mirror of
https://github.com/SillyTavern/SillyTavern.git
synced 2025-01-22 15:30:00 +01:00
442 lines
14 KiB
JavaScript
442 lines
14 KiB
JavaScript
import { characters, main_api, nai_settings, online_status, this_chid } from "../script.js";
|
|
import { power_user, registerDebugFunction } from "./power-user.js";
|
|
import { chat_completion_sources, oai_settings } from "./openai.js";
|
|
import { groups, selected_group } from "./group-chats.js";
|
|
import { getStringHash } from "./utils.js";
|
|
import { kai_flags } from "./kai-settings.js";
|
|
|
|
export const CHARACTERS_PER_TOKEN_RATIO = 3.35;
|
|
const TOKENIZER_WARNING_KEY = 'tokenizationWarningShown';
|
|
|
|
export const tokenizers = {
|
|
NONE: 0,
|
|
GPT2: 1,
|
|
/**
|
|
* @deprecated Use GPT2 instead.
|
|
*/
|
|
LEGACY: 2,
|
|
LLAMA: 3,
|
|
NERD: 4,
|
|
NERD2: 5,
|
|
API: 6,
|
|
BEST_MATCH: 99,
|
|
};
|
|
|
|
const objectStore = new localforage.createInstance({ name: "SillyTavern_ChatCompletions" });
|
|
|
|
let tokenCache = {};
|
|
|
|
/**
|
|
* Guesstimates the token count for a string.
|
|
* @param {string} str String to tokenize.
|
|
* @returns {number} Token count.
|
|
*/
|
|
export function guesstimate(str) {
|
|
return Math.ceil(str.length / CHARACTERS_PER_TOKEN_RATIO);
|
|
}
|
|
|
|
async function loadTokenCache() {
|
|
try {
|
|
console.debug('Chat Completions: loading token cache')
|
|
tokenCache = await objectStore.getItem('tokenCache') || {};
|
|
} catch (e) {
|
|
console.log('Chat Completions: unable to load token cache, using default value', e);
|
|
tokenCache = {};
|
|
}
|
|
}
|
|
|
|
export async function saveTokenCache() {
|
|
try {
|
|
console.debug('Chat Completions: saving token cache')
|
|
await objectStore.setItem('tokenCache', tokenCache);
|
|
} catch (e) {
|
|
console.log('Chat Completions: unable to save token cache', e);
|
|
}
|
|
}
|
|
|
|
async function resetTokenCache() {
|
|
try {
|
|
console.debug('Chat Completions: resetting token cache');
|
|
Object.keys(tokenCache).forEach(key => delete tokenCache[key]);
|
|
await objectStore.removeItem('tokenCache');
|
|
toastr.success('Token cache cleared. Please reload the chat to re-tokenize it.');
|
|
} catch (e) {
|
|
console.log('Chat Completions: unable to reset token cache', e);
|
|
}
|
|
}
|
|
|
|
function getTokenizerBestMatch() {
|
|
if (main_api === 'novel') {
|
|
if (nai_settings.model_novel.includes('krake') || nai_settings.model_novel.includes('euterpe')) {
|
|
return tokenizers.GPT2;
|
|
}
|
|
if (nai_settings.model_novel.includes('clio')) {
|
|
return tokenizers.NERD;
|
|
}
|
|
if (nai_settings.model_novel.includes('kayra')) {
|
|
return tokenizers.NERD2;
|
|
}
|
|
}
|
|
if (main_api === 'kobold' || main_api === 'textgenerationwebui' || main_api === 'koboldhorde') {
|
|
// Try to use the API tokenizer if possible:
|
|
// - API must be connected
|
|
// - Kobold must pass a version check
|
|
// - Tokenizer haven't reported an error previously
|
|
if (kai_flags.can_use_tokenization && !sessionStorage.getItem(TOKENIZER_WARNING_KEY) && online_status !== 'no_connection') {
|
|
return tokenizers.API;
|
|
}
|
|
|
|
return tokenizers.LLAMA;
|
|
}
|
|
|
|
return tokenizers.NONE;
|
|
}
|
|
|
|
/**
|
|
* Calls the underlying tokenizer model to the token count for a string.
|
|
* @param {number} type Tokenizer type.
|
|
* @param {string} str String to tokenize.
|
|
* @param {number} padding Number of padding tokens.
|
|
* @returns {number} Token count.
|
|
*/
|
|
function callTokenizer(type, str, padding) {
|
|
switch (type) {
|
|
case tokenizers.NONE:
|
|
return guesstimate(str) + padding;
|
|
case tokenizers.GPT2:
|
|
return countTokensRemote('/tokenize_gpt2', str, padding);
|
|
case tokenizers.LLAMA:
|
|
return countTokensRemote('/tokenize_llama', str, padding);
|
|
case tokenizers.NERD:
|
|
return countTokensRemote('/tokenize_nerdstash', str, padding);
|
|
case tokenizers.NERD2:
|
|
return countTokensRemote('/tokenize_nerdstash_v2', str, padding);
|
|
case tokenizers.API:
|
|
return countTokensRemote('/tokenize_via_api', str, padding);
|
|
default:
|
|
console.warn("Unknown tokenizer type", type);
|
|
return callTokenizer(tokenizers.NONE, str, padding);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Gets the token count for a string using the current model tokenizer.
|
|
* @param {string} str String to tokenize
|
|
* @param {number | undefined} padding Optional padding tokens. Defaults to 0.
|
|
* @returns {number} Token count.
|
|
*/
|
|
export function getTokenCount(str, padding = undefined) {
|
|
if (typeof str !== 'string' || !str?.length) {
|
|
return 0;
|
|
}
|
|
|
|
let tokenizerType = power_user.tokenizer;
|
|
|
|
if (main_api === 'openai') {
|
|
if (padding === power_user.token_padding) {
|
|
// For main "shadow" prompt building
|
|
tokenizerType = tokenizers.NONE;
|
|
} else {
|
|
// For extensions and WI
|
|
return counterWrapperOpenAI(str);
|
|
}
|
|
}
|
|
|
|
if (tokenizerType === tokenizers.BEST_MATCH) {
|
|
tokenizerType = getTokenizerBestMatch();
|
|
}
|
|
|
|
if (padding === undefined) {
|
|
padding = 0;
|
|
}
|
|
|
|
const cacheObject = getTokenCacheObject();
|
|
const hash = getStringHash(str);
|
|
const cacheKey = `${tokenizerType}-${hash}+${padding}`;
|
|
|
|
if (typeof cacheObject[cacheKey] === 'number') {
|
|
return cacheObject[cacheKey];
|
|
}
|
|
|
|
const result = callTokenizer(tokenizerType, str, padding);
|
|
|
|
if (isNaN(result)) {
|
|
console.warn("Token count calculation returned NaN");
|
|
return 0;
|
|
}
|
|
|
|
cacheObject[cacheKey] = result;
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Gets the token count for a string using the OpenAI tokenizer.
|
|
* @param {string} text Text to tokenize.
|
|
* @returns {number} Token count.
|
|
*/
|
|
function counterWrapperOpenAI(text) {
|
|
const message = { role: 'system', content: text };
|
|
return countTokensOpenAI(message, true);
|
|
}
|
|
|
|
export function getTokenizerModel() {
|
|
// OpenAI models always provide their own tokenizer
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.OPENAI) {
|
|
return oai_settings.openai_model;
|
|
}
|
|
|
|
const turboTokenizer = 'gpt-3.5-turbo';
|
|
const gpt4Tokenizer = 'gpt-4';
|
|
const gpt2Tokenizer = 'gpt2';
|
|
const claudeTokenizer = 'claude';
|
|
|
|
// Assuming no one would use it for different models.. right?
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.SCALE) {
|
|
return gpt4Tokenizer;
|
|
}
|
|
|
|
// Select correct tokenizer for WindowAI proxies
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.WINDOWAI && oai_settings.windowai_model) {
|
|
if (oai_settings.windowai_model.includes('gpt-4')) {
|
|
return gpt4Tokenizer;
|
|
}
|
|
else if (oai_settings.windowai_model.includes('gpt-3.5-turbo')) {
|
|
return turboTokenizer;
|
|
}
|
|
else if (oai_settings.windowai_model.includes('claude')) {
|
|
return claudeTokenizer;
|
|
}
|
|
else if (oai_settings.windowai_model.includes('GPT-NeoXT')) {
|
|
return gpt2Tokenizer;
|
|
}
|
|
}
|
|
|
|
// And for OpenRouter (if not a site model, then it's impossible to determine the tokenizer)
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.OPENROUTER && oai_settings.openrouter_model) {
|
|
if (oai_settings.openrouter_model.includes('gpt-4')) {
|
|
return gpt4Tokenizer;
|
|
}
|
|
else if (oai_settings.openrouter_model.includes('gpt-3.5-turbo')) {
|
|
return turboTokenizer;
|
|
}
|
|
else if (oai_settings.openrouter_model.includes('claude')) {
|
|
return claudeTokenizer;
|
|
}
|
|
else if (oai_settings.openrouter_model.includes('GPT-NeoXT')) {
|
|
return gpt2Tokenizer;
|
|
}
|
|
}
|
|
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.CLAUDE) {
|
|
return claudeTokenizer;
|
|
}
|
|
|
|
// Default to Turbo 3.5
|
|
return turboTokenizer;
|
|
}
|
|
|
|
/**
|
|
* @param {any[] | Object} messages
|
|
*/
|
|
export function countTokensOpenAI(messages, full = false) {
|
|
const shouldTokenizeAI21 = oai_settings.chat_completion_source === chat_completion_sources.AI21 && oai_settings.use_ai21_tokenizer;
|
|
const cacheObject = getTokenCacheObject();
|
|
|
|
if (!Array.isArray(messages)) {
|
|
messages = [messages];
|
|
}
|
|
|
|
let token_count = -1;
|
|
|
|
for (const message of messages) {
|
|
const model = getTokenizerModel();
|
|
|
|
if (model === 'claude' || shouldTokenizeAI21) {
|
|
full = true;
|
|
}
|
|
|
|
const hash = getStringHash(JSON.stringify(message));
|
|
const cacheKey = `${model}-${hash}`;
|
|
const cachedCount = cacheObject[cacheKey];
|
|
|
|
if (typeof cachedCount === 'number') {
|
|
token_count += cachedCount;
|
|
}
|
|
|
|
else {
|
|
jQuery.ajax({
|
|
async: false,
|
|
type: 'POST', //
|
|
url: shouldTokenizeAI21 ? '/tokenize_ai21' : `/tokenize_openai?model=${model}`,
|
|
data: JSON.stringify([message]),
|
|
dataType: "json",
|
|
contentType: "application/json",
|
|
success: function (data) {
|
|
token_count += Number(data.token_count);
|
|
cacheObject[cacheKey] = Number(data.token_count);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
if (!full) token_count -= 2;
|
|
|
|
return token_count;
|
|
}
|
|
|
|
/**
|
|
* Gets the token cache object for the current chat.
|
|
* @returns {Object} Token cache object for the current chat.
|
|
*/
|
|
function getTokenCacheObject() {
|
|
let chatId = 'undefined';
|
|
|
|
try {
|
|
if (selected_group) {
|
|
chatId = groups.find(x => x.id == selected_group)?.chat_id;
|
|
}
|
|
else if (this_chid !== undefined) {
|
|
chatId = characters[this_chid].chat;
|
|
}
|
|
} catch {
|
|
console.log('No character / group selected. Using default cache item');
|
|
}
|
|
|
|
if (typeof tokenCache[chatId] !== 'object') {
|
|
tokenCache[chatId] = {};
|
|
}
|
|
|
|
return tokenCache[String(chatId)];
|
|
}
|
|
|
|
/**
|
|
* Counts token using the remote server API.
|
|
* @param {string} endpoint API endpoint.
|
|
* @param {string} str String to tokenize.
|
|
* @param {number} padding Number of padding tokens.
|
|
* @returns {number} Token count with padding.
|
|
*/
|
|
function countTokensRemote(endpoint, str, padding) {
|
|
let tokenCount = 0;
|
|
|
|
jQuery.ajax({
|
|
async: false,
|
|
type: 'POST',
|
|
url: endpoint,
|
|
data: JSON.stringify({ text: str }),
|
|
dataType: "json",
|
|
contentType: "application/json",
|
|
success: function (data) {
|
|
if (typeof data.count === 'number') {
|
|
tokenCount = data.count;
|
|
} else {
|
|
tokenCount = guesstimate(str);
|
|
console.error("Error counting tokens");
|
|
|
|
if (!sessionStorage.getItem(TOKENIZER_WARNING_KEY)) {
|
|
toastr.warning(
|
|
"Your selected API doesn't support the tokenization endpoint. Using estimated counts.",
|
|
"Error counting tokens",
|
|
{ timeOut: 10000, preventDuplicates: true },
|
|
);
|
|
|
|
sessionStorage.setItem(TOKENIZER_WARNING_KEY, String(true));
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
return tokenCount + padding;
|
|
}
|
|
|
|
/**
|
|
* Calls the underlying tokenizer model to encode a string to tokens.
|
|
* @param {string} endpoint API endpoint.
|
|
* @param {string} str String to tokenize.
|
|
* @returns {number[]} Array of token ids.
|
|
*/
|
|
function getTextTokensRemote(endpoint, str) {
|
|
let ids = [];
|
|
jQuery.ajax({
|
|
async: false,
|
|
type: 'POST',
|
|
url: endpoint,
|
|
data: JSON.stringify({ text: str }),
|
|
dataType: "json",
|
|
contentType: "application/json",
|
|
success: function (data) {
|
|
ids = data.ids;
|
|
}
|
|
});
|
|
return ids;
|
|
}
|
|
|
|
/**
|
|
* Calls the underlying tokenizer model to decode token ids to text.
|
|
* @param {string} endpoint API endpoint.
|
|
* @param {number[]} ids Array of token ids
|
|
*/
|
|
function decodeTextTokensRemote(endpoint, ids) {
|
|
let text = '';
|
|
jQuery.ajax({
|
|
async: false,
|
|
type: 'POST',
|
|
url: endpoint,
|
|
data: JSON.stringify({ ids: ids }),
|
|
dataType: "json",
|
|
contentType: "application/json",
|
|
success: function (data) {
|
|
text = data.text;
|
|
}
|
|
});
|
|
return text;
|
|
}
|
|
|
|
/**
|
|
* Encodes a string to tokens using the remote server API.
|
|
* @param {number} tokenizerType Tokenizer type.
|
|
* @param {string} str String to tokenize.
|
|
* @returns {number[]} Array of token ids.
|
|
*/
|
|
export function getTextTokens(tokenizerType, str) {
|
|
switch (tokenizerType) {
|
|
case tokenizers.GPT2:
|
|
return getTextTokensRemote('/tokenize_gpt2', str);
|
|
case tokenizers.LLAMA:
|
|
return getTextTokensRemote('/tokenize_llama', str);
|
|
case tokenizers.NERD:
|
|
return getTextTokensRemote('/tokenize_nerdstash', str);
|
|
case tokenizers.NERD2:
|
|
return getTextTokensRemote('/tokenize_nerdstash_v2', str);
|
|
default:
|
|
console.warn("Calling getTextTokens with unsupported tokenizer type", tokenizerType);
|
|
return [];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decodes token ids to text using the remote server API.
|
|
* @param {any} tokenizerType Tokenizer type.
|
|
* @param {number[]} ids Array of token ids
|
|
*/
|
|
export function decodeTextTokens(tokenizerType, ids) {
|
|
switch (tokenizerType) {
|
|
case tokenizers.GPT2:
|
|
return decodeTextTokensRemote('/decode_gpt2', ids);
|
|
case tokenizers.LLAMA:
|
|
return decodeTextTokensRemote('/decode_llama', ids);
|
|
case tokenizers.NERD:
|
|
return decodeTextTokensRemote('/decode_nerdstash', ids);
|
|
case tokenizers.NERD2:
|
|
return decodeTextTokensRemote('/decode_nerdstash_v2', ids);
|
|
default:
|
|
console.warn("Calling decodeTextTokens with unsupported tokenizer type", tokenizerType);
|
|
return '';
|
|
}
|
|
}
|
|
|
|
jQuery(async () => {
|
|
await loadTokenCache();
|
|
registerDebugFunction('resetTokenCache', 'Reset token cache', 'Purges the calculated token counts. Use this if you want to force a full re-tokenization of all chats or suspect the token counts are wrong.', resetTokenCache);
|
|
});
|