mirror of
https://github.com/SillyTavern/SillyTavern.git
synced 2024-12-14 10:24:47 +01:00
1672 lines
60 KiB
JavaScript
1672 lines
60 KiB
JavaScript
import {
|
|
eventSource,
|
|
event_types,
|
|
extension_prompt_types,
|
|
extension_prompt_roles,
|
|
getCurrentChatId,
|
|
getRequestHeaders,
|
|
is_send_press,
|
|
saveSettingsDebounced,
|
|
setExtensionPrompt,
|
|
substituteParams,
|
|
generateRaw,
|
|
substituteParamsExtended,
|
|
} from '../../../script.js';
|
|
import {
|
|
ModuleWorkerWrapper,
|
|
extension_settings,
|
|
getContext,
|
|
modules,
|
|
renderExtensionTemplateAsync,
|
|
doExtrasFetch, getApiUrl,
|
|
} from '../../extensions.js';
|
|
import { collapseNewlines, registerDebugFunction } from '../../power-user.js';
|
|
import { SECRET_KEYS, secret_state, writeSecret } from '../../secrets.js';
|
|
import { getDataBankAttachments, getDataBankAttachmentsForSource, getFileAttachment } from '../../chats.js';
|
|
import { debounce, getStringHash as calculateHash, waitUntilCondition, onlyUnique, splitRecursive, trimToStartSentence, trimToEndSentence } from '../../utils.js';
|
|
import { debounce_timeout } from '../../constants.js';
|
|
import { getSortedEntries } from '../../world-info.js';
|
|
import { textgen_types, textgenerationwebui_settings } from '../../textgen-settings.js';
|
|
import { SlashCommandParser } from '../../slash-commands/SlashCommandParser.js';
|
|
import { SlashCommand } from '../../slash-commands/SlashCommand.js';
|
|
import { ARGUMENT_TYPE, SlashCommandArgument, SlashCommandNamedArgument } from '../../slash-commands/SlashCommandArgument.js';
|
|
import { callGenericPopup, POPUP_RESULT, POPUP_TYPE } from '../../popup.js';
|
|
import { generateWebLlmChatPrompt, isWebLlmSupported } from '../shared.js';
|
|
|
|
/**
|
|
* @typedef {object} HashedMessage
|
|
* @property {string} text - The hashed message text
|
|
*/
|
|
|
|
const MODULE_NAME = 'vectors';
|
|
|
|
export const EXTENSION_PROMPT_TAG = '3_vectors';
|
|
export const EXTENSION_PROMPT_TAG_DB = '4_vectors_data_bank';
|
|
|
|
const settings = {
|
|
// For both
|
|
source: 'transformers',
|
|
include_wi: false,
|
|
togetherai_model: 'togethercomputer/m2-bert-80M-32k-retrieval',
|
|
openai_model: 'text-embedding-ada-002',
|
|
cohere_model: 'embed-english-v3.0',
|
|
ollama_model: 'mxbai-embed-large',
|
|
ollama_keep: false,
|
|
vllm_model: '',
|
|
summarize: false,
|
|
summarize_sent: false,
|
|
summary_source: 'main',
|
|
summary_prompt: 'Pause your roleplay. Summarize the most important parts of the message. Limit yourself to 250 words or less. Your response should include nothing but the summary.',
|
|
force_chunk_delimiter: '',
|
|
|
|
// For chats
|
|
enabled_chats: false,
|
|
template: 'Past events:\n{{text}}',
|
|
depth: 2,
|
|
position: extension_prompt_types.IN_PROMPT,
|
|
protect: 5,
|
|
insert: 3,
|
|
query: 2,
|
|
message_chunk_size: 400,
|
|
score_threshold: 0.25,
|
|
|
|
// For files
|
|
enabled_files: false,
|
|
translate_files: false,
|
|
size_threshold: 10,
|
|
chunk_size: 5000,
|
|
chunk_count: 2,
|
|
overlap_percent: 0,
|
|
|
|
// For Data Bank
|
|
size_threshold_db: 5,
|
|
chunk_size_db: 2500,
|
|
chunk_count_db: 5,
|
|
overlap_percent_db: 0,
|
|
file_template_db: 'Related information:\n{{text}}',
|
|
file_position_db: extension_prompt_types.IN_PROMPT,
|
|
file_depth_db: 4,
|
|
file_depth_role_db: extension_prompt_roles.SYSTEM,
|
|
|
|
// For World Info
|
|
enabled_world_info: false,
|
|
enabled_for_all: false,
|
|
max_entries: 5,
|
|
};
|
|
|
|
const moduleWorker = new ModuleWorkerWrapper(synchronizeChat);
|
|
|
|
/**
|
|
* Gets the Collection ID for a file embedded in the chat.
|
|
* @param {string} fileUrl URL of the file
|
|
* @returns {string} Collection ID
|
|
*/
|
|
function getFileCollectionId(fileUrl) {
|
|
return `file_${getStringHash(fileUrl)}`;
|
|
}
|
|
|
|
async function onVectorizeAllClick() {
|
|
try {
|
|
if (!settings.enabled_chats) {
|
|
return;
|
|
}
|
|
|
|
const chatId = getCurrentChatId();
|
|
|
|
if (!chatId) {
|
|
toastr.info('No chat selected', 'Vectorization aborted');
|
|
return;
|
|
}
|
|
|
|
const batchSize = 5;
|
|
const elapsedLog = [];
|
|
let finished = false;
|
|
$('#vectorize_progress').show();
|
|
$('#vectorize_progress_percent').text('0');
|
|
$('#vectorize_progress_eta').text('...');
|
|
|
|
while (!finished) {
|
|
if (is_send_press) {
|
|
toastr.info('Message generation is in progress.', 'Vectorization aborted');
|
|
throw new Error('Message generation is in progress.');
|
|
}
|
|
|
|
const startTime = Date.now();
|
|
const remaining = await synchronizeChat(batchSize);
|
|
const elapsed = Date.now() - startTime;
|
|
elapsedLog.push(elapsed);
|
|
finished = remaining <= 0;
|
|
|
|
const total = getContext().chat.length;
|
|
const processed = total - remaining;
|
|
const processedPercent = Math.round((processed / total) * 100); // percentage of the work done
|
|
const lastElapsed = elapsedLog.slice(-5); // last 5 elapsed times
|
|
const averageElapsed = lastElapsed.reduce((a, b) => a + b, 0) / lastElapsed.length; // average time needed to process one item
|
|
const pace = averageElapsed / batchSize; // time needed to process one item
|
|
const remainingTime = Math.round(pace * remaining / 1000);
|
|
|
|
$('#vectorize_progress_percent').text(processedPercent);
|
|
$('#vectorize_progress_eta').text(remainingTime);
|
|
|
|
if (chatId !== getCurrentChatId()) {
|
|
throw new Error('Chat changed');
|
|
}
|
|
}
|
|
} catch (error) {
|
|
console.error('Vectors: Failed to vectorize all', error);
|
|
} finally {
|
|
$('#vectorize_progress').hide();
|
|
}
|
|
}
|
|
|
|
let syncBlocked = false;
|
|
|
|
/**
|
|
* Gets the chunk delimiters for splitting text.
|
|
* @returns {string[]} Array of chunk delimiters
|
|
*/
|
|
function getChunkDelimiters() {
|
|
const delimiters = ['\n\n', '\n', ' ', ''];
|
|
|
|
if (settings.force_chunk_delimiter) {
|
|
delimiters.unshift(settings.force_chunk_delimiter);
|
|
}
|
|
|
|
return delimiters;
|
|
}
|
|
|
|
/**
|
|
* Splits messages into chunks before inserting them into the vector index.
|
|
* @param {object[]} items Array of vector items
|
|
* @returns {object[]} Array of vector items (possibly chunked)
|
|
*/
|
|
function splitByChunks(items) {
|
|
if (settings.message_chunk_size <= 0) {
|
|
return items;
|
|
}
|
|
|
|
const chunkedItems = [];
|
|
|
|
for (const item of items) {
|
|
const chunks = splitRecursive(item.text, settings.message_chunk_size, getChunkDelimiters());
|
|
for (const chunk of chunks) {
|
|
const chunkedItem = { ...item, text: chunk };
|
|
chunkedItems.push(chunkedItem);
|
|
}
|
|
}
|
|
|
|
return chunkedItems;
|
|
}
|
|
|
|
/**
|
|
* Summarizes messages using the Extras API method.
|
|
* @param {HashedMessage[]} hashedMessages Array of hashed messages
|
|
* @returns {Promise<HashedMessage[]>} Summarized messages
|
|
*/
|
|
async function summarizeExtra(hashedMessages) {
|
|
for (const element of hashedMessages) {
|
|
try {
|
|
const url = new URL(getApiUrl());
|
|
url.pathname = '/api/summarize';
|
|
|
|
const apiResult = await doExtrasFetch(url, {
|
|
method: 'POST',
|
|
headers: {
|
|
'Content-Type': 'application/json',
|
|
'Bypass-Tunnel-Reminder': 'bypass',
|
|
},
|
|
body: JSON.stringify({
|
|
text: element.text,
|
|
params: {},
|
|
}),
|
|
});
|
|
|
|
if (apiResult.ok) {
|
|
const data = await apiResult.json();
|
|
element.text = data.summary;
|
|
}
|
|
}
|
|
catch (error) {
|
|
console.log(error);
|
|
}
|
|
}
|
|
|
|
return hashedMessages;
|
|
}
|
|
|
|
/**
|
|
* Summarizes messages using the main API method.
|
|
* @param {HashedMessage[]} hashedMessages Array of hashed messages
|
|
* @returns {Promise<HashedMessage[]>} Summarized messages
|
|
*/
|
|
async function summarizeMain(hashedMessages) {
|
|
for (const element of hashedMessages) {
|
|
element.text = await generateRaw(element.text, '', false, false, settings.summary_prompt);
|
|
}
|
|
|
|
return hashedMessages;
|
|
}
|
|
|
|
/**
|
|
* Summarizes messages using WebLLM.
|
|
* @param {HashedMessage[]} hashedMessages Array of hashed messages
|
|
* @returns {Promise<HashedMessage[]>} Summarized messages
|
|
*/
|
|
async function summarizeWebLLM(hashedMessages) {
|
|
if (!isWebLlmSupported()) {
|
|
console.warn('Vectors: WebLLM is not supported');
|
|
return hashedMessages;
|
|
}
|
|
|
|
for (const element of hashedMessages) {
|
|
const messages = [{ role:'system', content: settings.summary_prompt }, { role:'user', content: element.text }];
|
|
element.text = await generateWebLlmChatPrompt(messages);
|
|
}
|
|
|
|
return hashedMessages;
|
|
}
|
|
|
|
/**
|
|
* Summarizes messages using the chosen method.
|
|
* @param {HashedMessage[]} hashedMessages Array of hashed messages
|
|
* @param {string} endpoint Type of endpoint to use
|
|
* @returns {Promise<HashedMessage[]>} Summarized messages
|
|
*/
|
|
async function summarize(hashedMessages, endpoint = 'main') {
|
|
switch (endpoint) {
|
|
case 'main':
|
|
return await summarizeMain(hashedMessages);
|
|
case 'extras':
|
|
return await summarizeExtra(hashedMessages);
|
|
case 'webllm':
|
|
return await summarizeWebLLM(hashedMessages);
|
|
default:
|
|
console.error('Unsupported endpoint', endpoint);
|
|
}
|
|
}
|
|
|
|
async function synchronizeChat(batchSize = 5) {
|
|
if (!settings.enabled_chats) {
|
|
return -1;
|
|
}
|
|
|
|
try {
|
|
await waitUntilCondition(() => !syncBlocked && !is_send_press, 1000);
|
|
} catch {
|
|
console.log('Vectors: Synchronization blocked by another process');
|
|
return -1;
|
|
}
|
|
|
|
try {
|
|
syncBlocked = true;
|
|
const context = getContext();
|
|
const chatId = getCurrentChatId();
|
|
|
|
if (!chatId || !Array.isArray(context.chat)) {
|
|
console.debug('Vectors: No chat selected');
|
|
return -1;
|
|
}
|
|
|
|
let hashedMessages = context.chat.filter(x => !x.is_system).map(x => ({ text: String(substituteParams(x.mes)), hash: getStringHash(substituteParams(x.mes)), index: context.chat.indexOf(x) }));
|
|
const hashesInCollection = await getSavedHashes(chatId);
|
|
|
|
if (settings.summarize) {
|
|
hashedMessages = await summarize(hashedMessages, settings.summary_source);
|
|
}
|
|
|
|
const newVectorItems = hashedMessages.filter(x => !hashesInCollection.includes(x.hash));
|
|
const deletedHashes = hashesInCollection.filter(x => !hashedMessages.some(y => y.hash === x));
|
|
|
|
|
|
if (newVectorItems.length > 0) {
|
|
const chunkedBatch = splitByChunks(newVectorItems.slice(0, batchSize));
|
|
|
|
console.log(`Vectors: Found ${newVectorItems.length} new items. Processing ${batchSize}...`);
|
|
await insertVectorItems(chatId, chunkedBatch);
|
|
}
|
|
|
|
if (deletedHashes.length > 0) {
|
|
await deleteVectorItems(chatId, deletedHashes);
|
|
console.log(`Vectors: Deleted ${deletedHashes.length} old hashes`);
|
|
}
|
|
|
|
return newVectorItems.length - batchSize;
|
|
} catch (error) {
|
|
/**
|
|
* Gets the error message for a given cause
|
|
* @param {string} cause Error cause key
|
|
* @returns {string} Error message
|
|
*/
|
|
function getErrorMessage(cause) {
|
|
switch (cause) {
|
|
case 'api_key_missing':
|
|
return 'API key missing. Save it in the "API Connections" panel.';
|
|
case 'api_url_missing':
|
|
return 'API URL missing. Save it in the "API Connections" panel.';
|
|
case 'api_model_missing':
|
|
return 'Vectorization Source Model is required, but not set.';
|
|
case 'extras_module_missing':
|
|
return 'Extras API must provide an "embeddings" module.';
|
|
default:
|
|
return 'Check server console for more details';
|
|
}
|
|
}
|
|
|
|
console.error('Vectors: Failed to synchronize chat', error);
|
|
|
|
const message = getErrorMessage(error.cause);
|
|
toastr.error(message, 'Vectorization failed', { preventDuplicates: true });
|
|
return -1;
|
|
} finally {
|
|
syncBlocked = false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @type {Map<string, number>} Cache object for storing hash values
|
|
*/
|
|
const hashCache = new Map();
|
|
|
|
/**
|
|
* Gets the hash value for a given string
|
|
* @param {string} str Input string
|
|
* @returns {number} Hash value
|
|
*/
|
|
function getStringHash(str) {
|
|
// Check if the hash is already in the cache
|
|
if (hashCache.has(str)) {
|
|
return hashCache.get(str);
|
|
}
|
|
|
|
// Calculate the hash value
|
|
const hash = calculateHash(str);
|
|
|
|
// Store the hash in the cache
|
|
hashCache.set(str, hash);
|
|
|
|
return hash;
|
|
}
|
|
|
|
/**
|
|
* Retrieves files from the chat and inserts them into the vector index.
|
|
* @param {object[]} chat Array of chat messages
|
|
* @returns {Promise<void>}
|
|
*/
|
|
async function processFiles(chat) {
|
|
try {
|
|
if (!settings.enabled_files) {
|
|
return;
|
|
}
|
|
|
|
const dataBankCollectionIds = await ingestDataBankAttachments();
|
|
|
|
if (dataBankCollectionIds.length) {
|
|
const queryText = await getQueryText(chat);
|
|
await injectDataBankChunks(queryText, dataBankCollectionIds);
|
|
}
|
|
|
|
for (const message of chat) {
|
|
// Message has no file
|
|
if (!message?.extra?.file) {
|
|
continue;
|
|
}
|
|
|
|
// Trim file inserted by the script
|
|
const fileText = String(message.mes)
|
|
.substring(0, message.extra.fileLength).trim();
|
|
|
|
// Convert kilobytes to string length
|
|
const thresholdLength = settings.size_threshold * 1024;
|
|
|
|
// File is too small
|
|
if (fileText.length < thresholdLength) {
|
|
continue;
|
|
}
|
|
|
|
message.mes = message.mes.substring(message.extra.fileLength);
|
|
|
|
const fileName = message.extra.file.name;
|
|
const fileUrl = message.extra.file.url;
|
|
const collectionId = getFileCollectionId(fileUrl);
|
|
const hashesInCollection = await getSavedHashes(collectionId);
|
|
|
|
// File is already in the collection
|
|
if (!hashesInCollection.length) {
|
|
await vectorizeFile(fileText, fileName, collectionId, settings.chunk_size, settings.overlap_percent);
|
|
}
|
|
|
|
const queryText = await getQueryText(chat);
|
|
const fileChunks = await retrieveFileChunks(queryText, collectionId);
|
|
|
|
message.mes = `${fileChunks}\n\n${message.mes}`;
|
|
}
|
|
} catch (error) {
|
|
console.error('Vectors: Failed to retrieve files', error);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Ensures that data bank attachments are ingested and inserted into the vector index.
|
|
* @param {string} [source] Optional source filter for data bank attachments.
|
|
* @returns {Promise<string[]>} Collection IDs
|
|
*/
|
|
async function ingestDataBankAttachments(source) {
|
|
// Exclude disabled files
|
|
const dataBank = source ? getDataBankAttachmentsForSource(source, false) : getDataBankAttachments(false);
|
|
const dataBankCollectionIds = [];
|
|
|
|
for (const file of dataBank) {
|
|
const collectionId = getFileCollectionId(file.url);
|
|
const hashesInCollection = await getSavedHashes(collectionId);
|
|
dataBankCollectionIds.push(collectionId);
|
|
|
|
// File is already in the collection
|
|
if (hashesInCollection.length) {
|
|
continue;
|
|
}
|
|
|
|
// Download and process the file
|
|
file.text = await getFileAttachment(file.url);
|
|
console.log(`Vectors: Retrieved file ${file.name} from Data Bank`);
|
|
// Convert kilobytes to string length
|
|
const thresholdLength = settings.size_threshold_db * 1024;
|
|
// Use chunk size from settings if file is larger than threshold
|
|
const chunkSize = file.size > thresholdLength ? settings.chunk_size_db : -1;
|
|
await vectorizeFile(file.text, file.name, collectionId, chunkSize, settings.overlap_percent_db);
|
|
}
|
|
|
|
return dataBankCollectionIds;
|
|
}
|
|
|
|
/**
|
|
* Inserts file chunks from the Data Bank into the prompt.
|
|
* @param {string} queryText Text to query
|
|
* @param {string[]} collectionIds File collection IDs
|
|
* @returns {Promise<void>}
|
|
*/
|
|
async function injectDataBankChunks(queryText, collectionIds) {
|
|
try {
|
|
const queryResults = await queryMultipleCollections(collectionIds, queryText, settings.chunk_count_db, settings.score_threshold);
|
|
console.debug(`Vectors: Retrieved ${collectionIds.length} Data Bank collections`, queryResults);
|
|
let textResult = '';
|
|
|
|
for (const collectionId in queryResults) {
|
|
console.debug(`Vectors: Processing Data Bank collection ${collectionId}`, queryResults[collectionId]);
|
|
const metadata = queryResults[collectionId].metadata?.filter(x => x.text)?.sort((a, b) => a.index - b.index)?.map(x => x.text)?.filter(onlyUnique) || [];
|
|
textResult += metadata.join('\n') + '\n\n';
|
|
}
|
|
|
|
if (!textResult) {
|
|
console.debug('Vectors: No Data Bank chunks found');
|
|
return;
|
|
}
|
|
|
|
const insertedText = substituteParamsExtended(settings.file_template_db, { text: textResult });
|
|
setExtensionPrompt(EXTENSION_PROMPT_TAG_DB, insertedText, settings.file_position_db, settings.file_depth_db, settings.include_wi, settings.file_depth_role_db);
|
|
} catch (error) {
|
|
console.error('Vectors: Failed to insert Data Bank chunks', error);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Retrieves file chunks from the vector index and inserts them into the chat.
|
|
* @param {string} queryText Text to query
|
|
* @param {string} collectionId File collection ID
|
|
* @returns {Promise<string>} Retrieved file text
|
|
*/
|
|
async function retrieveFileChunks(queryText, collectionId) {
|
|
console.debug(`Vectors: Retrieving file chunks for collection ${collectionId}`, queryText);
|
|
const queryResults = await queryCollection(collectionId, queryText, settings.chunk_count);
|
|
console.debug(`Vectors: Retrieved ${queryResults.hashes.length} file chunks for collection ${collectionId}`, queryResults);
|
|
const metadata = queryResults.metadata.filter(x => x.text).sort((a, b) => a.index - b.index).map(x => x.text).filter(onlyUnique);
|
|
const fileText = metadata.join('\n');
|
|
|
|
return fileText;
|
|
}
|
|
|
|
/**
|
|
* Vectorizes a file and inserts it into the vector index.
|
|
* @param {string} fileText File text
|
|
* @param {string} fileName File name
|
|
* @param {string} collectionId File collection ID
|
|
* @param {number} chunkSize Chunk size
|
|
* @param {number} overlapPercent Overlap size (in %)
|
|
* @returns {Promise<boolean>} True if successful, false if not
|
|
*/
|
|
async function vectorizeFile(fileText, fileName, collectionId, chunkSize, overlapPercent) {
|
|
try {
|
|
if (settings.translate_files && typeof window['translate'] === 'function') {
|
|
console.log(`Vectors: Translating file ${fileName} to English...`);
|
|
const translatedText = await window['translate'](fileText, 'en');
|
|
fileText = translatedText;
|
|
}
|
|
|
|
const toast = toastr.info('Vectorization may take some time, please wait...', `Ingesting file ${fileName}`);
|
|
const overlapSize = Math.round(chunkSize * overlapPercent / 100);
|
|
const delimiters = getChunkDelimiters();
|
|
// Overlap should not be included in chunk size. It will be later compensated by overlapChunks
|
|
chunkSize = overlapSize > 0 ? (chunkSize - overlapSize) : chunkSize;
|
|
const chunks = splitRecursive(fileText, chunkSize, delimiters).map((x, y, z) => overlapSize > 0 ? overlapChunks(x, y, z, overlapSize) : x);
|
|
console.debug(`Vectors: Split file ${fileName} into ${chunks.length} chunks with ${overlapPercent}% overlap`, chunks);
|
|
|
|
const items = chunks.map((chunk, index) => ({ hash: getStringHash(chunk), text: chunk, index: index }));
|
|
await insertVectorItems(collectionId, items);
|
|
|
|
toastr.clear(toast);
|
|
console.log(`Vectors: Inserted ${chunks.length} vector items for file ${fileName} into ${collectionId}`);
|
|
return true;
|
|
} catch (error) {
|
|
toastr.error(String(error), 'Failed to vectorize file', { preventDuplicates: true });
|
|
console.error('Vectors: Failed to vectorize file', error);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Removes the most relevant messages from the chat and displays them in the extension prompt
|
|
* @param {object[]} chat Array of chat messages
|
|
*/
|
|
async function rearrangeChat(chat) {
|
|
try {
|
|
// Clear the extension prompt
|
|
setExtensionPrompt(EXTENSION_PROMPT_TAG, '', settings.position, settings.depth, settings.include_wi);
|
|
setExtensionPrompt(EXTENSION_PROMPT_TAG_DB, '', settings.file_position_db, settings.file_depth_db, settings.include_wi, settings.file_depth_role_db);
|
|
|
|
if (settings.enabled_files) {
|
|
await processFiles(chat);
|
|
}
|
|
|
|
if (settings.enabled_world_info) {
|
|
await activateWorldInfo(chat);
|
|
}
|
|
|
|
if (!settings.enabled_chats) {
|
|
return;
|
|
}
|
|
|
|
const chatId = getCurrentChatId();
|
|
|
|
if (!chatId || !Array.isArray(chat)) {
|
|
console.debug('Vectors: No chat selected');
|
|
return;
|
|
}
|
|
|
|
if (chat.length < settings.protect) {
|
|
console.debug(`Vectors: Not enough messages to rearrange (less than ${settings.protect})`);
|
|
return;
|
|
}
|
|
|
|
const queryText = await getQueryText(chat);
|
|
|
|
if (queryText.length === 0) {
|
|
console.debug('Vectors: No text to query');
|
|
return;
|
|
}
|
|
|
|
// Get the most relevant messages, excluding the last few
|
|
const queryResults = await queryCollection(chatId, queryText, settings.insert);
|
|
const queryHashes = queryResults.hashes.filter(onlyUnique);
|
|
const queriedMessages = [];
|
|
const insertedHashes = new Set();
|
|
const retainMessages = chat.slice(-settings.protect);
|
|
|
|
for (const message of chat) {
|
|
if (retainMessages.includes(message) || !message.mes) {
|
|
continue;
|
|
}
|
|
const hash = getStringHash(substituteParams(message.mes));
|
|
if (queryHashes.includes(hash) && !insertedHashes.has(hash)) {
|
|
queriedMessages.push(message);
|
|
insertedHashes.add(hash);
|
|
}
|
|
}
|
|
|
|
// Rearrange queried messages to match query order
|
|
// Order is reversed because more relevant are at the lower indices
|
|
queriedMessages.sort((a, b) => queryHashes.indexOf(getStringHash(substituteParams(b.mes))) - queryHashes.indexOf(getStringHash(substituteParams(a.mes))));
|
|
|
|
// Remove queried messages from the original chat array
|
|
for (const message of chat) {
|
|
if (queriedMessages.includes(message)) {
|
|
chat.splice(chat.indexOf(message), 1);
|
|
}
|
|
}
|
|
|
|
if (queriedMessages.length === 0) {
|
|
console.debug('Vectors: No relevant messages found');
|
|
return;
|
|
}
|
|
|
|
// Format queried messages into a single string
|
|
const insertedText = getPromptText(queriedMessages);
|
|
setExtensionPrompt(EXTENSION_PROMPT_TAG, insertedText, settings.position, settings.depth, settings.include_wi);
|
|
} catch (error) {
|
|
toastr.error('Generation interceptor aborted. Check browser console for more details.', 'Vector Storage');
|
|
console.error('Vectors: Failed to rearrange chat', error);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param {any[]} queriedMessages
|
|
* @returns {string}
|
|
*/
|
|
function getPromptText(queriedMessages) {
|
|
const queriedText = queriedMessages.map(x => collapseNewlines(`${x.name}: ${x.mes}`).trim()).join('\n\n');
|
|
console.log('Vectors: relevant past messages found.\n', queriedText);
|
|
return substituteParamsExtended(settings.template, { text: queriedText });
|
|
}
|
|
|
|
/**
|
|
* Modifies text chunks to include overlap with adjacent chunks.
|
|
* @param {string} chunk Current item
|
|
* @param {number} index Current index
|
|
* @param {string[]} chunks List of chunks
|
|
* @param {number} overlapSize Size of the overlap
|
|
* @returns {string} Overlapped chunks, with overlap trimmed to sentence boundaries
|
|
*/
|
|
function overlapChunks(chunk, index, chunks, overlapSize) {
|
|
const halfOverlap = Math.floor(overlapSize / 2);
|
|
const nextChunk = chunks[index + 1];
|
|
const prevChunk = chunks[index - 1];
|
|
|
|
const nextOverlap = trimToEndSentence(nextChunk?.substring(0, halfOverlap)) || '';
|
|
const prevOverlap = trimToStartSentence(prevChunk?.substring(prevChunk.length - halfOverlap)) || '';
|
|
const overlappedChunk = [prevOverlap, chunk, nextOverlap].filter(x => x).join(' ');
|
|
|
|
return overlappedChunk;
|
|
}
|
|
|
|
window['vectors_rearrangeChat'] = rearrangeChat;
|
|
|
|
const onChatEvent = debounce(async () => await moduleWorker.update(), debounce_timeout.relaxed);
|
|
|
|
/**
|
|
* Gets the text to query from the chat
|
|
* @param {object[]} chat Chat messages
|
|
* @returns {Promise<string>} Text to query
|
|
*/
|
|
async function getQueryText(chat) {
|
|
let queryText = '';
|
|
let i = 0;
|
|
|
|
let hashedMessages = chat.map(x => ({ text: String(substituteParams(x.mes)) }));
|
|
|
|
if (settings.summarize && settings.summarize_sent) {
|
|
hashedMessages = await summarize(hashedMessages, settings.summary_source);
|
|
}
|
|
|
|
for (const message of hashedMessages.slice().reverse()) {
|
|
if (message.text) {
|
|
queryText += message.text + '\n';
|
|
i++;
|
|
}
|
|
|
|
if (i === settings.query) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return collapseNewlines(queryText).trim();
|
|
}
|
|
|
|
/**
|
|
* Gets the saved hashes for a collection
|
|
* @param {string} collectionId
|
|
* @returns {Promise<number[]>} Saved hashes
|
|
*/
|
|
async function getSavedHashes(collectionId) {
|
|
const response = await fetch('/api/vector/list', {
|
|
method: 'POST',
|
|
headers: getRequestHeaders(),
|
|
body: JSON.stringify({
|
|
collectionId: collectionId,
|
|
source: settings.source,
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Failed to get saved hashes for collection ${collectionId}`);
|
|
}
|
|
|
|
const hashes = await response.json();
|
|
return hashes;
|
|
}
|
|
|
|
function getVectorHeaders() {
|
|
const headers = getRequestHeaders();
|
|
switch (settings.source) {
|
|
case 'extras':
|
|
addExtrasHeaders(headers);
|
|
break;
|
|
case 'togetherai':
|
|
addTogetherAiHeaders(headers);
|
|
break;
|
|
case 'openai':
|
|
addOpenAiHeaders(headers);
|
|
break;
|
|
case 'cohere':
|
|
addCohereHeaders(headers);
|
|
break;
|
|
case 'ollama':
|
|
addOllamaHeaders(headers);
|
|
break;
|
|
case 'llamacpp':
|
|
addLlamaCppHeaders(headers);
|
|
break;
|
|
case 'vllm':
|
|
addVllmHeaders(headers);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return headers;
|
|
}
|
|
|
|
/**
|
|
* Add headers for the Extras API source.
|
|
* @param {object} headers Headers object
|
|
*/
|
|
function addExtrasHeaders(headers) {
|
|
console.log(`Vector source is extras, populating API URL: ${extension_settings.apiUrl}`);
|
|
Object.assign(headers, {
|
|
'X-Extras-Url': extension_settings.apiUrl,
|
|
'X-Extras-Key': extension_settings.apiKey,
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Add headers for the TogetherAI API source.
|
|
* @param {object} headers Headers object
|
|
*/
|
|
function addTogetherAiHeaders(headers) {
|
|
Object.assign(headers, {
|
|
'X-Togetherai-Model': extension_settings.vectors.togetherai_model,
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Add headers for the OpenAI API source.
|
|
* @param {object} headers Header object
|
|
*/
|
|
function addOpenAiHeaders(headers) {
|
|
Object.assign(headers, {
|
|
'X-OpenAI-Model': extension_settings.vectors.openai_model,
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Add headers for the Cohere API source.
|
|
* @param {object} headers Header object
|
|
*/
|
|
function addCohereHeaders(headers) {
|
|
Object.assign(headers, {
|
|
'X-Cohere-Model': extension_settings.vectors.cohere_model,
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Add headers for the Ollama API source.
|
|
* @param {object} headers Header object
|
|
*/
|
|
function addOllamaHeaders(headers) {
|
|
Object.assign(headers, {
|
|
'X-Ollama-Model': extension_settings.vectors.ollama_model,
|
|
'X-Ollama-URL': textgenerationwebui_settings.server_urls[textgen_types.OLLAMA],
|
|
'X-Ollama-Keep': !!extension_settings.vectors.ollama_keep,
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Add headers for the LlamaCpp API source.
|
|
* @param {object} headers Header object
|
|
*/
|
|
function addLlamaCppHeaders(headers) {
|
|
Object.assign(headers, {
|
|
'X-LlamaCpp-URL': textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP],
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Add headers for the VLLM API source.
|
|
* @param {object} headers Header object
|
|
*/
|
|
function addVllmHeaders(headers) {
|
|
Object.assign(headers, {
|
|
'X-Vllm-URL': textgenerationwebui_settings.server_urls[textgen_types.VLLM],
|
|
'X-Vllm-Model': extension_settings.vectors.vllm_model,
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Inserts vector items into a collection
|
|
* @param {string} collectionId - The collection to insert into
|
|
* @param {{ hash: number, text: string }[]} items - The items to insert
|
|
* @returns {Promise<void>}
|
|
*/
|
|
async function insertVectorItems(collectionId, items) {
|
|
throwIfSourceInvalid();
|
|
|
|
const headers = getVectorHeaders();
|
|
|
|
const response = await fetch('/api/vector/insert', {
|
|
method: 'POST',
|
|
headers: headers,
|
|
body: JSON.stringify({
|
|
collectionId: collectionId,
|
|
items: items,
|
|
source: settings.source,
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Failed to insert vector items for collection ${collectionId}`);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Throws an error if the source is invalid (missing API key or URL, or missing module)
|
|
*/
|
|
function throwIfSourceInvalid() {
|
|
if (settings.source === 'openai' && !secret_state[SECRET_KEYS.OPENAI] ||
|
|
settings.source === 'palm' && !secret_state[SECRET_KEYS.MAKERSUITE] ||
|
|
settings.source === 'mistral' && !secret_state[SECRET_KEYS.MISTRALAI] ||
|
|
settings.source === 'togetherai' && !secret_state[SECRET_KEYS.TOGETHERAI] ||
|
|
settings.source === 'nomicai' && !secret_state[SECRET_KEYS.NOMICAI] ||
|
|
settings.source === 'cohere' && !secret_state[SECRET_KEYS.COHERE]) {
|
|
throw new Error('Vectors: API key missing', { cause: 'api_key_missing' });
|
|
}
|
|
|
|
if (settings.source === 'ollama' && !textgenerationwebui_settings.server_urls[textgen_types.OLLAMA] ||
|
|
settings.source === 'vllm' && !textgenerationwebui_settings.server_urls[textgen_types.VLLM] ||
|
|
settings.source === 'llamacpp' && !textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP]) {
|
|
throw new Error('Vectors: API URL missing', { cause: 'api_url_missing' });
|
|
}
|
|
|
|
if (settings.source === 'ollama' && !settings.ollama_model || settings.source === 'vllm' && !settings.vllm_model) {
|
|
throw new Error('Vectors: API model missing', { cause: 'api_model_missing' });
|
|
}
|
|
|
|
if (settings.source === 'extras' && !modules.includes('embeddings')) {
|
|
throw new Error('Vectors: Embeddings module missing', { cause: 'extras_module_missing' });
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Deletes vector items from a collection
|
|
* @param {string} collectionId - The collection to delete from
|
|
* @param {number[]} hashes - The hashes of the items to delete
|
|
* @returns {Promise<void>}
|
|
*/
|
|
async function deleteVectorItems(collectionId, hashes) {
|
|
const response = await fetch('/api/vector/delete', {
|
|
method: 'POST',
|
|
headers: getRequestHeaders(),
|
|
body: JSON.stringify({
|
|
collectionId: collectionId,
|
|
hashes: hashes,
|
|
source: settings.source,
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Failed to delete vector items for collection ${collectionId}`);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param {string} collectionId - The collection to query
|
|
* @param {string} searchText - The text to query
|
|
* @param {number} topK - The number of results to return
|
|
* @returns {Promise<{ hashes: number[], metadata: object[]}>} - Hashes of the results
|
|
*/
|
|
async function queryCollection(collectionId, searchText, topK) {
|
|
const headers = getVectorHeaders();
|
|
|
|
const response = await fetch('/api/vector/query', {
|
|
method: 'POST',
|
|
headers: headers,
|
|
body: JSON.stringify({
|
|
collectionId: collectionId,
|
|
searchText: searchText,
|
|
topK: topK,
|
|
source: settings.source,
|
|
threshold: settings.score_threshold,
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Failed to query collection ${collectionId}`);
|
|
}
|
|
|
|
return await response.json();
|
|
}
|
|
|
|
/**
|
|
* Queries multiple collections for a given text.
|
|
* @param {string[]} collectionIds - Collection IDs to query
|
|
* @param {string} searchText - Text to query
|
|
* @param {number} topK - Number of results to return
|
|
* @param {number} threshold - Score threshold
|
|
* @returns {Promise<Record<string, { hashes: number[], metadata: object[] }>>} - Results mapped to collection IDs
|
|
*/
|
|
async function queryMultipleCollections(collectionIds, searchText, topK, threshold) {
|
|
const headers = getVectorHeaders();
|
|
|
|
const response = await fetch('/api/vector/query-multi', {
|
|
method: 'POST',
|
|
headers: headers,
|
|
body: JSON.stringify({
|
|
collectionIds: collectionIds,
|
|
searchText: searchText,
|
|
topK: topK,
|
|
source: settings.source,
|
|
threshold: threshold ?? settings.score_threshold,
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error('Failed to query multiple collections');
|
|
}
|
|
|
|
return await response.json();
|
|
}
|
|
|
|
/**
|
|
* Purges the vector index for a file.
|
|
* @param {string} fileUrl File URL to purge
|
|
*/
|
|
async function purgeFileVectorIndex(fileUrl) {
|
|
try {
|
|
if (!settings.enabled_files) {
|
|
return;
|
|
}
|
|
|
|
console.log(`Vectors: Purging file vector index for ${fileUrl}`);
|
|
const collectionId = getFileCollectionId(fileUrl);
|
|
|
|
const response = await fetch('/api/vector/purge', {
|
|
method: 'POST',
|
|
headers: getRequestHeaders(),
|
|
body: JSON.stringify({
|
|
collectionId: collectionId,
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Could not delete vector index for collection ${collectionId}`);
|
|
}
|
|
|
|
console.log(`Vectors: Purged vector index for collection ${collectionId}`);
|
|
} catch (error) {
|
|
console.error('Vectors: Failed to purge file', error);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Purges the vector index for a collection.
|
|
* @param {string} collectionId Collection ID to purge
|
|
* @returns <Promise<boolean>> True if deleted, false if not
|
|
*/
|
|
async function purgeVectorIndex(collectionId) {
|
|
try {
|
|
if (!settings.enabled_chats) {
|
|
return true;
|
|
}
|
|
|
|
const response = await fetch('/api/vector/purge', {
|
|
method: 'POST',
|
|
headers: getRequestHeaders(),
|
|
body: JSON.stringify({
|
|
collectionId: collectionId,
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Could not delete vector index for collection ${collectionId}`);
|
|
}
|
|
|
|
console.log(`Vectors: Purged vector index for collection ${collectionId}`);
|
|
return true;
|
|
} catch (error) {
|
|
console.error('Vectors: Failed to purge', error);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Purges all vector indexes.
|
|
*/
|
|
async function purgeAllVectorIndexes() {
|
|
try {
|
|
const response = await fetch('/api/vector/purge-all', {
|
|
method: 'POST',
|
|
headers: getRequestHeaders(),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error('Failed to purge all vector indexes');
|
|
}
|
|
|
|
console.log('Vectors: Purged all vector indexes');
|
|
toastr.success('All vector indexes purged', 'Purge successful');
|
|
} catch (error) {
|
|
console.error('Vectors: Failed to purge all', error);
|
|
toastr.error('Failed to purge all vector indexes', 'Purge failed');
|
|
}
|
|
}
|
|
|
|
function toggleSettings() {
|
|
$('#vectors_files_settings').toggle(!!settings.enabled_files);
|
|
$('#vectors_chats_settings').toggle(!!settings.enabled_chats);
|
|
$('#vectors_world_info_settings').toggle(!!settings.enabled_world_info);
|
|
$('#together_vectorsModel').toggle(settings.source === 'togetherai');
|
|
$('#openai_vectorsModel').toggle(settings.source === 'openai');
|
|
$('#cohere_vectorsModel').toggle(settings.source === 'cohere');
|
|
$('#ollama_vectorsModel').toggle(settings.source === 'ollama');
|
|
$('#llamacpp_vectorsModel').toggle(settings.source === 'llamacpp');
|
|
$('#vllm_vectorsModel').toggle(settings.source === 'vllm');
|
|
$('#nomicai_apiKey').toggle(settings.source === 'nomicai');
|
|
}
|
|
|
|
async function onPurgeClick() {
|
|
const chatId = getCurrentChatId();
|
|
if (!chatId) {
|
|
toastr.info('No chat selected', 'Purge aborted');
|
|
return;
|
|
}
|
|
if (await purgeVectorIndex(chatId)) {
|
|
toastr.success('Vector index purged', 'Purge successful');
|
|
} else {
|
|
toastr.error('Failed to purge vector index', 'Purge failed');
|
|
}
|
|
}
|
|
|
|
async function onViewStatsClick() {
|
|
const chatId = getCurrentChatId();
|
|
if (!chatId) {
|
|
toastr.info('No chat selected');
|
|
return;
|
|
}
|
|
|
|
const hashesInCollection = await getSavedHashes(chatId);
|
|
const totalHashes = hashesInCollection.length;
|
|
const uniqueHashes = hashesInCollection.filter(onlyUnique).length;
|
|
|
|
toastr.info(`Total hashes: <b>${totalHashes}</b><br>
|
|
Unique hashes: <b>${uniqueHashes}</b><br><br>
|
|
I'll mark collected messages with a green circle.`,
|
|
`Stats for chat ${chatId}`,
|
|
{ timeOut: 10000, escapeHtml: false },
|
|
);
|
|
|
|
const chat = getContext().chat;
|
|
for (const message of chat) {
|
|
if (hashesInCollection.includes(getStringHash(substituteParams(message.mes)))) {
|
|
const messageElement = $(`.mes[mesid="${chat.indexOf(message)}"]`);
|
|
messageElement.addClass('vectorized');
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
async function onVectorizeAllFilesClick() {
|
|
try {
|
|
const dataBank = getDataBankAttachments();
|
|
const chatAttachments = getContext().chat.filter(x => x.extra?.file).map(x => x.extra.file);
|
|
const allFiles = [...dataBank, ...chatAttachments];
|
|
|
|
/**
|
|
* Gets the chunk size for a file attachment.
|
|
* @param file {import('../../chats.js').FileAttachment} File attachment
|
|
* @returns {number} Chunk size for the file
|
|
*/
|
|
function getChunkSize(file) {
|
|
if (chatAttachments.includes(file)) {
|
|
// Convert kilobytes to string length
|
|
const thresholdLength = settings.size_threshold * 1024;
|
|
return file.size > thresholdLength ? settings.chunk_size : -1;
|
|
}
|
|
|
|
if (dataBank.includes(file)) {
|
|
// Convert kilobytes to string length
|
|
const thresholdLength = settings.size_threshold_db * 1024;
|
|
// Use chunk size from settings if file is larger than threshold
|
|
return file.size > thresholdLength ? settings.chunk_size_db : -1;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Gets the overlap percent for a file attachment.
|
|
* @param file {import('../../chats.js').FileAttachment} File attachment
|
|
* @returns {number} Overlap percent for the file
|
|
*/
|
|
function getOverlapPercent(file) {
|
|
if (chatAttachments.includes(file)) {
|
|
return settings.overlap_percent;
|
|
}
|
|
|
|
if (dataBank.includes(file)) {
|
|
return settings.overlap_percent_db;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
let allSuccess = true;
|
|
|
|
for (const file of allFiles) {
|
|
const text = await getFileAttachment(file.url);
|
|
const collectionId = getFileCollectionId(file.url);
|
|
const hashes = await getSavedHashes(collectionId);
|
|
|
|
if (hashes.length) {
|
|
console.log(`Vectors: File ${file.name} is already vectorized`);
|
|
continue;
|
|
}
|
|
|
|
const chunkSize = getChunkSize(file);
|
|
const overlapPercent = getOverlapPercent(file);
|
|
const result = await vectorizeFile(text, file.name, collectionId, chunkSize, overlapPercent);
|
|
|
|
if (!result) {
|
|
allSuccess = false;
|
|
}
|
|
}
|
|
|
|
if (allSuccess) {
|
|
toastr.success('All files vectorized', 'Vectorization successful');
|
|
} else {
|
|
toastr.warning('Some files failed to vectorize. Check browser console for more details.', 'Vector Storage');
|
|
}
|
|
} catch (error) {
|
|
console.error('Vectors: Failed to vectorize all files', error);
|
|
toastr.error('Failed to vectorize all files', 'Vectorization failed');
|
|
}
|
|
}
|
|
|
|
async function onPurgeFilesClick() {
|
|
try {
|
|
const dataBank = getDataBankAttachments();
|
|
const chatAttachments = getContext().chat.filter(x => x.extra?.file).map(x => x.extra.file);
|
|
const allFiles = [...dataBank, ...chatAttachments];
|
|
|
|
for (const file of allFiles) {
|
|
await purgeFileVectorIndex(file.url);
|
|
}
|
|
|
|
toastr.success('All files purged', 'Purge successful');
|
|
} catch (error) {
|
|
console.error('Vectors: Failed to purge all files', error);
|
|
toastr.error('Failed to purge all files', 'Purge failed');
|
|
}
|
|
}
|
|
|
|
async function activateWorldInfo(chat) {
|
|
if (!settings.enabled_world_info) {
|
|
console.debug('Vectors: Disabled for World Info');
|
|
return;
|
|
}
|
|
|
|
const entries = await getSortedEntries();
|
|
|
|
if (!Array.isArray(entries) || entries.length === 0) {
|
|
console.debug('Vectors: No WI entries found');
|
|
return;
|
|
}
|
|
|
|
// Group entries by "world" field
|
|
const groupedEntries = {};
|
|
|
|
for (const entry of entries) {
|
|
// Skip orphaned entries. Is it even possible?
|
|
if (!entry.world) {
|
|
console.debug('Vectors: Skipped orphaned WI entry', entry);
|
|
continue;
|
|
}
|
|
|
|
// Skip disabled entries
|
|
if (entry.disable) {
|
|
console.debug('Vectors: Skipped disabled WI entry', entry);
|
|
continue;
|
|
}
|
|
|
|
// Skip entries without content
|
|
if (!entry.content) {
|
|
console.debug('Vectors: Skipped WI entry without content', entry);
|
|
continue;
|
|
}
|
|
|
|
// Skip non-vectorized entries
|
|
if (!entry.vectorized && !settings.enabled_for_all) {
|
|
console.debug('Vectors: Skipped non-vectorized WI entry', entry);
|
|
continue;
|
|
}
|
|
|
|
if (!Object.hasOwn(groupedEntries, entry.world)) {
|
|
groupedEntries[entry.world] = [];
|
|
}
|
|
|
|
groupedEntries[entry.world].push(entry);
|
|
}
|
|
|
|
const collectionIds = [];
|
|
|
|
if (Object.keys(groupedEntries).length === 0) {
|
|
console.debug('Vectors: No WI entries to synchronize');
|
|
return;
|
|
}
|
|
|
|
// Synchronize collections
|
|
for (const world in groupedEntries) {
|
|
const collectionId = `world_${getStringHash(world)}`;
|
|
const hashesInCollection = await getSavedHashes(collectionId);
|
|
const newEntries = groupedEntries[world].filter(x => !hashesInCollection.includes(getStringHash(x.content)));
|
|
const deletedHashes = hashesInCollection.filter(x => !groupedEntries[world].some(y => getStringHash(y.content) === x));
|
|
|
|
if (newEntries.length > 0) {
|
|
console.log(`Vectors: Found ${newEntries.length} new WI entries for world ${world}`);
|
|
await insertVectorItems(collectionId, newEntries.map(x => ({ hash: getStringHash(x.content), text: x.content, index: x.uid })));
|
|
}
|
|
|
|
if (deletedHashes.length > 0) {
|
|
console.log(`Vectors: Deleted ${deletedHashes.length} old hashes for world ${world}`);
|
|
await deleteVectorItems(collectionId, deletedHashes);
|
|
}
|
|
|
|
collectionIds.push(collectionId);
|
|
}
|
|
|
|
// Perform a multi-query
|
|
const queryText = await getQueryText(chat);
|
|
|
|
if (queryText.length === 0) {
|
|
console.debug('Vectors: No text to query for WI');
|
|
return;
|
|
}
|
|
|
|
const queryResults = await queryMultipleCollections(collectionIds, queryText, settings.max_entries, settings.score_threshold);
|
|
const activatedHashes = Object.values(queryResults).flatMap(x => x.hashes).filter(onlyUnique);
|
|
const activatedEntries = [];
|
|
|
|
// Activate entries found in the query results
|
|
for (const entry of entries) {
|
|
const hash = getStringHash(entry.content);
|
|
|
|
if (activatedHashes.includes(hash)) {
|
|
activatedEntries.push(entry);
|
|
}
|
|
}
|
|
|
|
if (activatedEntries.length === 0) {
|
|
console.debug('Vectors: No activated WI entries found');
|
|
return;
|
|
}
|
|
|
|
console.log(`Vectors: Activated ${activatedEntries.length} WI entries`, activatedEntries);
|
|
await eventSource.emit(event_types.WORLDINFO_FORCE_ACTIVATE, activatedEntries);
|
|
}
|
|
|
|
jQuery(async () => {
|
|
if (!extension_settings.vectors) {
|
|
extension_settings.vectors = settings;
|
|
}
|
|
|
|
// Migrate from old settings
|
|
if (settings['enabled']) {
|
|
settings.enabled_chats = true;
|
|
}
|
|
|
|
Object.assign(settings, extension_settings.vectors);
|
|
|
|
// Migrate from TensorFlow to Transformers
|
|
settings.source = settings.source !== 'local' ? settings.source : 'transformers';
|
|
const template = await renderExtensionTemplateAsync(MODULE_NAME, 'settings');
|
|
$('#vectors_container').append(template);
|
|
$('#vectors_enabled_chats').prop('checked', settings.enabled_chats).on('input', () => {
|
|
settings.enabled_chats = $('#vectors_enabled_chats').prop('checked');
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
toggleSettings();
|
|
});
|
|
$('#vectors_modelWarning').hide();
|
|
$('#vectors_enabled_files').prop('checked', settings.enabled_files).on('input', () => {
|
|
settings.enabled_files = $('#vectors_enabled_files').prop('checked');
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
toggleSettings();
|
|
});
|
|
$('#vectors_source').val(settings.source).on('change', () => {
|
|
settings.source = String($('#vectors_source').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
toggleSettings();
|
|
});
|
|
$('#api_key_nomicai').on('click', async () => {
|
|
const popupText = 'NomicAI API Key:';
|
|
const key = await callGenericPopup(popupText, POPUP_TYPE.INPUT, '', {
|
|
customButtons: [{
|
|
text: 'Remove Key',
|
|
appendAtEnd: true,
|
|
result: POPUP_RESULT.NEGATIVE,
|
|
action: async () => {
|
|
await writeSecret(SECRET_KEYS.NOMICAI, '');
|
|
toastr.success('API Key removed');
|
|
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]);
|
|
saveSettingsDebounced();
|
|
},
|
|
}],
|
|
});
|
|
|
|
if (!key) {
|
|
return;
|
|
}
|
|
|
|
await writeSecret(SECRET_KEYS.NOMICAI, String(key));
|
|
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]);
|
|
|
|
toastr.success('API Key saved');
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_togetherai_model').val(settings.togetherai_model).on('change', () => {
|
|
$('#vectors_modelWarning').show();
|
|
settings.togetherai_model = String($('#vectors_togetherai_model').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_openai_model').val(settings.openai_model).on('change', () => {
|
|
$('#vectors_modelWarning').show();
|
|
settings.openai_model = String($('#vectors_openai_model').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_cohere_model').val(settings.cohere_model).on('change', () => {
|
|
$('#vectors_modelWarning').show();
|
|
settings.cohere_model = String($('#vectors_cohere_model').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_ollama_model').val(settings.ollama_model).on('input', () => {
|
|
$('#vectors_modelWarning').show();
|
|
settings.ollama_model = String($('#vectors_ollama_model').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_vllm_model').val(settings.vllm_model).on('input', () => {
|
|
$('#vectors_modelWarning').show();
|
|
settings.vllm_model = String($('#vectors_vllm_model').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_ollama_keep').prop('checked', settings.ollama_keep).on('input', () => {
|
|
settings.ollama_keep = $('#vectors_ollama_keep').prop('checked');
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_template').val(settings.template).on('input', () => {
|
|
settings.template = String($('#vectors_template').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_depth').val(settings.depth).on('input', () => {
|
|
settings.depth = Number($('#vectors_depth').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_protect').val(settings.protect).on('input', () => {
|
|
settings.protect = Number($('#vectors_protect').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_insert').val(settings.insert).on('input', () => {
|
|
settings.insert = Number($('#vectors_insert').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_query').val(settings.query).on('input', () => {
|
|
settings.query = Number($('#vectors_query').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$(`input[name="vectors_position"][value="${settings.position}"]`).prop('checked', true);
|
|
$('input[name="vectors_position"]').on('change', () => {
|
|
settings.position = Number($('input[name="vectors_position"]:checked').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
$('#vectors_vectorize_all').on('click', onVectorizeAllClick);
|
|
$('#vectors_purge').on('click', onPurgeClick);
|
|
$('#vectors_view_stats').on('click', onViewStatsClick);
|
|
$('#vectors_files_vectorize_all').on('click', onVectorizeAllFilesClick);
|
|
$('#vectors_files_purge').on('click', onPurgeFilesClick);
|
|
|
|
$('#vectors_size_threshold').val(settings.size_threshold).on('input', () => {
|
|
settings.size_threshold = Number($('#vectors_size_threshold').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_chunk_size').val(settings.chunk_size).on('input', () => {
|
|
settings.chunk_size = Number($('#vectors_chunk_size').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_chunk_count').val(settings.chunk_count).on('input', () => {
|
|
settings.chunk_count = Number($('#vectors_chunk_count').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_include_wi').prop('checked', settings.include_wi).on('input', () => {
|
|
settings.include_wi = !!$('#vectors_include_wi').prop('checked');
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_summarize').prop('checked', settings.summarize).on('input', () => {
|
|
settings.summarize = !!$('#vectors_summarize').prop('checked');
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_summarize_user').prop('checked', settings.summarize_sent).on('input', () => {
|
|
settings.summarize_sent = !!$('#vectors_summarize_user').prop('checked');
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_summary_source').val(settings.summary_source).on('change', () => {
|
|
settings.summary_source = String($('#vectors_summary_source').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_summary_prompt').val(settings.summary_prompt).on('input', () => {
|
|
settings.summary_prompt = String($('#vectors_summary_prompt').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_message_chunk_size').val(settings.message_chunk_size).on('input', () => {
|
|
settings.message_chunk_size = Number($('#vectors_message_chunk_size').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_size_threshold_db').val(settings.size_threshold_db).on('input', () => {
|
|
settings.size_threshold_db = Number($('#vectors_size_threshold_db').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_chunk_size_db').val(settings.chunk_size_db).on('input', () => {
|
|
settings.chunk_size_db = Number($('#vectors_chunk_size_db').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_chunk_count_db').val(settings.chunk_count_db).on('input', () => {
|
|
settings.chunk_count_db = Number($('#vectors_chunk_count_db').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_overlap_percent').val(settings.overlap_percent).on('input', () => {
|
|
settings.overlap_percent = Number($('#vectors_overlap_percent').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_overlap_percent_db').val(settings.overlap_percent_db).on('input', () => {
|
|
settings.overlap_percent_db = Number($('#vectors_overlap_percent_db').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_file_template_db').val(settings.file_template_db).on('input', () => {
|
|
settings.file_template_db = String($('#vectors_file_template_db').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$(`input[name="vectors_file_position_db"][value="${settings.file_position_db}"]`).prop('checked', true);
|
|
$('input[name="vectors_file_position_db"]').on('change', () => {
|
|
settings.file_position_db = Number($('input[name="vectors_file_position_db"]:checked').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_file_depth_db').val(settings.file_depth_db).on('input', () => {
|
|
settings.file_depth_db = Number($('#vectors_file_depth_db').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_file_depth_role_db').val(settings.file_depth_role_db).on('input', () => {
|
|
settings.file_depth_role_db = Number($('#vectors_file_depth_role_db').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_translate_files').prop('checked', settings.translate_files).on('input', () => {
|
|
settings.translate_files = !!$('#vectors_translate_files').prop('checked');
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_enabled_world_info').prop('checked', settings.enabled_world_info).on('input', () => {
|
|
settings.enabled_world_info = !!$('#vectors_enabled_world_info').prop('checked');
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
toggleSettings();
|
|
});
|
|
|
|
$('#vectors_enabled_for_all').prop('checked', settings.enabled_for_all).on('input', () => {
|
|
settings.enabled_for_all = !!$('#vectors_enabled_for_all').prop('checked');
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_max_entries').val(settings.max_entries).on('input', () => {
|
|
settings.max_entries = Number($('#vectors_max_entries').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_score_threshold').val(settings.score_threshold).on('input', () => {
|
|
settings.score_threshold = Number($('#vectors_score_threshold').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_force_chunk_delimiter').prop('checked', settings.force_chunk_delimiter).on('input', () => {
|
|
settings.force_chunk_delimiter = String($('#vectors_force_chunk_delimiter').val());
|
|
Object.assign(extension_settings.vectors, settings);
|
|
saveSettingsDebounced();
|
|
});
|
|
|
|
$('#vectors_ollama_pull').on('click', (e) => {
|
|
const presetModel = extension_settings.vectors.ollama_model || '';
|
|
e.preventDefault();
|
|
$('#ollama_download_model').trigger('click');
|
|
$('#dialogue_popup_input').val(presetModel);
|
|
});
|
|
|
|
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]);
|
|
|
|
toggleSettings();
|
|
eventSource.on(event_types.MESSAGE_DELETED, onChatEvent);
|
|
eventSource.on(event_types.MESSAGE_EDITED, onChatEvent);
|
|
eventSource.on(event_types.MESSAGE_SENT, onChatEvent);
|
|
eventSource.on(event_types.MESSAGE_RECEIVED, onChatEvent);
|
|
eventSource.on(event_types.MESSAGE_SWIPED, onChatEvent);
|
|
eventSource.on(event_types.CHAT_DELETED, purgeVectorIndex);
|
|
eventSource.on(event_types.GROUP_CHAT_DELETED, purgeVectorIndex);
|
|
eventSource.on(event_types.FILE_ATTACHMENT_DELETED, purgeFileVectorIndex);
|
|
|
|
SlashCommandParser.addCommandObject(SlashCommand.fromProps({
|
|
name: 'db-ingest',
|
|
callback: async () => {
|
|
await ingestDataBankAttachments();
|
|
return '';
|
|
},
|
|
aliases: ['databank-ingest', 'data-bank-ingest'],
|
|
helpString: 'Force the ingestion of all Data Bank attachments.',
|
|
}));
|
|
|
|
SlashCommandParser.addCommandObject(SlashCommand.fromProps({
|
|
name: 'db-purge',
|
|
callback: async () => {
|
|
const dataBank = getDataBankAttachments();
|
|
|
|
for (const file of dataBank) {
|
|
await purgeFileVectorIndex(file.url);
|
|
}
|
|
|
|
return '';
|
|
},
|
|
aliases: ['databank-purge', 'data-bank-purge'],
|
|
helpString: 'Purge the vector index for all Data Bank attachments.',
|
|
}));
|
|
|
|
SlashCommandParser.addCommandObject(SlashCommand.fromProps({
|
|
name: 'db-search',
|
|
callback: async (args, query) => {
|
|
const clamp = (v) => Number.isNaN(v) ? null : Math.min(1, Math.max(0, v));
|
|
const threshold = clamp(Number(args?.threshold ?? settings.score_threshold));
|
|
const source = String(args?.source ?? '');
|
|
const attachments = source ? getDataBankAttachmentsForSource(source, false) : getDataBankAttachments(false);
|
|
const collectionIds = await ingestDataBankAttachments(String(source));
|
|
const queryResults = await queryMultipleCollections(collectionIds, String(query), settings.chunk_count_db, threshold);
|
|
|
|
// Map collection IDs to file URLs
|
|
const urls = Object
|
|
.keys(queryResults)
|
|
.map(x => attachments.find(y => getFileCollectionId(y.url) === x))
|
|
.filter(x => x)
|
|
.map(x => x.url);
|
|
|
|
return JSON.stringify(urls);
|
|
},
|
|
aliases: ['databank-search', 'data-bank-search'],
|
|
helpString: 'Search the Data Bank for a specific query using vector similarity. Returns a list of file URLs with the most relevant content.',
|
|
namedArgumentList: [
|
|
new SlashCommandNamedArgument('threshold', 'Threshold for the similarity score in the [0, 1] range. Uses the global config value if not set.', ARGUMENT_TYPE.NUMBER, false, false, ''),
|
|
new SlashCommandNamedArgument('source', 'Optional filter for the attachments by source.', ARGUMENT_TYPE.STRING, false, false, '', ['global', 'character', 'chat']),
|
|
],
|
|
unnamedArgumentList: [
|
|
new SlashCommandArgument('Query to search by.', ARGUMENT_TYPE.STRING, true, false),
|
|
],
|
|
returns: ARGUMENT_TYPE.LIST,
|
|
}));
|
|
|
|
registerDebugFunction('purge-everything', 'Purge all vector indices', 'Obliterate all stored vectors for all sources. No mercy.', async () => {
|
|
if (!confirm('Are you sure?')) {
|
|
return;
|
|
}
|
|
await purgeAllVectorIndexes();
|
|
});
|
|
});
|