word in words_info
],
}
def find_closest_cut_off_word(word_bounds, cut_off_sec):
min_distance = float("inf")
for i, word_bound in enumerate(word_bounds):
distance = abs(word_bound["start"] - cut_off_sec)
if distance < min_distance:
min_distance = distance
if word_bound["end"] > cut_off_sec:
break
return i