mirror of
https://github.com/SillyTavern/SillyTavern.git
synced 2025-01-22 07:26:23 +01:00
1068 lines
35 KiB
JavaScript
1068 lines
35 KiB
JavaScript
import { characters, main_api, api_server, nai_settings, online_status, this_chid } from '../script.js';
|
|
import { power_user, registerDebugFunction } from './power-user.js';
|
|
import { chat_completion_sources, model_list, oai_settings } from './openai.js';
|
|
import { groups, selected_group } from './group-chats.js';
|
|
import { getStringHash } from './utils.js';
|
|
import { kai_flags } from './kai-settings.js';
|
|
import { textgen_types, textgenerationwebui_settings as textgen_settings, getTextGenServer, getTextGenModel } from './textgen-settings.js';
|
|
import { getCurrentDreamGenModelTokenizer, getCurrentOpenRouterModelTokenizer, openRouterModels } from './textgen-models.js';
|
|
|
|
const { OOBA, TABBY, KOBOLDCPP, VLLM, APHRODITE, LLAMACPP, OPENROUTER, DREAMGEN } = textgen_types;
|
|
|
|
export const CHARACTERS_PER_TOKEN_RATIO = 3.35;
|
|
const TOKENIZER_WARNING_KEY = 'tokenizationWarningShown';
|
|
|
|
export const tokenizers = {
|
|
NONE: 0,
|
|
GPT2: 1,
|
|
OPENAI: 2,
|
|
LLAMA: 3,
|
|
NERD: 4,
|
|
NERD2: 5,
|
|
API_CURRENT: 6,
|
|
MISTRAL: 7,
|
|
YI: 8,
|
|
API_TEXTGENERATIONWEBUI: 9,
|
|
API_KOBOLD: 10,
|
|
CLAUDE: 11,
|
|
LLAMA3: 12,
|
|
GEMMA: 13,
|
|
BEST_MATCH: 99,
|
|
};
|
|
|
|
export const SENTENCEPIECE_TOKENIZERS = [
|
|
tokenizers.LLAMA,
|
|
tokenizers.MISTRAL,
|
|
tokenizers.YI,
|
|
tokenizers.LLAMA3,
|
|
tokenizers.GEMMA,
|
|
// uncomment when NovelAI releases Kayra and Clio weights, lol
|
|
//tokenizers.NERD,
|
|
//tokenizers.NERD2,
|
|
];
|
|
|
|
export const TEXTGEN_TOKENIZERS = [OOBA, TABBY, KOBOLDCPP, LLAMACPP, VLLM, APHRODITE];
|
|
|
|
const TOKENIZER_URLS = {
|
|
[tokenizers.GPT2]: {
|
|
encode: '/api/tokenizers/gpt2/encode',
|
|
decode: '/api/tokenizers/gpt2/decode',
|
|
count: '/api/tokenizers/gpt2/encode',
|
|
},
|
|
[tokenizers.OPENAI]: {
|
|
encode: '/api/tokenizers/openai/encode',
|
|
decode: '/api/tokenizers/openai/decode',
|
|
count: '/api/tokenizers/openai/encode',
|
|
},
|
|
[tokenizers.LLAMA]: {
|
|
encode: '/api/tokenizers/llama/encode',
|
|
decode: '/api/tokenizers/llama/decode',
|
|
count: '/api/tokenizers/llama/encode',
|
|
},
|
|
[tokenizers.NERD]: {
|
|
encode: '/api/tokenizers/nerdstash/encode',
|
|
decode: '/api/tokenizers/nerdstash/decode',
|
|
count: '/api/tokenizers/nerdstash/encode',
|
|
},
|
|
[tokenizers.NERD2]: {
|
|
encode: '/api/tokenizers/nerdstash_v2/encode',
|
|
decode: '/api/tokenizers/nerdstash_v2/decode',
|
|
count: '/api/tokenizers/nerdstash_v2/encode',
|
|
},
|
|
[tokenizers.API_KOBOLD]: {
|
|
count: '/api/tokenizers/remote/kobold/count',
|
|
encode: '/api/tokenizers/remote/kobold/count',
|
|
},
|
|
[tokenizers.MISTRAL]: {
|
|
encode: '/api/tokenizers/mistral/encode',
|
|
decode: '/api/tokenizers/mistral/decode',
|
|
count: '/api/tokenizers/mistral/encode',
|
|
},
|
|
[tokenizers.YI]: {
|
|
encode: '/api/tokenizers/yi/encode',
|
|
decode: '/api/tokenizers/yi/decode',
|
|
count: '/api/tokenizers/yi/encode',
|
|
},
|
|
[tokenizers.CLAUDE]: {
|
|
encode: '/api/tokenizers/claude/encode',
|
|
decode: '/api/tokenizers/claude/decode',
|
|
count: '/api/tokenizers/claude/encode',
|
|
},
|
|
[tokenizers.LLAMA3]: {
|
|
encode: '/api/tokenizers/llama3/encode',
|
|
decode: '/api/tokenizers/llama3/decode',
|
|
count: '/api/tokenizers/llama3/encode',
|
|
},
|
|
[tokenizers.GEMMA]: {
|
|
encode: '/api/tokenizers/gemma/encode',
|
|
decode: '/api/tokenizers/gemma/decode',
|
|
count: '/api/tokenizers/gemma/encode',
|
|
},
|
|
[tokenizers.API_TEXTGENERATIONWEBUI]: {
|
|
encode: '/api/tokenizers/remote/textgenerationwebui/encode',
|
|
count: '/api/tokenizers/remote/textgenerationwebui/encode',
|
|
},
|
|
};
|
|
|
|
const objectStore = new localforage.createInstance({ name: 'SillyTavern_ChatCompletions' });
|
|
|
|
let tokenCache = {};
|
|
|
|
/**
|
|
* Guesstimates the token count for a string.
|
|
* @param {string} str String to tokenize.
|
|
* @returns {number} Token count.
|
|
*/
|
|
export function guesstimate(str) {
|
|
return Math.ceil(str.length / CHARACTERS_PER_TOKEN_RATIO);
|
|
}
|
|
|
|
async function loadTokenCache() {
|
|
try {
|
|
console.debug('Chat Completions: loading token cache');
|
|
tokenCache = await objectStore.getItem('tokenCache') || {};
|
|
} catch (e) {
|
|
console.log('Chat Completions: unable to load token cache, using default value', e);
|
|
tokenCache = {};
|
|
}
|
|
}
|
|
|
|
export async function saveTokenCache() {
|
|
try {
|
|
console.debug('Chat Completions: saving token cache');
|
|
await objectStore.setItem('tokenCache', tokenCache);
|
|
} catch (e) {
|
|
console.log('Chat Completions: unable to save token cache', e);
|
|
}
|
|
}
|
|
|
|
async function resetTokenCache() {
|
|
try {
|
|
console.debug('Chat Completions: resetting token cache');
|
|
Object.keys(tokenCache).forEach(key => delete tokenCache[key]);
|
|
await objectStore.removeItem('tokenCache');
|
|
toastr.success('Token cache cleared. Please reload the chat to re-tokenize it.');
|
|
} catch (e) {
|
|
console.log('Chat Completions: unable to reset token cache', e);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @typedef {object} Tokenizer
|
|
* @property {number} tokenizerId - The id of the tokenizer option
|
|
* @property {string} tokenizerKey - Internal name/key of the tokenizer
|
|
* @property {string} tokenizerName - Human-readable detailed name of the tokenizer (as displayed in the UI)
|
|
*/
|
|
|
|
/**
|
|
* Gets all tokenizers available to the user.
|
|
* @returns {Tokenizer[]} Tokenizer info.
|
|
*/
|
|
export function getAvailableTokenizers() {
|
|
const tokenizerOptions = $('#tokenizer').find('option').toArray();
|
|
return tokenizerOptions.map(tokenizerOption => ({
|
|
tokenizerId: Number(tokenizerOption.value),
|
|
tokenizerKey: Object.entries(tokenizers).find(([_, value]) => value === Number(tokenizerOption.value))[0].toLocaleLowerCase(),
|
|
tokenizerName: tokenizerOption.text,
|
|
}))
|
|
}
|
|
|
|
/**
|
|
* Selects tokenizer if not already selected.
|
|
* @param {number} tokenizerId Tokenizer ID.
|
|
*/
|
|
export function selectTokenizer(tokenizerId) {
|
|
if (tokenizerId !== power_user.tokenizer) {
|
|
const tokenizer = getAvailableTokenizers().find(tokenizer => tokenizer.tokenizerId === tokenizerId);
|
|
if (!tokenizer) {
|
|
console.warn('Failed to find tokenizer with id', tokenizerId);
|
|
return;
|
|
}
|
|
$('#tokenizer').val(tokenizer.tokenizerId).trigger('change');
|
|
toastr.info(`Tokenizer: "${tokenizer.tokenizerName}" selected`);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Gets the friendly name of the current tokenizer.
|
|
* @param {string} forApi API to get the tokenizer for. Defaults to the main API.
|
|
* @returns {Tokenizer} Tokenizer info
|
|
*/
|
|
export function getFriendlyTokenizerName(forApi) {
|
|
if (!forApi) {
|
|
forApi = main_api;
|
|
}
|
|
|
|
const tokenizerOption = $('#tokenizer').find(':selected');
|
|
let tokenizerId = Number(tokenizerOption.val());
|
|
let tokenizerName = tokenizerOption.text();
|
|
|
|
if (forApi !== 'openai' && tokenizerId === tokenizers.BEST_MATCH) {
|
|
tokenizerId = getTokenizerBestMatch(forApi);
|
|
|
|
switch (tokenizerId) {
|
|
case tokenizers.API_KOBOLD:
|
|
tokenizerName = 'API (KoboldAI Classic)';
|
|
break;
|
|
case tokenizers.API_TEXTGENERATIONWEBUI:
|
|
tokenizerName = 'API (Text Completion)';
|
|
break;
|
|
default:
|
|
tokenizerName = $(`#tokenizer option[value="${tokenizerId}"]`).text();
|
|
break;
|
|
}
|
|
}
|
|
|
|
tokenizerName = forApi == 'openai'
|
|
? getTokenizerModel()
|
|
: tokenizerName;
|
|
|
|
tokenizerId = forApi == 'openai'
|
|
? tokenizers.OPENAI
|
|
: tokenizerId;
|
|
|
|
const tokenizerKey = Object.entries(tokenizers).find(([_, value]) => value === tokenizerId)[0].toLocaleLowerCase();
|
|
|
|
return { tokenizerName, tokenizerKey, tokenizerId };
|
|
}
|
|
|
|
/**
|
|
* Gets the best tokenizer for the current API.
|
|
* @param {string} forApi API to get the tokenizer for. Defaults to the main API.
|
|
* @returns {number} Tokenizer type.
|
|
*/
|
|
export function getTokenizerBestMatch(forApi) {
|
|
if (!forApi) {
|
|
forApi = main_api;
|
|
}
|
|
|
|
if (forApi === 'novel') {
|
|
if (nai_settings.model_novel.includes('clio')) {
|
|
return tokenizers.NERD;
|
|
}
|
|
if (nai_settings.model_novel.includes('kayra')) {
|
|
return tokenizers.NERD2;
|
|
}
|
|
}
|
|
if (forApi === 'kobold' || forApi === 'textgenerationwebui' || forApi === 'koboldhorde') {
|
|
// Try to use the API tokenizer if possible:
|
|
// - API must be connected
|
|
// - Kobold must pass a version check
|
|
// - Tokenizer haven't reported an error previously
|
|
const hasTokenizerError = sessionStorage.getItem(TOKENIZER_WARNING_KEY);
|
|
const isConnected = online_status !== 'no_connection';
|
|
const isTokenizerSupported = TEXTGEN_TOKENIZERS.includes(textgen_settings.type);
|
|
|
|
if (!hasTokenizerError && isConnected) {
|
|
if (forApi === 'kobold' && kai_flags.can_use_tokenization) {
|
|
return tokenizers.API_KOBOLD;
|
|
}
|
|
|
|
if (forApi === 'textgenerationwebui' && isTokenizerSupported) {
|
|
return tokenizers.API_TEXTGENERATIONWEBUI;
|
|
}
|
|
if (forApi === 'textgenerationwebui' && textgen_settings.type === OPENROUTER) {
|
|
return getCurrentOpenRouterModelTokenizer();
|
|
}
|
|
if (forApi === 'textgenerationwebui' && textgen_settings.type === DREAMGEN) {
|
|
return getCurrentDreamGenModelTokenizer();
|
|
}
|
|
}
|
|
|
|
if (forApi === 'textgenerationwebui') {
|
|
const model = String(getTextGenModel() || online_status).toLowerCase();
|
|
if (model.includes('llama3') || model.includes('llama-3')) {
|
|
return tokenizers.LLAMA3;
|
|
}
|
|
if (model.includes('mistral') || model.includes('mixtral')) {
|
|
return tokenizers.MISTRAL;
|
|
}
|
|
if (model.includes('gemma')) {
|
|
return tokenizers.GEMMA;
|
|
}
|
|
}
|
|
|
|
return tokenizers.LLAMA;
|
|
}
|
|
|
|
return tokenizers.NONE;
|
|
}
|
|
|
|
// Get the current remote tokenizer API based on the current text generation API.
|
|
function currentRemoteTokenizerAPI() {
|
|
switch (main_api) {
|
|
case 'kobold':
|
|
return tokenizers.API_KOBOLD;
|
|
case 'textgenerationwebui':
|
|
return tokenizers.API_TEXTGENERATIONWEBUI;
|
|
default:
|
|
return tokenizers.NONE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calls the underlying tokenizer model to the token count for a string.
|
|
* @param {number} type Tokenizer type.
|
|
* @param {string} str String to tokenize.
|
|
* @returns {number} Token count.
|
|
*/
|
|
function callTokenizer(type, str) {
|
|
if (type === tokenizers.NONE) return guesstimate(str);
|
|
|
|
switch (type) {
|
|
case tokenizers.API_CURRENT:
|
|
return callTokenizer(currentRemoteTokenizerAPI(), str);
|
|
case tokenizers.API_KOBOLD:
|
|
return countTokensFromKoboldAPI(str);
|
|
case tokenizers.API_TEXTGENERATIONWEBUI:
|
|
return countTokensFromTextgenAPI(str);
|
|
default: {
|
|
const endpointUrl = TOKENIZER_URLS[type]?.count;
|
|
if (!endpointUrl) {
|
|
console.warn('Unknown tokenizer type', type);
|
|
return apiFailureTokenCount(str);
|
|
}
|
|
return countTokensFromServer(endpointUrl, str);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calls the underlying tokenizer model to the token count for a string.
|
|
* @param {number} type Tokenizer type.
|
|
* @param {string} str String to tokenize.
|
|
* @returns {Promise<number>} Token count.
|
|
*/
|
|
function callTokenizerAsync(type, str) {
|
|
return new Promise(resolve => {
|
|
if (type === tokenizers.NONE) {
|
|
return resolve(guesstimate(str));
|
|
}
|
|
|
|
switch (type) {
|
|
case tokenizers.API_CURRENT:
|
|
return callTokenizerAsync(currentRemoteTokenizerAPI(), str).then(resolve);
|
|
case tokenizers.API_KOBOLD:
|
|
return countTokensFromKoboldAPI(str, resolve);
|
|
case tokenizers.API_TEXTGENERATIONWEBUI:
|
|
return countTokensFromTextgenAPI(str, resolve);
|
|
default: {
|
|
const endpointUrl = TOKENIZER_URLS[type]?.count;
|
|
if (!endpointUrl) {
|
|
console.warn('Unknown tokenizer type', type);
|
|
return resolve(apiFailureTokenCount(str));
|
|
}
|
|
return countTokensFromServer(endpointUrl, str, resolve);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Gets the token count for a string using the current model tokenizer.
|
|
* @param {string} str String to tokenize
|
|
* @param {number | undefined} padding Optional padding tokens. Defaults to 0.
|
|
* @returns {Promise<number>} Token count.
|
|
*/
|
|
export async function getTokenCountAsync(str, padding = undefined) {
|
|
if (typeof str !== 'string' || !str?.length) {
|
|
return 0;
|
|
}
|
|
|
|
let tokenizerType = power_user.tokenizer;
|
|
|
|
if (main_api === 'openai') {
|
|
if (padding === power_user.token_padding) {
|
|
// For main "shadow" prompt building
|
|
tokenizerType = tokenizers.NONE;
|
|
} else {
|
|
// For extensions and WI
|
|
return counterWrapperOpenAIAsync(str);
|
|
}
|
|
}
|
|
|
|
if (tokenizerType === tokenizers.BEST_MATCH) {
|
|
tokenizerType = getTokenizerBestMatch(main_api);
|
|
}
|
|
|
|
if (padding === undefined) {
|
|
padding = 0;
|
|
}
|
|
|
|
const cacheObject = getTokenCacheObject();
|
|
const hash = getStringHash(str);
|
|
const cacheKey = `${tokenizerType}-${hash}+${padding}`;
|
|
|
|
if (typeof cacheObject[cacheKey] === 'number') {
|
|
return cacheObject[cacheKey];
|
|
}
|
|
|
|
const result = (await callTokenizerAsync(tokenizerType, str)) + padding;
|
|
|
|
if (isNaN(result)) {
|
|
console.warn('Token count calculation returned NaN');
|
|
return 0;
|
|
}
|
|
|
|
cacheObject[cacheKey] = result;
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Gets the token count for a string using the current model tokenizer.
|
|
* @param {string} str String to tokenize
|
|
* @param {number | undefined} padding Optional padding tokens. Defaults to 0.
|
|
* @returns {number} Token count.
|
|
* @deprecated Use getTokenCountAsync instead.
|
|
*/
|
|
export function getTokenCount(str, padding = undefined) {
|
|
if (typeof str !== 'string' || !str?.length) {
|
|
return 0;
|
|
}
|
|
|
|
let tokenizerType = power_user.tokenizer;
|
|
|
|
if (main_api === 'openai') {
|
|
if (padding === power_user.token_padding) {
|
|
// For main "shadow" prompt building
|
|
tokenizerType = tokenizers.NONE;
|
|
} else {
|
|
// For extensions and WI
|
|
return counterWrapperOpenAI(str);
|
|
}
|
|
}
|
|
|
|
if (tokenizerType === tokenizers.BEST_MATCH) {
|
|
tokenizerType = getTokenizerBestMatch(main_api);
|
|
}
|
|
|
|
if (padding === undefined) {
|
|
padding = 0;
|
|
}
|
|
|
|
const cacheObject = getTokenCacheObject();
|
|
const hash = getStringHash(str);
|
|
const cacheKey = `${tokenizerType}-${hash}+${padding}`;
|
|
|
|
if (typeof cacheObject[cacheKey] === 'number') {
|
|
return cacheObject[cacheKey];
|
|
}
|
|
|
|
const result = callTokenizer(tokenizerType, str) + padding;
|
|
|
|
if (isNaN(result)) {
|
|
console.warn('Token count calculation returned NaN');
|
|
return 0;
|
|
}
|
|
|
|
cacheObject[cacheKey] = result;
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Gets the token count for a string using the OpenAI tokenizer.
|
|
* @param {string} text Text to tokenize.
|
|
* @returns {number} Token count.
|
|
* @deprecated Use counterWrapperOpenAIAsync instead.
|
|
*/
|
|
function counterWrapperOpenAI(text) {
|
|
const message = { role: 'system', content: text };
|
|
return countTokensOpenAI(message, true);
|
|
}
|
|
|
|
/**
|
|
* Gets the token count for a string using the OpenAI tokenizer.
|
|
* @param {string} text Text to tokenize.
|
|
* @returns {Promise<number>} Token count.
|
|
*/
|
|
function counterWrapperOpenAIAsync(text) {
|
|
const message = { role: 'system', content: text };
|
|
return countTokensOpenAIAsync(message, true);
|
|
}
|
|
|
|
export function getTokenizerModel() {
|
|
// OpenAI models always provide their own tokenizer
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.OPENAI) {
|
|
return oai_settings.openai_model;
|
|
}
|
|
|
|
const turbo0301Tokenizer = 'gpt-3.5-turbo-0301';
|
|
const turboTokenizer = 'gpt-3.5-turbo';
|
|
const gpt4Tokenizer = 'gpt-4';
|
|
const gpt4oTokenizer = 'gpt-4o';
|
|
const gpt2Tokenizer = 'gpt2';
|
|
const claudeTokenizer = 'claude';
|
|
const llamaTokenizer = 'llama';
|
|
const llama3Tokenizer = 'llama3';
|
|
const mistralTokenizer = 'mistral';
|
|
const yiTokenizer = 'yi';
|
|
const gemmaTokenizer = 'gemma';
|
|
|
|
// Assuming no one would use it for different models.. right?
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.SCALE) {
|
|
return gpt4Tokenizer;
|
|
}
|
|
|
|
// Select correct tokenizer for WindowAI proxies
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.WINDOWAI && oai_settings.windowai_model) {
|
|
if (oai_settings.windowai_model.includes('gpt-4')) {
|
|
return gpt4Tokenizer;
|
|
}
|
|
else if (oai_settings.windowai_model.includes('gpt-3.5-turbo-0301')) {
|
|
return turbo0301Tokenizer;
|
|
}
|
|
else if (oai_settings.windowai_model.includes('gpt-3.5-turbo')) {
|
|
return turboTokenizer;
|
|
}
|
|
else if (oai_settings.windowai_model.includes('claude')) {
|
|
return claudeTokenizer;
|
|
}
|
|
else if (oai_settings.windowai_model.includes('GPT-NeoXT')) {
|
|
return gpt2Tokenizer;
|
|
}
|
|
}
|
|
|
|
// And for OpenRouter (if not a site model, then it's impossible to determine the tokenizer)
|
|
if (main_api == 'openai' && oai_settings.chat_completion_source == chat_completion_sources.OPENROUTER && oai_settings.openrouter_model ||
|
|
main_api == 'textgenerationwebui' && textgen_settings.type === OPENROUTER && textgen_settings.openrouter_model) {
|
|
const model = main_api == 'openai'
|
|
? model_list.find(x => x.id === oai_settings.openrouter_model)
|
|
: openRouterModels.find(x => x.id === textgen_settings.openrouter_model);
|
|
|
|
if (model?.architecture?.tokenizer === 'Llama2') {
|
|
return llamaTokenizer;
|
|
}
|
|
else if (model?.architecture?.tokenizer === 'Llama3') {
|
|
return llama3Tokenizer;
|
|
}
|
|
else if (model?.architecture?.tokenizer === 'Mistral') {
|
|
return mistralTokenizer;
|
|
}
|
|
else if (model?.architecture?.tokenizer === 'Yi') {
|
|
return yiTokenizer;
|
|
}
|
|
else if (model?.architecture?.tokenizer === 'Gemini') {
|
|
return gemmaTokenizer;
|
|
}
|
|
else if (oai_settings.openrouter_model.includes('gpt-4o')) {
|
|
return gpt4oTokenizer;
|
|
}
|
|
else if (oai_settings.openrouter_model.includes('gpt-4')) {
|
|
return gpt4Tokenizer;
|
|
}
|
|
else if (oai_settings.openrouter_model.includes('gpt-3.5-turbo-0301')) {
|
|
return turbo0301Tokenizer;
|
|
}
|
|
else if (oai_settings.openrouter_model.includes('gpt-3.5-turbo')) {
|
|
return turboTokenizer;
|
|
}
|
|
else if (oai_settings.openrouter_model.includes('claude')) {
|
|
return claudeTokenizer;
|
|
}
|
|
else if (oai_settings.openrouter_model.includes('GPT-NeoXT')) {
|
|
return gpt2Tokenizer;
|
|
}
|
|
}
|
|
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.MAKERSUITE) {
|
|
return gemmaTokenizer;
|
|
}
|
|
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.CLAUDE) {
|
|
return claudeTokenizer;
|
|
}
|
|
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.MISTRALAI) {
|
|
return mistralTokenizer;
|
|
}
|
|
|
|
if (oai_settings.chat_completion_source == chat_completion_sources.CUSTOM) {
|
|
return oai_settings.custom_model;
|
|
}
|
|
|
|
if (oai_settings.chat_completion_source === chat_completion_sources.PERPLEXITY) {
|
|
if (oai_settings.perplexity_model.includes('llama-3') || oai_settings.perplexity_model.includes('llama3')) {
|
|
return llama3Tokenizer;
|
|
}
|
|
if (oai_settings.perplexity_model.includes('llama')) {
|
|
return llamaTokenizer;
|
|
}
|
|
if (oai_settings.perplexity_model.includes('mistral') || oai_settings.perplexity_model.includes('mixtral')) {
|
|
return mistralTokenizer;
|
|
}
|
|
}
|
|
|
|
if (oai_settings.chat_completion_source === chat_completion_sources.GROQ) {
|
|
if (oai_settings.groq_model.includes('llama-3') || oai_settings.groq_model.includes('llama3')) {
|
|
return llama3Tokenizer;
|
|
}
|
|
if (oai_settings.groq_model.includes('mistral') || oai_settings.groq_model.includes('mixtral')) {
|
|
return mistralTokenizer;
|
|
}
|
|
if (oai_settings.groq_model.includes('gemma')) {
|
|
return gemmaTokenizer;
|
|
}
|
|
}
|
|
|
|
if (oai_settings.chat_completion_source === chat_completion_sources.ZEROONEAI) {
|
|
return yiTokenizer;
|
|
}
|
|
|
|
if (oai_settings.chat_completion_source === chat_completion_sources.BLOCKENTROPY) {
|
|
if (oai_settings.blockentropy_model.includes('llama3')) {
|
|
return llama3Tokenizer;
|
|
}
|
|
if (oai_settings.blockentropy_model.includes('miqu') || oai_settings.blockentropy_model.includes('mixtral')) {
|
|
return mistralTokenizer;
|
|
}
|
|
}
|
|
|
|
// Default to Turbo 3.5
|
|
return turboTokenizer;
|
|
}
|
|
|
|
/**
|
|
* @param {any[] | Object} messages
|
|
* @deprecated Use countTokensOpenAIAsync instead.
|
|
*/
|
|
export function countTokensOpenAI(messages, full = false) {
|
|
const shouldTokenizeAI21 = oai_settings.chat_completion_source === chat_completion_sources.AI21 && oai_settings.use_ai21_tokenizer;
|
|
const shouldTokenizeGoogle = oai_settings.chat_completion_source === chat_completion_sources.MAKERSUITE && oai_settings.use_google_tokenizer;
|
|
let tokenizerEndpoint = '';
|
|
if (shouldTokenizeAI21) {
|
|
tokenizerEndpoint = '/api/tokenizers/ai21/count';
|
|
} else if (shouldTokenizeGoogle) {
|
|
tokenizerEndpoint = `/api/tokenizers/google/count?model=${getTokenizerModel()}&reverse_proxy=${oai_settings.reverse_proxy}&proxy_password=${oai_settings.proxy_password}`;
|
|
} else {
|
|
tokenizerEndpoint = `/api/tokenizers/openai/count?model=${getTokenizerModel()}`;
|
|
}
|
|
const cacheObject = getTokenCacheObject();
|
|
|
|
if (!Array.isArray(messages)) {
|
|
messages = [messages];
|
|
}
|
|
|
|
let token_count = -1;
|
|
|
|
for (const message of messages) {
|
|
const model = getTokenizerModel();
|
|
|
|
if (model === 'claude' || shouldTokenizeAI21 || shouldTokenizeGoogle) {
|
|
full = true;
|
|
}
|
|
|
|
const hash = getStringHash(JSON.stringify(message));
|
|
const cacheKey = `${model}-${hash}`;
|
|
const cachedCount = cacheObject[cacheKey];
|
|
|
|
if (typeof cachedCount === 'number') {
|
|
token_count += cachedCount;
|
|
}
|
|
|
|
else {
|
|
jQuery.ajax({
|
|
async: false,
|
|
type: 'POST', //
|
|
url: tokenizerEndpoint,
|
|
data: JSON.stringify([message]),
|
|
dataType: 'json',
|
|
contentType: 'application/json',
|
|
success: function (data) {
|
|
token_count += Number(data.token_count);
|
|
cacheObject[cacheKey] = Number(data.token_count);
|
|
},
|
|
});
|
|
}
|
|
}
|
|
|
|
if (!full) token_count -= 2;
|
|
|
|
return token_count;
|
|
}
|
|
|
|
/**
|
|
* Returns the token count for a message using the OpenAI tokenizer.
|
|
* @param {object[]|object} messages
|
|
* @param {boolean} full
|
|
* @returns {Promise<number>} Token count.
|
|
*/
|
|
export async function countTokensOpenAIAsync(messages, full = false) {
|
|
const shouldTokenizeAI21 = oai_settings.chat_completion_source === chat_completion_sources.AI21 && oai_settings.use_ai21_tokenizer;
|
|
const shouldTokenizeGoogle = oai_settings.chat_completion_source === chat_completion_sources.MAKERSUITE && oai_settings.use_google_tokenizer;
|
|
let tokenizerEndpoint = '';
|
|
if (shouldTokenizeAI21) {
|
|
tokenizerEndpoint = '/api/tokenizers/ai21/count';
|
|
} else if (shouldTokenizeGoogle) {
|
|
tokenizerEndpoint = `/api/tokenizers/google/count?model=${getTokenizerModel()}`;
|
|
} else {
|
|
tokenizerEndpoint = `/api/tokenizers/openai/count?model=${getTokenizerModel()}`;
|
|
}
|
|
const cacheObject = getTokenCacheObject();
|
|
|
|
if (!Array.isArray(messages)) {
|
|
messages = [messages];
|
|
}
|
|
|
|
let token_count = -1;
|
|
|
|
for (const message of messages) {
|
|
const model = getTokenizerModel();
|
|
|
|
if (model === 'claude' || shouldTokenizeAI21 || shouldTokenizeGoogle) {
|
|
full = true;
|
|
}
|
|
|
|
const hash = getStringHash(JSON.stringify(message));
|
|
const cacheKey = `${model}-${hash}`;
|
|
const cachedCount = cacheObject[cacheKey];
|
|
|
|
if (typeof cachedCount === 'number') {
|
|
token_count += cachedCount;
|
|
}
|
|
|
|
else {
|
|
const data = await jQuery.ajax({
|
|
async: true,
|
|
type: 'POST', //
|
|
url: tokenizerEndpoint,
|
|
data: JSON.stringify([message]),
|
|
dataType: 'json',
|
|
contentType: 'application/json',
|
|
});
|
|
|
|
token_count += Number(data.token_count);
|
|
cacheObject[cacheKey] = Number(data.token_count);
|
|
}
|
|
}
|
|
|
|
if (!full) token_count -= 2;
|
|
|
|
return token_count;
|
|
}
|
|
|
|
/**
|
|
* Gets the token cache object for the current chat.
|
|
* @returns {Object} Token cache object for the current chat.
|
|
*/
|
|
function getTokenCacheObject() {
|
|
let chatId = 'undefined';
|
|
|
|
try {
|
|
if (selected_group) {
|
|
chatId = groups.find(x => x.id == selected_group)?.chat_id;
|
|
}
|
|
else if (this_chid !== undefined) {
|
|
chatId = characters[this_chid].chat;
|
|
}
|
|
} catch {
|
|
console.log('No character / group selected. Using default cache item');
|
|
}
|
|
|
|
if (typeof tokenCache[chatId] !== 'object') {
|
|
tokenCache[chatId] = {};
|
|
}
|
|
|
|
return tokenCache[String(chatId)];
|
|
}
|
|
|
|
/**
|
|
* Count tokens using the server API.
|
|
* @param {string} endpoint API endpoint.
|
|
* @param {string} str String to tokenize.
|
|
* @param {function} [resolve] Promise resolve function.s
|
|
* @returns {number} Token count.
|
|
*/
|
|
function countTokensFromServer(endpoint, str, resolve) {
|
|
const isAsync = typeof resolve === 'function';
|
|
let tokenCount = 0;
|
|
|
|
jQuery.ajax({
|
|
async: isAsync,
|
|
type: 'POST',
|
|
url: endpoint,
|
|
data: JSON.stringify({ text: str }),
|
|
dataType: 'json',
|
|
contentType: 'application/json',
|
|
success: function (data) {
|
|
if (typeof data.count === 'number') {
|
|
tokenCount = data.count;
|
|
} else {
|
|
tokenCount = apiFailureTokenCount(str);
|
|
}
|
|
|
|
isAsync && resolve(tokenCount);
|
|
},
|
|
});
|
|
|
|
return tokenCount;
|
|
}
|
|
|
|
/**
|
|
* Count tokens using the AI provider's API.
|
|
* @param {string} str String to tokenize.
|
|
* @param {function} [resolve] Promise resolve function.
|
|
* @returns {number} Token count.
|
|
*/
|
|
function countTokensFromKoboldAPI(str, resolve) {
|
|
const isAsync = typeof resolve === 'function';
|
|
let tokenCount = 0;
|
|
|
|
jQuery.ajax({
|
|
async: isAsync,
|
|
type: 'POST',
|
|
url: TOKENIZER_URLS[tokenizers.API_KOBOLD].count,
|
|
data: JSON.stringify({
|
|
text: str,
|
|
url: api_server,
|
|
}),
|
|
dataType: 'json',
|
|
contentType: 'application/json',
|
|
success: function (data) {
|
|
if (typeof data.count === 'number') {
|
|
tokenCount = data.count;
|
|
} else {
|
|
tokenCount = apiFailureTokenCount(str);
|
|
}
|
|
|
|
isAsync && resolve(tokenCount);
|
|
},
|
|
});
|
|
|
|
return tokenCount;
|
|
}
|
|
|
|
function getTextgenAPITokenizationParams(str) {
|
|
return {
|
|
text: str,
|
|
api_type: textgen_settings.type,
|
|
url: getTextGenServer(),
|
|
legacy_api: textgen_settings.legacy_api && (textgen_settings.type === OOBA || textgen_settings.type === APHRODITE),
|
|
vllm_model: textgen_settings.vllm_model,
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Count tokens using the AI provider's API.
|
|
* @param {string} str String to tokenize.
|
|
* @param {function} [resolve] Promise resolve function.
|
|
* @returns {number} Token count.
|
|
*/
|
|
function countTokensFromTextgenAPI(str, resolve) {
|
|
const isAsync = typeof resolve === 'function';
|
|
let tokenCount = 0;
|
|
|
|
jQuery.ajax({
|
|
async: isAsync,
|
|
type: 'POST',
|
|
url: TOKENIZER_URLS[tokenizers.API_TEXTGENERATIONWEBUI].count,
|
|
data: JSON.stringify(getTextgenAPITokenizationParams(str)),
|
|
dataType: 'json',
|
|
contentType: 'application/json',
|
|
success: function (data) {
|
|
if (typeof data.count === 'number') {
|
|
tokenCount = data.count;
|
|
} else {
|
|
tokenCount = apiFailureTokenCount(str);
|
|
}
|
|
|
|
isAsync && resolve(tokenCount);
|
|
},
|
|
});
|
|
|
|
return tokenCount;
|
|
}
|
|
|
|
function apiFailureTokenCount(str) {
|
|
console.error('Error counting tokens');
|
|
|
|
if (!sessionStorage.getItem(TOKENIZER_WARNING_KEY)) {
|
|
toastr.warning(
|
|
'Your selected API doesn\'t support the tokenization endpoint. Using estimated counts.',
|
|
'Error counting tokens',
|
|
{ timeOut: 10000, preventDuplicates: true },
|
|
);
|
|
|
|
sessionStorage.setItem(TOKENIZER_WARNING_KEY, String(true));
|
|
}
|
|
|
|
return guesstimate(str);
|
|
}
|
|
|
|
/**
|
|
* Calls the underlying tokenizer model to encode a string to tokens.
|
|
* @param {string} endpoint API endpoint.
|
|
* @param {string} str String to tokenize.
|
|
* @param {function} [resolve] Promise resolve function.
|
|
* @returns {number[]} Array of token ids.
|
|
*/
|
|
function getTextTokensFromServer(endpoint, str, resolve) {
|
|
const isAsync = typeof resolve === 'function';
|
|
let ids = [];
|
|
jQuery.ajax({
|
|
async: isAsync,
|
|
type: 'POST',
|
|
url: endpoint,
|
|
data: JSON.stringify({ text: str }),
|
|
dataType: 'json',
|
|
contentType: 'application/json',
|
|
success: function (data) {
|
|
ids = data.ids;
|
|
|
|
// Don't want to break reverse compatibility, so sprinkle in some of the JS magic
|
|
if (Array.isArray(data.chunks)) {
|
|
Object.defineProperty(ids, 'chunks', { value: data.chunks });
|
|
}
|
|
|
|
isAsync && resolve(ids);
|
|
},
|
|
});
|
|
return ids;
|
|
}
|
|
|
|
/**
|
|
* Calls the AI provider's tokenize API to encode a string to tokens.
|
|
* @param {string} str String to tokenize.
|
|
* @param {function} [resolve] Promise resolve function.
|
|
* @returns {number[]} Array of token ids.
|
|
*/
|
|
function getTextTokensFromTextgenAPI(str, resolve) {
|
|
const isAsync = typeof resolve === 'function';
|
|
let ids = [];
|
|
jQuery.ajax({
|
|
async: isAsync,
|
|
type: 'POST',
|
|
url: TOKENIZER_URLS[tokenizers.API_TEXTGENERATIONWEBUI].encode,
|
|
data: JSON.stringify(getTextgenAPITokenizationParams(str)),
|
|
dataType: 'json',
|
|
contentType: 'application/json',
|
|
success: function (data) {
|
|
ids = data.ids;
|
|
isAsync && resolve(ids);
|
|
},
|
|
});
|
|
return ids;
|
|
}
|
|
|
|
/**
|
|
* Calls the AI provider's tokenize API to encode a string to tokens.
|
|
* @param {string} str String to tokenize.
|
|
* @param {function} [resolve] Promise resolve function.
|
|
* @returns {number[]} Array of token ids.
|
|
*/
|
|
function getTextTokensFromKoboldAPI(str, resolve) {
|
|
const isAsync = typeof resolve === 'function';
|
|
let ids = [];
|
|
|
|
jQuery.ajax({
|
|
async: isAsync,
|
|
type: 'POST',
|
|
url: TOKENIZER_URLS[tokenizers.API_KOBOLD].encode,
|
|
data: JSON.stringify({
|
|
text: str,
|
|
url: api_server,
|
|
}),
|
|
dataType: 'json',
|
|
contentType: 'application/json',
|
|
success: function (data) {
|
|
ids = data.ids;
|
|
isAsync && resolve(ids);
|
|
},
|
|
});
|
|
|
|
return ids;
|
|
}
|
|
|
|
/**
|
|
* Calls the underlying tokenizer model to decode token ids to text.
|
|
* @param {string} endpoint API endpoint.
|
|
* @param {number[]} ids Array of token ids
|
|
* @param {function} [resolve] Promise resolve function.
|
|
* @returns {({ text: string, chunks?: string[] })} Decoded token text as a single string and individual chunks (if available).
|
|
*/
|
|
function decodeTextTokensFromServer(endpoint, ids, resolve) {
|
|
const isAsync = typeof resolve === 'function';
|
|
let text = '';
|
|
let chunks = [];
|
|
jQuery.ajax({
|
|
async: isAsync,
|
|
type: 'POST',
|
|
url: endpoint,
|
|
data: JSON.stringify({ ids: ids }),
|
|
dataType: 'json',
|
|
contentType: 'application/json',
|
|
success: function (data) {
|
|
text = data.text;
|
|
chunks = data.chunks;
|
|
isAsync && resolve({ text, chunks });
|
|
},
|
|
});
|
|
return { text, chunks };
|
|
}
|
|
|
|
/**
|
|
* Encodes a string to tokens using the server API.
|
|
* @param {number} tokenizerType Tokenizer type.
|
|
* @param {string} str String to tokenize.
|
|
* @returns {number[]} Array of token ids.
|
|
*/
|
|
export function getTextTokens(tokenizerType, str) {
|
|
switch (tokenizerType) {
|
|
case tokenizers.API_CURRENT:
|
|
return getTextTokens(currentRemoteTokenizerAPI(), str);
|
|
case tokenizers.API_TEXTGENERATIONWEBUI:
|
|
return getTextTokensFromTextgenAPI(str);
|
|
case tokenizers.API_KOBOLD:
|
|
return getTextTokensFromKoboldAPI(str);
|
|
default: {
|
|
const tokenizerEndpoints = TOKENIZER_URLS[tokenizerType];
|
|
if (!tokenizerEndpoints) {
|
|
apiFailureTokenCount(str);
|
|
console.warn('Unknown tokenizer type', tokenizerType);
|
|
return [];
|
|
}
|
|
let endpointUrl = tokenizerEndpoints.encode;
|
|
if (!endpointUrl) {
|
|
apiFailureTokenCount(str);
|
|
console.warn('This tokenizer type does not support encoding', tokenizerType);
|
|
return [];
|
|
}
|
|
if (tokenizerType === tokenizers.OPENAI) {
|
|
endpointUrl += `?model=${getTokenizerModel()}`;
|
|
}
|
|
return getTextTokensFromServer(endpointUrl, str);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decodes token ids to text using the server API.
|
|
* @param {number} tokenizerType Tokenizer type.
|
|
* @param {number[]} ids Array of token ids
|
|
* @returns {({ text: string, chunks?: string[] })} Decoded token text as a single string and individual chunks (if available).
|
|
*/
|
|
export function decodeTextTokens(tokenizerType, ids) {
|
|
// Currently, neither remote API can decode, but this may change in the future. Put this guard here to be safe
|
|
if (tokenizerType === tokenizers.API_CURRENT) {
|
|
return decodeTextTokens(tokenizers.NONE, ids);
|
|
}
|
|
const tokenizerEndpoints = TOKENIZER_URLS[tokenizerType];
|
|
if (!tokenizerEndpoints) {
|
|
console.warn('Unknown tokenizer type', tokenizerType);
|
|
return { text: '', chunks: [] };
|
|
}
|
|
let endpointUrl = tokenizerEndpoints.decode;
|
|
if (!endpointUrl) {
|
|
console.warn('This tokenizer type does not support decoding', tokenizerType);
|
|
return { text: '', chunks: [] };
|
|
}
|
|
if (tokenizerType === tokenizers.OPENAI) {
|
|
endpointUrl += `?model=${getTokenizerModel()}`;
|
|
}
|
|
return decodeTextTokensFromServer(endpointUrl, ids);
|
|
}
|
|
|
|
export async function initTokenizers() {
|
|
await loadTokenCache();
|
|
registerDebugFunction('resetTokenCache', 'Reset token cache', 'Purges the calculated token counts. Use this if you want to force a full re-tokenization of all chats or suspect the token counts are wrong.', resetTokenCache);
|
|
}
|