const fetch = require('node-fetch').default; const { SECRET_KEYS, readSecret } = require('./endpoints/secrets'); const SOURCES = { 'mistral': { secretKey: SECRET_KEYS.MISTRAL, url: 'api.mistral.ai', model: 'mistral-embed', }, 'openai': { secretKey: SECRET_KEYS.OPENAI, url: 'api.openai.com', model: 'text-embedding-ada-002', }, 'togetherai': { secretKey: SECRET_KEYS.TOGETHERAI, url: 'api.togetherai.xyz', model: 'togethercomputer/GPT-NeoXT-Chat-Base-20B', }, }; /** * Gets the vector for the given text from an OpenAI compatible endpoint. * @param {string} text - The text to get the vector for * @param {string} source - The source of the vector * @returns {Promise} - The vector for the text */ async function getOpenAIVector(text, source) { const config = SOURCES[source]; if (!config) { console.log('Unknown source', source); throw new Error('Unknown source'); } const key = readSecret(config.secretKey); if (!key) { console.log('No API key found'); throw new Error('No API key found'); } const url = config.url; const response = await fetch(`https://${url}/v1/embeddings`, { method: 'POST', headers: { 'Content-Type': 'application/json', Authorization: `Bearer ${key}`, }, body: JSON.stringify({ input: text, model: config.model, }), }); if (!response.ok) { const text = await response.text(); console.log('API request failed', response.statusText, text); throw new Error('API request failed'); } const data = await response.json(); const vector = data?.data[0]?.embedding; if (!Array.isArray(vector)) { console.log('API response was not an array'); throw new Error('API response was not an array'); } return vector; } module.exports = { getOpenAIVector, };