SillyTavern/public/scripts/extensions/vectors/index.js

1672 lines
60 KiB
JavaScript

import {
eventSource,
event_types,
extension_prompt_types,
extension_prompt_roles,
getCurrentChatId,
getRequestHeaders,
is_send_press,
saveSettingsDebounced,
setExtensionPrompt,
substituteParams,
generateRaw,
substituteParamsExtended,
} from '../../../script.js';
import {
ModuleWorkerWrapper,
extension_settings,
getContext,
modules,
renderExtensionTemplateAsync,
doExtrasFetch, getApiUrl,
} from '../../extensions.js';
import { collapseNewlines, registerDebugFunction } from '../../power-user.js';
import { SECRET_KEYS, secret_state, writeSecret } from '../../secrets.js';
import { getDataBankAttachments, getDataBankAttachmentsForSource, getFileAttachment } from '../../chats.js';
import { debounce, getStringHash as calculateHash, waitUntilCondition, onlyUnique, splitRecursive, trimToStartSentence, trimToEndSentence } from '../../utils.js';
import { debounce_timeout } from '../../constants.js';
import { getSortedEntries } from '../../world-info.js';
import { textgen_types, textgenerationwebui_settings } from '../../textgen-settings.js';
import { SlashCommandParser } from '../../slash-commands/SlashCommandParser.js';
import { SlashCommand } from '../../slash-commands/SlashCommand.js';
import { ARGUMENT_TYPE, SlashCommandArgument, SlashCommandNamedArgument } from '../../slash-commands/SlashCommandArgument.js';
import { callGenericPopup, POPUP_RESULT, POPUP_TYPE } from '../../popup.js';
import { generateWebLlmChatPrompt, isWebLlmSupported } from '../shared.js';
/**
* @typedef {object} HashedMessage
* @property {string} text - The hashed message text
*/
const MODULE_NAME = 'vectors';
export const EXTENSION_PROMPT_TAG = '3_vectors';
export const EXTENSION_PROMPT_TAG_DB = '4_vectors_data_bank';
const settings = {
// For both
source: 'transformers',
include_wi: false,
togetherai_model: 'togethercomputer/m2-bert-80M-32k-retrieval',
openai_model: 'text-embedding-ada-002',
cohere_model: 'embed-english-v3.0',
ollama_model: 'mxbai-embed-large',
ollama_keep: false,
vllm_model: '',
summarize: false,
summarize_sent: false,
summary_source: 'main',
summary_prompt: 'Pause your roleplay. Summarize the most important parts of the message. Limit yourself to 250 words or less. Your response should include nothing but the summary.',
force_chunk_delimiter: '',
// For chats
enabled_chats: false,
template: 'Past events:\n{{text}}',
depth: 2,
position: extension_prompt_types.IN_PROMPT,
protect: 5,
insert: 3,
query: 2,
message_chunk_size: 400,
score_threshold: 0.25,
// For files
enabled_files: false,
translate_files: false,
size_threshold: 10,
chunk_size: 5000,
chunk_count: 2,
overlap_percent: 0,
// For Data Bank
size_threshold_db: 5,
chunk_size_db: 2500,
chunk_count_db: 5,
overlap_percent_db: 0,
file_template_db: 'Related information:\n{{text}}',
file_position_db: extension_prompt_types.IN_PROMPT,
file_depth_db: 4,
file_depth_role_db: extension_prompt_roles.SYSTEM,
// For World Info
enabled_world_info: false,
enabled_for_all: false,
max_entries: 5,
};
const moduleWorker = new ModuleWorkerWrapper(synchronizeChat);
/**
* Gets the Collection ID for a file embedded in the chat.
* @param {string} fileUrl URL of the file
* @returns {string} Collection ID
*/
function getFileCollectionId(fileUrl) {
return `file_${getStringHash(fileUrl)}`;
}
async function onVectorizeAllClick() {
try {
if (!settings.enabled_chats) {
return;
}
const chatId = getCurrentChatId();
if (!chatId) {
toastr.info('No chat selected', 'Vectorization aborted');
return;
}
const batchSize = 5;
const elapsedLog = [];
let finished = false;
$('#vectorize_progress').show();
$('#vectorize_progress_percent').text('0');
$('#vectorize_progress_eta').text('...');
while (!finished) {
if (is_send_press) {
toastr.info('Message generation is in progress.', 'Vectorization aborted');
throw new Error('Message generation is in progress.');
}
const startTime = Date.now();
const remaining = await synchronizeChat(batchSize);
const elapsed = Date.now() - startTime;
elapsedLog.push(elapsed);
finished = remaining <= 0;
const total = getContext().chat.length;
const processed = total - remaining;
const processedPercent = Math.round((processed / total) * 100); // percentage of the work done
const lastElapsed = elapsedLog.slice(-5); // last 5 elapsed times
const averageElapsed = lastElapsed.reduce((a, b) => a + b, 0) / lastElapsed.length; // average time needed to process one item
const pace = averageElapsed / batchSize; // time needed to process one item
const remainingTime = Math.round(pace * remaining / 1000);
$('#vectorize_progress_percent').text(processedPercent);
$('#vectorize_progress_eta').text(remainingTime);
if (chatId !== getCurrentChatId()) {
throw new Error('Chat changed');
}
}
} catch (error) {
console.error('Vectors: Failed to vectorize all', error);
} finally {
$('#vectorize_progress').hide();
}
}
let syncBlocked = false;
/**
* Gets the chunk delimiters for splitting text.
* @returns {string[]} Array of chunk delimiters
*/
function getChunkDelimiters() {
const delimiters = ['\n\n', '\n', ' ', ''];
if (settings.force_chunk_delimiter) {
delimiters.unshift(settings.force_chunk_delimiter);
}
return delimiters;
}
/**
* Splits messages into chunks before inserting them into the vector index.
* @param {object[]} items Array of vector items
* @returns {object[]} Array of vector items (possibly chunked)
*/
function splitByChunks(items) {
if (settings.message_chunk_size <= 0) {
return items;
}
const chunkedItems = [];
for (const item of items) {
const chunks = splitRecursive(item.text, settings.message_chunk_size, getChunkDelimiters());
for (const chunk of chunks) {
const chunkedItem = { ...item, text: chunk };
chunkedItems.push(chunkedItem);
}
}
return chunkedItems;
}
/**
* Summarizes messages using the Extras API method.
* @param {HashedMessage[]} hashedMessages Array of hashed messages
* @returns {Promise<HashedMessage[]>} Summarized messages
*/
async function summarizeExtra(hashedMessages) {
for (const element of hashedMessages) {
try {
const url = new URL(getApiUrl());
url.pathname = '/api/summarize';
const apiResult = await doExtrasFetch(url, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Bypass-Tunnel-Reminder': 'bypass',
},
body: JSON.stringify({
text: element.text,
params: {},
}),
});
if (apiResult.ok) {
const data = await apiResult.json();
element.text = data.summary;
}
}
catch (error) {
console.log(error);
}
}
return hashedMessages;
}
/**
* Summarizes messages using the main API method.
* @param {HashedMessage[]} hashedMessages Array of hashed messages
* @returns {Promise<HashedMessage[]>} Summarized messages
*/
async function summarizeMain(hashedMessages) {
for (const element of hashedMessages) {
element.text = await generateRaw(element.text, '', false, false, settings.summary_prompt);
}
return hashedMessages;
}
/**
* Summarizes messages using WebLLM.
* @param {HashedMessage[]} hashedMessages Array of hashed messages
* @returns {Promise<HashedMessage[]>} Summarized messages
*/
async function summarizeWebLLM(hashedMessages) {
if (!isWebLlmSupported()) {
console.warn('Vectors: WebLLM is not supported');
return hashedMessages;
}
for (const element of hashedMessages) {
const messages = [{ role:'system', content: settings.summary_prompt }, { role:'user', content: element.text }];
element.text = await generateWebLlmChatPrompt(messages);
}
return hashedMessages;
}
/**
* Summarizes messages using the chosen method.
* @param {HashedMessage[]} hashedMessages Array of hashed messages
* @param {string} endpoint Type of endpoint to use
* @returns {Promise<HashedMessage[]>} Summarized messages
*/
async function summarize(hashedMessages, endpoint = 'main') {
switch (endpoint) {
case 'main':
return await summarizeMain(hashedMessages);
case 'extras':
return await summarizeExtra(hashedMessages);
case 'webllm':
return await summarizeWebLLM(hashedMessages);
default:
console.error('Unsupported endpoint', endpoint);
}
}
async function synchronizeChat(batchSize = 5) {
if (!settings.enabled_chats) {
return -1;
}
try {
await waitUntilCondition(() => !syncBlocked && !is_send_press, 1000);
} catch {
console.log('Vectors: Synchronization blocked by another process');
return -1;
}
try {
syncBlocked = true;
const context = getContext();
const chatId = getCurrentChatId();
if (!chatId || !Array.isArray(context.chat)) {
console.debug('Vectors: No chat selected');
return -1;
}
let hashedMessages = context.chat.filter(x => !x.is_system).map(x => ({ text: String(substituteParams(x.mes)), hash: getStringHash(substituteParams(x.mes)), index: context.chat.indexOf(x) }));
const hashesInCollection = await getSavedHashes(chatId);
if (settings.summarize) {
hashedMessages = await summarize(hashedMessages, settings.summary_source);
}
const newVectorItems = hashedMessages.filter(x => !hashesInCollection.includes(x.hash));
const deletedHashes = hashesInCollection.filter(x => !hashedMessages.some(y => y.hash === x));
if (newVectorItems.length > 0) {
const chunkedBatch = splitByChunks(newVectorItems.slice(0, batchSize));
console.log(`Vectors: Found ${newVectorItems.length} new items. Processing ${batchSize}...`);
await insertVectorItems(chatId, chunkedBatch);
}
if (deletedHashes.length > 0) {
await deleteVectorItems(chatId, deletedHashes);
console.log(`Vectors: Deleted ${deletedHashes.length} old hashes`);
}
return newVectorItems.length - batchSize;
} catch (error) {
/**
* Gets the error message for a given cause
* @param {string} cause Error cause key
* @returns {string} Error message
*/
function getErrorMessage(cause) {
switch (cause) {
case 'api_key_missing':
return 'API key missing. Save it in the "API Connections" panel.';
case 'api_url_missing':
return 'API URL missing. Save it in the "API Connections" panel.';
case 'api_model_missing':
return 'Vectorization Source Model is required, but not set.';
case 'extras_module_missing':
return 'Extras API must provide an "embeddings" module.';
default:
return 'Check server console for more details';
}
}
console.error('Vectors: Failed to synchronize chat', error);
const message = getErrorMessage(error.cause);
toastr.error(message, 'Vectorization failed', { preventDuplicates: true });
return -1;
} finally {
syncBlocked = false;
}
}
/**
* @type {Map<string, number>} Cache object for storing hash values
*/
const hashCache = new Map();
/**
* Gets the hash value for a given string
* @param {string} str Input string
* @returns {number} Hash value
*/
function getStringHash(str) {
// Check if the hash is already in the cache
if (hashCache.has(str)) {
return hashCache.get(str);
}
// Calculate the hash value
const hash = calculateHash(str);
// Store the hash in the cache
hashCache.set(str, hash);
return hash;
}
/**
* Retrieves files from the chat and inserts them into the vector index.
* @param {object[]} chat Array of chat messages
* @returns {Promise<void>}
*/
async function processFiles(chat) {
try {
if (!settings.enabled_files) {
return;
}
const dataBankCollectionIds = await ingestDataBankAttachments();
if (dataBankCollectionIds.length) {
const queryText = await getQueryText(chat);
await injectDataBankChunks(queryText, dataBankCollectionIds);
}
for (const message of chat) {
// Message has no file
if (!message?.extra?.file) {
continue;
}
// Trim file inserted by the script
const fileText = String(message.mes)
.substring(0, message.extra.fileLength).trim();
// Convert kilobytes to string length
const thresholdLength = settings.size_threshold * 1024;
// File is too small
if (fileText.length < thresholdLength) {
continue;
}
message.mes = message.mes.substring(message.extra.fileLength);
const fileName = message.extra.file.name;
const fileUrl = message.extra.file.url;
const collectionId = getFileCollectionId(fileUrl);
const hashesInCollection = await getSavedHashes(collectionId);
// File is already in the collection
if (!hashesInCollection.length) {
await vectorizeFile(fileText, fileName, collectionId, settings.chunk_size, settings.overlap_percent);
}
const queryText = await getQueryText(chat);
const fileChunks = await retrieveFileChunks(queryText, collectionId);
message.mes = `${fileChunks}\n\n${message.mes}`;
}
} catch (error) {
console.error('Vectors: Failed to retrieve files', error);
}
}
/**
* Ensures that data bank attachments are ingested and inserted into the vector index.
* @param {string} [source] Optional source filter for data bank attachments.
* @returns {Promise<string[]>} Collection IDs
*/
async function ingestDataBankAttachments(source) {
// Exclude disabled files
const dataBank = source ? getDataBankAttachmentsForSource(source, false) : getDataBankAttachments(false);
const dataBankCollectionIds = [];
for (const file of dataBank) {
const collectionId = getFileCollectionId(file.url);
const hashesInCollection = await getSavedHashes(collectionId);
dataBankCollectionIds.push(collectionId);
// File is already in the collection
if (hashesInCollection.length) {
continue;
}
// Download and process the file
file.text = await getFileAttachment(file.url);
console.log(`Vectors: Retrieved file ${file.name} from Data Bank`);
// Convert kilobytes to string length
const thresholdLength = settings.size_threshold_db * 1024;
// Use chunk size from settings if file is larger than threshold
const chunkSize = file.size > thresholdLength ? settings.chunk_size_db : -1;
await vectorizeFile(file.text, file.name, collectionId, chunkSize, settings.overlap_percent_db);
}
return dataBankCollectionIds;
}
/**
* Inserts file chunks from the Data Bank into the prompt.
* @param {string} queryText Text to query
* @param {string[]} collectionIds File collection IDs
* @returns {Promise<void>}
*/
async function injectDataBankChunks(queryText, collectionIds) {
try {
const queryResults = await queryMultipleCollections(collectionIds, queryText, settings.chunk_count_db, settings.score_threshold);
console.debug(`Vectors: Retrieved ${collectionIds.length} Data Bank collections`, queryResults);
let textResult = '';
for (const collectionId in queryResults) {
console.debug(`Vectors: Processing Data Bank collection ${collectionId}`, queryResults[collectionId]);
const metadata = queryResults[collectionId].metadata?.filter(x => x.text)?.sort((a, b) => a.index - b.index)?.map(x => x.text)?.filter(onlyUnique) || [];
textResult += metadata.join('\n') + '\n\n';
}
if (!textResult) {
console.debug('Vectors: No Data Bank chunks found');
return;
}
const insertedText = substituteParamsExtended(settings.file_template_db, { text: textResult });
setExtensionPrompt(EXTENSION_PROMPT_TAG_DB, insertedText, settings.file_position_db, settings.file_depth_db, settings.include_wi, settings.file_depth_role_db);
} catch (error) {
console.error('Vectors: Failed to insert Data Bank chunks', error);
}
}
/**
* Retrieves file chunks from the vector index and inserts them into the chat.
* @param {string} queryText Text to query
* @param {string} collectionId File collection ID
* @returns {Promise<string>} Retrieved file text
*/
async function retrieveFileChunks(queryText, collectionId) {
console.debug(`Vectors: Retrieving file chunks for collection ${collectionId}`, queryText);
const queryResults = await queryCollection(collectionId, queryText, settings.chunk_count);
console.debug(`Vectors: Retrieved ${queryResults.hashes.length} file chunks for collection ${collectionId}`, queryResults);
const metadata = queryResults.metadata.filter(x => x.text).sort((a, b) => a.index - b.index).map(x => x.text).filter(onlyUnique);
const fileText = metadata.join('\n');
return fileText;
}
/**
* Vectorizes a file and inserts it into the vector index.
* @param {string} fileText File text
* @param {string} fileName File name
* @param {string} collectionId File collection ID
* @param {number} chunkSize Chunk size
* @param {number} overlapPercent Overlap size (in %)
* @returns {Promise<boolean>} True if successful, false if not
*/
async function vectorizeFile(fileText, fileName, collectionId, chunkSize, overlapPercent) {
try {
if (settings.translate_files && typeof window['translate'] === 'function') {
console.log(`Vectors: Translating file ${fileName} to English...`);
const translatedText = await window['translate'](fileText, 'en');
fileText = translatedText;
}
const toast = toastr.info('Vectorization may take some time, please wait...', `Ingesting file ${fileName}`);
const overlapSize = Math.round(chunkSize * overlapPercent / 100);
const delimiters = getChunkDelimiters();
// Overlap should not be included in chunk size. It will be later compensated by overlapChunks
chunkSize = overlapSize > 0 ? (chunkSize - overlapSize) : chunkSize;
const chunks = splitRecursive(fileText, chunkSize, delimiters).map((x, y, z) => overlapSize > 0 ? overlapChunks(x, y, z, overlapSize) : x);
console.debug(`Vectors: Split file ${fileName} into ${chunks.length} chunks with ${overlapPercent}% overlap`, chunks);
const items = chunks.map((chunk, index) => ({ hash: getStringHash(chunk), text: chunk, index: index }));
await insertVectorItems(collectionId, items);
toastr.clear(toast);
console.log(`Vectors: Inserted ${chunks.length} vector items for file ${fileName} into ${collectionId}`);
return true;
} catch (error) {
toastr.error(String(error), 'Failed to vectorize file', { preventDuplicates: true });
console.error('Vectors: Failed to vectorize file', error);
return false;
}
}
/**
* Removes the most relevant messages from the chat and displays them in the extension prompt
* @param {object[]} chat Array of chat messages
*/
async function rearrangeChat(chat) {
try {
// Clear the extension prompt
setExtensionPrompt(EXTENSION_PROMPT_TAG, '', settings.position, settings.depth, settings.include_wi);
setExtensionPrompt(EXTENSION_PROMPT_TAG_DB, '', settings.file_position_db, settings.file_depth_db, settings.include_wi, settings.file_depth_role_db);
if (settings.enabled_files) {
await processFiles(chat);
}
if (settings.enabled_world_info) {
await activateWorldInfo(chat);
}
if (!settings.enabled_chats) {
return;
}
const chatId = getCurrentChatId();
if (!chatId || !Array.isArray(chat)) {
console.debug('Vectors: No chat selected');
return;
}
if (chat.length < settings.protect) {
console.debug(`Vectors: Not enough messages to rearrange (less than ${settings.protect})`);
return;
}
const queryText = await getQueryText(chat);
if (queryText.length === 0) {
console.debug('Vectors: No text to query');
return;
}
// Get the most relevant messages, excluding the last few
const queryResults = await queryCollection(chatId, queryText, settings.insert);
const queryHashes = queryResults.hashes.filter(onlyUnique);
const queriedMessages = [];
const insertedHashes = new Set();
const retainMessages = chat.slice(-settings.protect);
for (const message of chat) {
if (retainMessages.includes(message) || !message.mes) {
continue;
}
const hash = getStringHash(substituteParams(message.mes));
if (queryHashes.includes(hash) && !insertedHashes.has(hash)) {
queriedMessages.push(message);
insertedHashes.add(hash);
}
}
// Rearrange queried messages to match query order
// Order is reversed because more relevant are at the lower indices
queriedMessages.sort((a, b) => queryHashes.indexOf(getStringHash(substituteParams(b.mes))) - queryHashes.indexOf(getStringHash(substituteParams(a.mes))));
// Remove queried messages from the original chat array
for (const message of chat) {
if (queriedMessages.includes(message)) {
chat.splice(chat.indexOf(message), 1);
}
}
if (queriedMessages.length === 0) {
console.debug('Vectors: No relevant messages found');
return;
}
// Format queried messages into a single string
const insertedText = getPromptText(queriedMessages);
setExtensionPrompt(EXTENSION_PROMPT_TAG, insertedText, settings.position, settings.depth, settings.include_wi);
} catch (error) {
toastr.error('Generation interceptor aborted. Check browser console for more details.', 'Vector Storage');
console.error('Vectors: Failed to rearrange chat', error);
}
}
/**
* @param {any[]} queriedMessages
* @returns {string}
*/
function getPromptText(queriedMessages) {
const queriedText = queriedMessages.map(x => collapseNewlines(`${x.name}: ${x.mes}`).trim()).join('\n\n');
console.log('Vectors: relevant past messages found.\n', queriedText);
return substituteParamsExtended(settings.template, { text: queriedText });
}
/**
* Modifies text chunks to include overlap with adjacent chunks.
* @param {string} chunk Current item
* @param {number} index Current index
* @param {string[]} chunks List of chunks
* @param {number} overlapSize Size of the overlap
* @returns {string} Overlapped chunks, with overlap trimmed to sentence boundaries
*/
function overlapChunks(chunk, index, chunks, overlapSize) {
const halfOverlap = Math.floor(overlapSize / 2);
const nextChunk = chunks[index + 1];
const prevChunk = chunks[index - 1];
const nextOverlap = trimToEndSentence(nextChunk?.substring(0, halfOverlap)) || '';
const prevOverlap = trimToStartSentence(prevChunk?.substring(prevChunk.length - halfOverlap)) || '';
const overlappedChunk = [prevOverlap, chunk, nextOverlap].filter(x => x).join(' ');
return overlappedChunk;
}
window['vectors_rearrangeChat'] = rearrangeChat;
const onChatEvent = debounce(async () => await moduleWorker.update(), debounce_timeout.relaxed);
/**
* Gets the text to query from the chat
* @param {object[]} chat Chat messages
* @returns {Promise<string>} Text to query
*/
async function getQueryText(chat) {
let queryText = '';
let i = 0;
let hashedMessages = chat.map(x => ({ text: String(substituteParams(x.mes)) }));
if (settings.summarize && settings.summarize_sent) {
hashedMessages = await summarize(hashedMessages, settings.summary_source);
}
for (const message of hashedMessages.slice().reverse()) {
if (message.text) {
queryText += message.text + '\n';
i++;
}
if (i === settings.query) {
break;
}
}
return collapseNewlines(queryText).trim();
}
/**
* Gets the saved hashes for a collection
* @param {string} collectionId
* @returns {Promise<number[]>} Saved hashes
*/
async function getSavedHashes(collectionId) {
const response = await fetch('/api/vector/list', {
method: 'POST',
headers: getRequestHeaders(),
body: JSON.stringify({
collectionId: collectionId,
source: settings.source,
}),
});
if (!response.ok) {
throw new Error(`Failed to get saved hashes for collection ${collectionId}`);
}
const hashes = await response.json();
return hashes;
}
function getVectorHeaders() {
const headers = getRequestHeaders();
switch (settings.source) {
case 'extras':
addExtrasHeaders(headers);
break;
case 'togetherai':
addTogetherAiHeaders(headers);
break;
case 'openai':
addOpenAiHeaders(headers);
break;
case 'cohere':
addCohereHeaders(headers);
break;
case 'ollama':
addOllamaHeaders(headers);
break;
case 'llamacpp':
addLlamaCppHeaders(headers);
break;
case 'vllm':
addVllmHeaders(headers);
break;
default:
break;
}
return headers;
}
/**
* Add headers for the Extras API source.
* @param {object} headers Headers object
*/
function addExtrasHeaders(headers) {
console.log(`Vector source is extras, populating API URL: ${extension_settings.apiUrl}`);
Object.assign(headers, {
'X-Extras-Url': extension_settings.apiUrl,
'X-Extras-Key': extension_settings.apiKey,
});
}
/**
* Add headers for the TogetherAI API source.
* @param {object} headers Headers object
*/
function addTogetherAiHeaders(headers) {
Object.assign(headers, {
'X-Togetherai-Model': extension_settings.vectors.togetherai_model,
});
}
/**
* Add headers for the OpenAI API source.
* @param {object} headers Header object
*/
function addOpenAiHeaders(headers) {
Object.assign(headers, {
'X-OpenAI-Model': extension_settings.vectors.openai_model,
});
}
/**
* Add headers for the Cohere API source.
* @param {object} headers Header object
*/
function addCohereHeaders(headers) {
Object.assign(headers, {
'X-Cohere-Model': extension_settings.vectors.cohere_model,
});
}
/**
* Add headers for the Ollama API source.
* @param {object} headers Header object
*/
function addOllamaHeaders(headers) {
Object.assign(headers, {
'X-Ollama-Model': extension_settings.vectors.ollama_model,
'X-Ollama-URL': textgenerationwebui_settings.server_urls[textgen_types.OLLAMA],
'X-Ollama-Keep': !!extension_settings.vectors.ollama_keep,
});
}
/**
* Add headers for the LlamaCpp API source.
* @param {object} headers Header object
*/
function addLlamaCppHeaders(headers) {
Object.assign(headers, {
'X-LlamaCpp-URL': textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP],
});
}
/**
* Add headers for the VLLM API source.
* @param {object} headers Header object
*/
function addVllmHeaders(headers) {
Object.assign(headers, {
'X-Vllm-URL': textgenerationwebui_settings.server_urls[textgen_types.VLLM],
'X-Vllm-Model': extension_settings.vectors.vllm_model,
});
}
/**
* Inserts vector items into a collection
* @param {string} collectionId - The collection to insert into
* @param {{ hash: number, text: string }[]} items - The items to insert
* @returns {Promise<void>}
*/
async function insertVectorItems(collectionId, items) {
throwIfSourceInvalid();
const headers = getVectorHeaders();
const response = await fetch('/api/vector/insert', {
method: 'POST',
headers: headers,
body: JSON.stringify({
collectionId: collectionId,
items: items,
source: settings.source,
}),
});
if (!response.ok) {
throw new Error(`Failed to insert vector items for collection ${collectionId}`);
}
}
/**
* Throws an error if the source is invalid (missing API key or URL, or missing module)
*/
function throwIfSourceInvalid() {
if (settings.source === 'openai' && !secret_state[SECRET_KEYS.OPENAI] ||
settings.source === 'palm' && !secret_state[SECRET_KEYS.MAKERSUITE] ||
settings.source === 'mistral' && !secret_state[SECRET_KEYS.MISTRALAI] ||
settings.source === 'togetherai' && !secret_state[SECRET_KEYS.TOGETHERAI] ||
settings.source === 'nomicai' && !secret_state[SECRET_KEYS.NOMICAI] ||
settings.source === 'cohere' && !secret_state[SECRET_KEYS.COHERE]) {
throw new Error('Vectors: API key missing', { cause: 'api_key_missing' });
}
if (settings.source === 'ollama' && !textgenerationwebui_settings.server_urls[textgen_types.OLLAMA] ||
settings.source === 'vllm' && !textgenerationwebui_settings.server_urls[textgen_types.VLLM] ||
settings.source === 'llamacpp' && !textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP]) {
throw new Error('Vectors: API URL missing', { cause: 'api_url_missing' });
}
if (settings.source === 'ollama' && !settings.ollama_model || settings.source === 'vllm' && !settings.vllm_model) {
throw new Error('Vectors: API model missing', { cause: 'api_model_missing' });
}
if (settings.source === 'extras' && !modules.includes('embeddings')) {
throw new Error('Vectors: Embeddings module missing', { cause: 'extras_module_missing' });
}
}
/**
* Deletes vector items from a collection
* @param {string} collectionId - The collection to delete from
* @param {number[]} hashes - The hashes of the items to delete
* @returns {Promise<void>}
*/
async function deleteVectorItems(collectionId, hashes) {
const response = await fetch('/api/vector/delete', {
method: 'POST',
headers: getRequestHeaders(),
body: JSON.stringify({
collectionId: collectionId,
hashes: hashes,
source: settings.source,
}),
});
if (!response.ok) {
throw new Error(`Failed to delete vector items for collection ${collectionId}`);
}
}
/**
* @param {string} collectionId - The collection to query
* @param {string} searchText - The text to query
* @param {number} topK - The number of results to return
* @returns {Promise<{ hashes: number[], metadata: object[]}>} - Hashes of the results
*/
async function queryCollection(collectionId, searchText, topK) {
const headers = getVectorHeaders();
const response = await fetch('/api/vector/query', {
method: 'POST',
headers: headers,
body: JSON.stringify({
collectionId: collectionId,
searchText: searchText,
topK: topK,
source: settings.source,
threshold: settings.score_threshold,
}),
});
if (!response.ok) {
throw new Error(`Failed to query collection ${collectionId}`);
}
return await response.json();
}
/**
* Queries multiple collections for a given text.
* @param {string[]} collectionIds - Collection IDs to query
* @param {string} searchText - Text to query
* @param {number} topK - Number of results to return
* @param {number} threshold - Score threshold
* @returns {Promise<Record<string, { hashes: number[], metadata: object[] }>>} - Results mapped to collection IDs
*/
async function queryMultipleCollections(collectionIds, searchText, topK, threshold) {
const headers = getVectorHeaders();
const response = await fetch('/api/vector/query-multi', {
method: 'POST',
headers: headers,
body: JSON.stringify({
collectionIds: collectionIds,
searchText: searchText,
topK: topK,
source: settings.source,
threshold: threshold ?? settings.score_threshold,
}),
});
if (!response.ok) {
throw new Error('Failed to query multiple collections');
}
return await response.json();
}
/**
* Purges the vector index for a file.
* @param {string} fileUrl File URL to purge
*/
async function purgeFileVectorIndex(fileUrl) {
try {
if (!settings.enabled_files) {
return;
}
console.log(`Vectors: Purging file vector index for ${fileUrl}`);
const collectionId = getFileCollectionId(fileUrl);
const response = await fetch('/api/vector/purge', {
method: 'POST',
headers: getRequestHeaders(),
body: JSON.stringify({
collectionId: collectionId,
}),
});
if (!response.ok) {
throw new Error(`Could not delete vector index for collection ${collectionId}`);
}
console.log(`Vectors: Purged vector index for collection ${collectionId}`);
} catch (error) {
console.error('Vectors: Failed to purge file', error);
}
}
/**
* Purges the vector index for a collection.
* @param {string} collectionId Collection ID to purge
* @returns <Promise<boolean>> True if deleted, false if not
*/
async function purgeVectorIndex(collectionId) {
try {
if (!settings.enabled_chats) {
return true;
}
const response = await fetch('/api/vector/purge', {
method: 'POST',
headers: getRequestHeaders(),
body: JSON.stringify({
collectionId: collectionId,
}),
});
if (!response.ok) {
throw new Error(`Could not delete vector index for collection ${collectionId}`);
}
console.log(`Vectors: Purged vector index for collection ${collectionId}`);
return true;
} catch (error) {
console.error('Vectors: Failed to purge', error);
return false;
}
}
/**
* Purges all vector indexes.
*/
async function purgeAllVectorIndexes() {
try {
const response = await fetch('/api/vector/purge-all', {
method: 'POST',
headers: getRequestHeaders(),
});
if (!response.ok) {
throw new Error('Failed to purge all vector indexes');
}
console.log('Vectors: Purged all vector indexes');
toastr.success('All vector indexes purged', 'Purge successful');
} catch (error) {
console.error('Vectors: Failed to purge all', error);
toastr.error('Failed to purge all vector indexes', 'Purge failed');
}
}
function toggleSettings() {
$('#vectors_files_settings').toggle(!!settings.enabled_files);
$('#vectors_chats_settings').toggle(!!settings.enabled_chats);
$('#vectors_world_info_settings').toggle(!!settings.enabled_world_info);
$('#together_vectorsModel').toggle(settings.source === 'togetherai');
$('#openai_vectorsModel').toggle(settings.source === 'openai');
$('#cohere_vectorsModel').toggle(settings.source === 'cohere');
$('#ollama_vectorsModel').toggle(settings.source === 'ollama');
$('#llamacpp_vectorsModel').toggle(settings.source === 'llamacpp');
$('#vllm_vectorsModel').toggle(settings.source === 'vllm');
$('#nomicai_apiKey').toggle(settings.source === 'nomicai');
}
async function onPurgeClick() {
const chatId = getCurrentChatId();
if (!chatId) {
toastr.info('No chat selected', 'Purge aborted');
return;
}
if (await purgeVectorIndex(chatId)) {
toastr.success('Vector index purged', 'Purge successful');
} else {
toastr.error('Failed to purge vector index', 'Purge failed');
}
}
async function onViewStatsClick() {
const chatId = getCurrentChatId();
if (!chatId) {
toastr.info('No chat selected');
return;
}
const hashesInCollection = await getSavedHashes(chatId);
const totalHashes = hashesInCollection.length;
const uniqueHashes = hashesInCollection.filter(onlyUnique).length;
toastr.info(`Total hashes: <b>${totalHashes}</b><br>
Unique hashes: <b>${uniqueHashes}</b><br><br>
I'll mark collected messages with a green circle.`,
`Stats for chat ${chatId}`,
{ timeOut: 10000, escapeHtml: false },
);
const chat = getContext().chat;
for (const message of chat) {
if (hashesInCollection.includes(getStringHash(substituteParams(message.mes)))) {
const messageElement = $(`.mes[mesid="${chat.indexOf(message)}"]`);
messageElement.addClass('vectorized');
}
}
}
async function onVectorizeAllFilesClick() {
try {
const dataBank = getDataBankAttachments();
const chatAttachments = getContext().chat.filter(x => x.extra?.file).map(x => x.extra.file);
const allFiles = [...dataBank, ...chatAttachments];
/**
* Gets the chunk size for a file attachment.
* @param file {import('../../chats.js').FileAttachment} File attachment
* @returns {number} Chunk size for the file
*/
function getChunkSize(file) {
if (chatAttachments.includes(file)) {
// Convert kilobytes to string length
const thresholdLength = settings.size_threshold * 1024;
return file.size > thresholdLength ? settings.chunk_size : -1;
}
if (dataBank.includes(file)) {
// Convert kilobytes to string length
const thresholdLength = settings.size_threshold_db * 1024;
// Use chunk size from settings if file is larger than threshold
return file.size > thresholdLength ? settings.chunk_size_db : -1;
}
return -1;
}
/**
* Gets the overlap percent for a file attachment.
* @param file {import('../../chats.js').FileAttachment} File attachment
* @returns {number} Overlap percent for the file
*/
function getOverlapPercent(file) {
if (chatAttachments.includes(file)) {
return settings.overlap_percent;
}
if (dataBank.includes(file)) {
return settings.overlap_percent_db;
}
return 0;
}
let allSuccess = true;
for (const file of allFiles) {
const text = await getFileAttachment(file.url);
const collectionId = getFileCollectionId(file.url);
const hashes = await getSavedHashes(collectionId);
if (hashes.length) {
console.log(`Vectors: File ${file.name} is already vectorized`);
continue;
}
const chunkSize = getChunkSize(file);
const overlapPercent = getOverlapPercent(file);
const result = await vectorizeFile(text, file.name, collectionId, chunkSize, overlapPercent);
if (!result) {
allSuccess = false;
}
}
if (allSuccess) {
toastr.success('All files vectorized', 'Vectorization successful');
} else {
toastr.warning('Some files failed to vectorize. Check browser console for more details.', 'Vector Storage');
}
} catch (error) {
console.error('Vectors: Failed to vectorize all files', error);
toastr.error('Failed to vectorize all files', 'Vectorization failed');
}
}
async function onPurgeFilesClick() {
try {
const dataBank = getDataBankAttachments();
const chatAttachments = getContext().chat.filter(x => x.extra?.file).map(x => x.extra.file);
const allFiles = [...dataBank, ...chatAttachments];
for (const file of allFiles) {
await purgeFileVectorIndex(file.url);
}
toastr.success('All files purged', 'Purge successful');
} catch (error) {
console.error('Vectors: Failed to purge all files', error);
toastr.error('Failed to purge all files', 'Purge failed');
}
}
async function activateWorldInfo(chat) {
if (!settings.enabled_world_info) {
console.debug('Vectors: Disabled for World Info');
return;
}
const entries = await getSortedEntries();
if (!Array.isArray(entries) || entries.length === 0) {
console.debug('Vectors: No WI entries found');
return;
}
// Group entries by "world" field
const groupedEntries = {};
for (const entry of entries) {
// Skip orphaned entries. Is it even possible?
if (!entry.world) {
console.debug('Vectors: Skipped orphaned WI entry', entry);
continue;
}
// Skip disabled entries
if (entry.disable) {
console.debug('Vectors: Skipped disabled WI entry', entry);
continue;
}
// Skip entries without content
if (!entry.content) {
console.debug('Vectors: Skipped WI entry without content', entry);
continue;
}
// Skip non-vectorized entries
if (!entry.vectorized && !settings.enabled_for_all) {
console.debug('Vectors: Skipped non-vectorized WI entry', entry);
continue;
}
if (!Object.hasOwn(groupedEntries, entry.world)) {
groupedEntries[entry.world] = [];
}
groupedEntries[entry.world].push(entry);
}
const collectionIds = [];
if (Object.keys(groupedEntries).length === 0) {
console.debug('Vectors: No WI entries to synchronize');
return;
}
// Synchronize collections
for (const world in groupedEntries) {
const collectionId = `world_${getStringHash(world)}`;
const hashesInCollection = await getSavedHashes(collectionId);
const newEntries = groupedEntries[world].filter(x => !hashesInCollection.includes(getStringHash(x.content)));
const deletedHashes = hashesInCollection.filter(x => !groupedEntries[world].some(y => getStringHash(y.content) === x));
if (newEntries.length > 0) {
console.log(`Vectors: Found ${newEntries.length} new WI entries for world ${world}`);
await insertVectorItems(collectionId, newEntries.map(x => ({ hash: getStringHash(x.content), text: x.content, index: x.uid })));
}
if (deletedHashes.length > 0) {
console.log(`Vectors: Deleted ${deletedHashes.length} old hashes for world ${world}`);
await deleteVectorItems(collectionId, deletedHashes);
}
collectionIds.push(collectionId);
}
// Perform a multi-query
const queryText = await getQueryText(chat);
if (queryText.length === 0) {
console.debug('Vectors: No text to query for WI');
return;
}
const queryResults = await queryMultipleCollections(collectionIds, queryText, settings.max_entries, settings.score_threshold);
const activatedHashes = Object.values(queryResults).flatMap(x => x.hashes).filter(onlyUnique);
const activatedEntries = [];
// Activate entries found in the query results
for (const entry of entries) {
const hash = getStringHash(entry.content);
if (activatedHashes.includes(hash)) {
activatedEntries.push(entry);
}
}
if (activatedEntries.length === 0) {
console.debug('Vectors: No activated WI entries found');
return;
}
console.log(`Vectors: Activated ${activatedEntries.length} WI entries`, activatedEntries);
await eventSource.emit(event_types.WORLDINFO_FORCE_ACTIVATE, activatedEntries);
}
jQuery(async () => {
if (!extension_settings.vectors) {
extension_settings.vectors = settings;
}
// Migrate from old settings
if (settings['enabled']) {
settings.enabled_chats = true;
}
Object.assign(settings, extension_settings.vectors);
// Migrate from TensorFlow to Transformers
settings.source = settings.source !== 'local' ? settings.source : 'transformers';
const template = await renderExtensionTemplateAsync(MODULE_NAME, 'settings');
$('#vectors_container').append(template);
$('#vectors_enabled_chats').prop('checked', settings.enabled_chats).on('input', () => {
settings.enabled_chats = $('#vectors_enabled_chats').prop('checked');
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
toggleSettings();
});
$('#vectors_modelWarning').hide();
$('#vectors_enabled_files').prop('checked', settings.enabled_files).on('input', () => {
settings.enabled_files = $('#vectors_enabled_files').prop('checked');
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
toggleSettings();
});
$('#vectors_source').val(settings.source).on('change', () => {
settings.source = String($('#vectors_source').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
toggleSettings();
});
$('#api_key_nomicai').on('click', async () => {
const popupText = 'NomicAI API Key:';
const key = await callGenericPopup(popupText, POPUP_TYPE.INPUT, '', {
customButtons: [{
text: 'Remove Key',
appendAtEnd: true,
result: POPUP_RESULT.NEGATIVE,
action: async () => {
await writeSecret(SECRET_KEYS.NOMICAI, '');
toastr.success('API Key removed');
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]);
saveSettingsDebounced();
},
}],
});
if (!key) {
return;
}
await writeSecret(SECRET_KEYS.NOMICAI, String(key));
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]);
toastr.success('API Key saved');
saveSettingsDebounced();
});
$('#vectors_togetherai_model').val(settings.togetherai_model).on('change', () => {
$('#vectors_modelWarning').show();
settings.togetherai_model = String($('#vectors_togetherai_model').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_openai_model').val(settings.openai_model).on('change', () => {
$('#vectors_modelWarning').show();
settings.openai_model = String($('#vectors_openai_model').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_cohere_model').val(settings.cohere_model).on('change', () => {
$('#vectors_modelWarning').show();
settings.cohere_model = String($('#vectors_cohere_model').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_ollama_model').val(settings.ollama_model).on('input', () => {
$('#vectors_modelWarning').show();
settings.ollama_model = String($('#vectors_ollama_model').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_vllm_model').val(settings.vllm_model).on('input', () => {
$('#vectors_modelWarning').show();
settings.vllm_model = String($('#vectors_vllm_model').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_ollama_keep').prop('checked', settings.ollama_keep).on('input', () => {
settings.ollama_keep = $('#vectors_ollama_keep').prop('checked');
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_template').val(settings.template).on('input', () => {
settings.template = String($('#vectors_template').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_depth').val(settings.depth).on('input', () => {
settings.depth = Number($('#vectors_depth').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_protect').val(settings.protect).on('input', () => {
settings.protect = Number($('#vectors_protect').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_insert').val(settings.insert).on('input', () => {
settings.insert = Number($('#vectors_insert').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_query').val(settings.query).on('input', () => {
settings.query = Number($('#vectors_query').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$(`input[name="vectors_position"][value="${settings.position}"]`).prop('checked', true);
$('input[name="vectors_position"]').on('change', () => {
settings.position = Number($('input[name="vectors_position"]:checked').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_vectorize_all').on('click', onVectorizeAllClick);
$('#vectors_purge').on('click', onPurgeClick);
$('#vectors_view_stats').on('click', onViewStatsClick);
$('#vectors_files_vectorize_all').on('click', onVectorizeAllFilesClick);
$('#vectors_files_purge').on('click', onPurgeFilesClick);
$('#vectors_size_threshold').val(settings.size_threshold).on('input', () => {
settings.size_threshold = Number($('#vectors_size_threshold').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_chunk_size').val(settings.chunk_size).on('input', () => {
settings.chunk_size = Number($('#vectors_chunk_size').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_chunk_count').val(settings.chunk_count).on('input', () => {
settings.chunk_count = Number($('#vectors_chunk_count').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_include_wi').prop('checked', settings.include_wi).on('input', () => {
settings.include_wi = !!$('#vectors_include_wi').prop('checked');
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_summarize').prop('checked', settings.summarize).on('input', () => {
settings.summarize = !!$('#vectors_summarize').prop('checked');
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_summarize_user').prop('checked', settings.summarize_sent).on('input', () => {
settings.summarize_sent = !!$('#vectors_summarize_user').prop('checked');
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_summary_source').val(settings.summary_source).on('change', () => {
settings.summary_source = String($('#vectors_summary_source').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_summary_prompt').val(settings.summary_prompt).on('input', () => {
settings.summary_prompt = String($('#vectors_summary_prompt').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_message_chunk_size').val(settings.message_chunk_size).on('input', () => {
settings.message_chunk_size = Number($('#vectors_message_chunk_size').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_size_threshold_db').val(settings.size_threshold_db).on('input', () => {
settings.size_threshold_db = Number($('#vectors_size_threshold_db').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_chunk_size_db').val(settings.chunk_size_db).on('input', () => {
settings.chunk_size_db = Number($('#vectors_chunk_size_db').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_chunk_count_db').val(settings.chunk_count_db).on('input', () => {
settings.chunk_count_db = Number($('#vectors_chunk_count_db').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_overlap_percent').val(settings.overlap_percent).on('input', () => {
settings.overlap_percent = Number($('#vectors_overlap_percent').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_overlap_percent_db').val(settings.overlap_percent_db).on('input', () => {
settings.overlap_percent_db = Number($('#vectors_overlap_percent_db').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_file_template_db').val(settings.file_template_db).on('input', () => {
settings.file_template_db = String($('#vectors_file_template_db').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$(`input[name="vectors_file_position_db"][value="${settings.file_position_db}"]`).prop('checked', true);
$('input[name="vectors_file_position_db"]').on('change', () => {
settings.file_position_db = Number($('input[name="vectors_file_position_db"]:checked').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_file_depth_db').val(settings.file_depth_db).on('input', () => {
settings.file_depth_db = Number($('#vectors_file_depth_db').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_file_depth_role_db').val(settings.file_depth_role_db).on('input', () => {
settings.file_depth_role_db = Number($('#vectors_file_depth_role_db').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_translate_files').prop('checked', settings.translate_files).on('input', () => {
settings.translate_files = !!$('#vectors_translate_files').prop('checked');
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_enabled_world_info').prop('checked', settings.enabled_world_info).on('input', () => {
settings.enabled_world_info = !!$('#vectors_enabled_world_info').prop('checked');
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
toggleSettings();
});
$('#vectors_enabled_for_all').prop('checked', settings.enabled_for_all).on('input', () => {
settings.enabled_for_all = !!$('#vectors_enabled_for_all').prop('checked');
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_max_entries').val(settings.max_entries).on('input', () => {
settings.max_entries = Number($('#vectors_max_entries').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_score_threshold').val(settings.score_threshold).on('input', () => {
settings.score_threshold = Number($('#vectors_score_threshold').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_force_chunk_delimiter').prop('checked', settings.force_chunk_delimiter).on('input', () => {
settings.force_chunk_delimiter = String($('#vectors_force_chunk_delimiter').val());
Object.assign(extension_settings.vectors, settings);
saveSettingsDebounced();
});
$('#vectors_ollama_pull').on('click', (e) => {
const presetModel = extension_settings.vectors.ollama_model || '';
e.preventDefault();
$('#ollama_download_model').trigger('click');
$('#dialogue_popup_input').val(presetModel);
});
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]);
toggleSettings();
eventSource.on(event_types.MESSAGE_DELETED, onChatEvent);
eventSource.on(event_types.MESSAGE_EDITED, onChatEvent);
eventSource.on(event_types.MESSAGE_SENT, onChatEvent);
eventSource.on(event_types.MESSAGE_RECEIVED, onChatEvent);
eventSource.on(event_types.MESSAGE_SWIPED, onChatEvent);
eventSource.on(event_types.CHAT_DELETED, purgeVectorIndex);
eventSource.on(event_types.GROUP_CHAT_DELETED, purgeVectorIndex);
eventSource.on(event_types.FILE_ATTACHMENT_DELETED, purgeFileVectorIndex);
SlashCommandParser.addCommandObject(SlashCommand.fromProps({
name: 'db-ingest',
callback: async () => {
await ingestDataBankAttachments();
return '';
},
aliases: ['databank-ingest', 'data-bank-ingest'],
helpString: 'Force the ingestion of all Data Bank attachments.',
}));
SlashCommandParser.addCommandObject(SlashCommand.fromProps({
name: 'db-purge',
callback: async () => {
const dataBank = getDataBankAttachments();
for (const file of dataBank) {
await purgeFileVectorIndex(file.url);
}
return '';
},
aliases: ['databank-purge', 'data-bank-purge'],
helpString: 'Purge the vector index for all Data Bank attachments.',
}));
SlashCommandParser.addCommandObject(SlashCommand.fromProps({
name: 'db-search',
callback: async (args, query) => {
const clamp = (v) => Number.isNaN(v) ? null : Math.min(1, Math.max(0, v));
const threshold = clamp(Number(args?.threshold ?? settings.score_threshold));
const source = String(args?.source ?? '');
const attachments = source ? getDataBankAttachmentsForSource(source, false) : getDataBankAttachments(false);
const collectionIds = await ingestDataBankAttachments(String(source));
const queryResults = await queryMultipleCollections(collectionIds, String(query), settings.chunk_count_db, threshold);
// Map collection IDs to file URLs
const urls = Object
.keys(queryResults)
.map(x => attachments.find(y => getFileCollectionId(y.url) === x))
.filter(x => x)
.map(x => x.url);
return JSON.stringify(urls);
},
aliases: ['databank-search', 'data-bank-search'],
helpString: 'Search the Data Bank for a specific query using vector similarity. Returns a list of file URLs with the most relevant content.',
namedArgumentList: [
new SlashCommandNamedArgument('threshold', 'Threshold for the similarity score in the [0, 1] range. Uses the global config value if not set.', ARGUMENT_TYPE.NUMBER, false, false, ''),
new SlashCommandNamedArgument('source', 'Optional filter for the attachments by source.', ARGUMENT_TYPE.STRING, false, false, '', ['global', 'character', 'chat']),
],
unnamedArgumentList: [
new SlashCommandArgument('Query to search by.', ARGUMENT_TYPE.STRING, true, false),
],
returns: ARGUMENT_TYPE.LIST,
}));
registerDebugFunction('purge-everything', 'Purge all vector indices', 'Obliterate all stored vectors for all sources. No mercy.', async () => {
if (!confirm('Are you sure?')) {
return;
}
await purgeAllVectorIndexes();
});
});