Move tokenizer endpoint and functions to separate file

This commit is contained in:
Cohee 2023-09-16 18:48:06 +03:00
parent ab9aa28fe4
commit bfdd071001
4 changed files with 409 additions and 346 deletions

View File

@ -101,13 +101,13 @@ function callTokenizer(type, str, padding) {
case tokenizers.NONE:
return guesstimate(str) + padding;
case tokenizers.GPT2:
return countTokensRemote('/tokenize_gpt2', str, padding);
return countTokensRemote('/api/tokenize/gpt2', str, padding);
case tokenizers.LLAMA:
return countTokensRemote('/tokenize_llama', str, padding);
return countTokensRemote('/api/tokenize/llama', str, padding);
case tokenizers.NERD:
return countTokensRemote('/tokenize_nerdstash', str, padding);
return countTokensRemote('/api/tokenize/nerdstash', str, padding);
case tokenizers.NERD2:
return countTokensRemote('/tokenize_nerdstash_v2', str, padding);
return countTokensRemote('/api/tokenize/nerdstash_v2', str, padding);
case tokenizers.API:
return countTokensRemote('/tokenize_via_api', str, padding);
default:
@ -264,7 +264,7 @@ export function countTokensOpenAI(messages, full = false) {
jQuery.ajax({
async: false,
type: 'POST', //
url: shouldTokenizeAI21 ? '/tokenize_ai21' : `/tokenize_openai?model=${model}`,
url: shouldTokenizeAI21 ? '/api/tokenize/ai21' : `/api/tokenize/openai?model=${model}`,
data: JSON.stringify([message]),
dataType: "json",
contentType: "application/json",
@ -398,13 +398,13 @@ function decodeTextTokensRemote(endpoint, ids) {
export function getTextTokens(tokenizerType, str) {
switch (tokenizerType) {
case tokenizers.GPT2:
return getTextTokensRemote('/tokenize_gpt2', str);
return getTextTokensRemote('/api/tokenize/gpt2', str);
case tokenizers.LLAMA:
return getTextTokensRemote('/tokenize_llama', str);
return getTextTokensRemote('/api/tokenize/llama', str);
case tokenizers.NERD:
return getTextTokensRemote('/tokenize_nerdstash', str);
return getTextTokensRemote('/api/tokenize/nerdstash', str);
case tokenizers.NERD2:
return getTextTokensRemote('/tokenize_nerdstash_v2', str);
return getTextTokensRemote('/api/tokenize/nerdstash_v2', str);
default:
console.warn("Calling getTextTokens with unsupported tokenizer type", tokenizerType);
return [];
@ -413,19 +413,19 @@ export function getTextTokens(tokenizerType, str) {
/**
* Decodes token ids to text using the remote server API.
* @param {any} tokenizerType Tokenizer type.
* @param {number} tokenizerType Tokenizer type.
* @param {number[]} ids Array of token ids
*/
export function decodeTextTokens(tokenizerType, ids) {
switch (tokenizerType) {
case tokenizers.GPT2:
return decodeTextTokensRemote('/decode_gpt2', ids);
return decodeTextTokensRemote('/api/decode/gpt2', ids);
case tokenizers.LLAMA:
return decodeTextTokensRemote('/decode_llama', ids);
return decodeTextTokensRemote('/api/decode/llama', ids);
case tokenizers.NERD:
return decodeTextTokensRemote('/decode_nerdstash', ids);
return decodeTextTokensRemote('/api/decode/nerdstash', ids);
case tokenizers.NERD2:
return decodeTextTokensRemote('/decode_nerdstash_v2', ids);
return decodeTextTokensRemote('/api/decode/nerdstash_v2', ids);
default:
console.warn("Calling decodeTextTokens with unsupported tokenizer type", tokenizerType);
return '';

339
server.js
View File

@ -44,11 +44,6 @@ const jimp = require('jimp');
const mime = require('mime-types');
const PNGtext = require('png-chunk-text');
// tokenizing related library imports
const { SentencePieceProcessor } = require("@agnai/sentencepiece-js");
const tiktoken = require('@dqbd/tiktoken');
const { Tokenizer } = require('@agnai/web-tokenizers');
// misc/other imports
const _ = require('lodash');
@ -64,6 +59,8 @@ const statsHelpers = require('./statsHelpers.js');
const { readSecret, migrateSecrets, SECRET_KEYS } = require('./src/secrets');
const { delay, getVersion } = require('./src/util');
const { invalidateThumbnail, ensureThumbnailCache } = require('./src/thumbnails');
const { getTokenizerModel, getTiktokenTokenizer, loadTokenizers, TEXT_COMPLETION_MODELS } = require('./src/tokenizers');
const { convertClaudePrompt } = require('./src/chat-completion');
// Work around a node v20.0.0, v20.1.0, and v20.2.0 bug. The issue was fixed in v20.3.0.
// https://github.com/nodejs/node/issues/47822#issuecomment-1564708870
@ -165,139 +162,6 @@ function getOverrideHeaders(urlHost) {
}
}
//RossAscends: Added function to format dates used in files and chat timestamps to a humanized format.
//Mostly I wanted this to be for file names, but couldn't figure out exactly where the filename save code was as everything seemed to be connected.
//During testing, this performs the same as previous date.now() structure.
//It also does not break old characters/chats, as the code just uses whatever timestamp exists in the chat.
//New chats made with characters will use this new formatting.
//Useable variable is (( humanizedISO8601Datetime ))
const CHARS_PER_TOKEN = 3.35;
let spp_llama;
let spp_nerd;
let spp_nerd_v2;
let claude_tokenizer;
async function loadSentencepieceTokenizer(modelPath) {
try {
const spp = new SentencePieceProcessor();
await spp.load(modelPath);
return spp;
} catch (error) {
console.error("Sentencepiece tokenizer failed to load: " + modelPath, error);
return null;
}
};
async function countSentencepieceTokens(spp, text) {
// Fallback to strlen estimation
if (!spp) {
return {
ids: [],
count: Math.ceil(text.length / CHARS_PER_TOKEN)
};
}
let cleaned = text; // cleanText(text); <-- cleaning text can result in an incorrect tokenization
let ids = spp.encodeIds(cleaned);
return {
ids,
count: ids.length
};
}
async function loadClaudeTokenizer(modelPath) {
try {
const arrayBuffer = fs.readFileSync(modelPath).buffer;
const instance = await Tokenizer.fromJSON(arrayBuffer);
return instance;
} catch (error) {
console.error("Claude tokenizer failed to load: " + modelPath, error);
return null;
}
}
function countClaudeTokens(tokenizer, messages) {
const convertedPrompt = convertClaudePrompt(messages, false, false);
// Fallback to strlen estimation
if (!tokenizer) {
return Math.ceil(convertedPrompt.length / CHARS_PER_TOKEN);
}
const count = tokenizer.encode(convertedPrompt).length;
return count;
}
const tokenizersCache = {};
/**
* @type {import('@dqbd/tiktoken').TiktokenModel[]}
*/
const textCompletionModels = [
"text-davinci-003",
"text-davinci-002",
"text-davinci-001",
"text-curie-001",
"text-babbage-001",
"text-ada-001",
"code-davinci-002",
"code-davinci-001",
"code-cushman-002",
"code-cushman-001",
"text-davinci-edit-001",
"code-davinci-edit-001",
"text-embedding-ada-002",
"text-similarity-davinci-001",
"text-similarity-curie-001",
"text-similarity-babbage-001",
"text-similarity-ada-001",
"text-search-davinci-doc-001",
"text-search-curie-doc-001",
"text-search-babbage-doc-001",
"text-search-ada-doc-001",
"code-search-babbage-code-001",
"code-search-ada-code-001",
];
function getTokenizerModel(requestModel) {
if (requestModel.includes('claude')) {
return 'claude';
}
if (requestModel.includes('gpt-4-32k')) {
return 'gpt-4-32k';
}
if (requestModel.includes('gpt-4')) {
return 'gpt-4';
}
if (requestModel.includes('gpt-3.5-turbo')) {
return 'gpt-3.5-turbo';
}
if (textCompletionModels.includes(requestModel)) {
return requestModel;
}
// default
return 'gpt-3.5-turbo';
}
function getTiktokenTokenizer(model) {
if (tokenizersCache[model]) {
return tokenizersCache[model];
}
const tokenizer = tiktoken.encoding_for_model(model);
console.log('Instantiated the tokenizer for', model);
tokenizersCache[model] = tokenizer;
return tokenizer;
}
function humanizedISO8601DateTime(date) {
let baseDate = typeof date === 'number' ? new Date(date) : new Date();
let humanYear = baseDate.getFullYear();
@ -2838,50 +2702,6 @@ function convertChatMLPrompt(messages) {
return messageStrings.join("\n");
}
// Prompt Conversion script taken from RisuAI by @kwaroran (GPLv3).
function convertClaudePrompt(messages, addHumanPrefix, addAssistantPostfix) {
// Claude doesn't support message names, so we'll just add them to the message content.
for (const message of messages) {
if (message.name && message.role !== "system") {
message.content = message.name + ": " + message.content;
delete message.name;
}
}
let requestPrompt = messages.map((v) => {
let prefix = '';
switch (v.role) {
case "assistant":
prefix = "\n\nAssistant: ";
break
case "user":
prefix = "\n\nHuman: ";
break
case "system":
// According to the Claude docs, H: and A: should be used for example conversations.
if (v.name === "example_assistant") {
prefix = "\n\nA: ";
} else if (v.name === "example_user") {
prefix = "\n\nH: ";
} else {
prefix = "\n\n";
}
break
}
return prefix + v.content;
}).join('');
if (addHumanPrefix) {
requestPrompt = "\n\nHuman: " + requestPrompt;
}
if (addAssistantPostfix) {
requestPrompt = requestPrompt + '\n\nAssistant: ';
}
return requestPrompt;
}
async function sendScaleRequest(request, response) {
const api_url = new URL(request.body.api_url_scale).toString();
@ -3131,7 +2951,7 @@ app.post("/generate_openai", jsonParser, function (request, response_generate_op
bodyParams['stop'] = request.body.stop;
}
const isTextCompletion = Boolean(request.body.model && textCompletionModels.includes(request.body.model));
const isTextCompletion = Boolean(request.body.model && TEXT_COMPLETION_MODELS.includes(request.body.model));
const textPrompt = isTextCompletion ? convertChatMLPrompt(request.body.messages) : '';
const endpointUrl = isTextCompletion ? `${api_url}/completions` : `${api_url}/chat/completions`;
@ -3245,44 +3065,6 @@ app.post("/generate_openai", jsonParser, function (request, response_generate_op
}
});
app.post("/tokenize_openai", jsonParser, function (request, response_tokenize_openai) {
if (!request.body) return response_tokenize_openai.sendStatus(400);
let num_tokens = 0;
const model = getTokenizerModel(String(request.query.model || ''));
if (model == 'claude') {
num_tokens = countClaudeTokens(claude_tokenizer, request.body);
return response_tokenize_openai.send({ "token_count": num_tokens });
}
const tokensPerName = model.includes('gpt-4') ? 1 : -1;
const tokensPerMessage = model.includes('gpt-4') ? 3 : 4;
const tokensPadding = 3;
const tokenizer = getTiktokenTokenizer(model);
for (const msg of request.body) {
try {
num_tokens += tokensPerMessage;
for (const [key, value] of Object.entries(msg)) {
num_tokens += tokenizer.encode(value).length;
if (key == "name") {
num_tokens += tokensPerName;
}
}
} catch {
console.warn("Error tokenizing message:", msg);
}
}
num_tokens += tokensPadding;
// not needed for cached tokenizers
//tokenizer.free();
response_tokenize_openai.send({ "token_count": num_tokens });
});
async function sendAI21Request(request, response) {
if (!request.body) return response.sendStatus(400);
const controller = new AbortController();
@ -3353,109 +3135,6 @@ async function sendAI21Request(request, response) {
}
app.post("/tokenize_ai21", jsonParser, async function (request, response_tokenize_ai21) {
if (!request.body) return response_tokenize_ai21.sendStatus(400);
const options = {
method: 'POST',
headers: {
accept: 'application/json',
'content-type': 'application/json',
Authorization: `Bearer ${readSecret(SECRET_KEYS.AI21)}`
},
body: JSON.stringify({ text: request.body[0].content })
};
try {
const response = await fetch('https://api.ai21.com/studio/v1/tokenize', options);
const data = await response.json();
return response_tokenize_ai21.send({ "token_count": data?.tokens?.length || 0 });
} catch (err) {
console.error(err);
return response_tokenize_ai21.send({ "token_count": 0 });
}
});
function createSentencepieceEncodingHandler(getTokenizerFn) {
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const tokenizer = getTokenizerFn();
const { ids, count } = await countSentencepieceTokens(tokenizer, text);
return response.send({ ids, count });
} catch (error) {
console.log(error);
return response.send({ ids: [], count: 0 });
}
};
}
function createSentencepieceDecodingHandler(getTokenizerFn) {
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const tokenizer = getTokenizerFn();
const text = await tokenizer.decodeIds(ids);
return response.send({ text });
} catch (error) {
console.log(error);
return response.send({ text: '' });
}
};
}
function createTiktokenEncodingHandler(modelId) {
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const tokenizer = getTiktokenTokenizer(modelId);
const tokens = Object.values(tokenizer.encode(text));
return response.send({ ids: tokens, count: tokens.length });
} catch (error) {
console.log(error);
return response.send({ ids: [], count: 0 });
}
}
}
function createTiktokenDecodingHandler(modelId) {
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const tokenizer = getTiktokenTokenizer(modelId);
const textBytes = tokenizer.decode(new Uint32Array(ids));
const text = new TextDecoder().decode(textBytes);
return response.send({ text });
} catch (error) {
console.log(error);
return response.send({ text: '' });
}
}
}
app.post("/tokenize_llama", jsonParser, createSentencepieceEncodingHandler(() => spp_llama));
app.post("/tokenize_nerdstash", jsonParser, createSentencepieceEncodingHandler(() => spp_nerd));
app.post("/tokenize_nerdstash_v2", jsonParser, createSentencepieceEncodingHandler(() => spp_nerd_v2));
app.post("/tokenize_gpt2", jsonParser, createTiktokenEncodingHandler('gpt2'));
app.post("/decode_llama", jsonParser, createSentencepieceDecodingHandler(() => spp_llama));
app.post("/decode_nerdstash", jsonParser, createSentencepieceDecodingHandler(() => spp_nerd));
app.post("/decode_nerdstash_v2", jsonParser, createSentencepieceDecodingHandler(() => spp_nerd_v2));
app.post("/decode_gpt2", jsonParser, createTiktokenDecodingHandler('gpt2'));
app.post("/tokenize_via_api", jsonParser, async function (request, response) {
if (!request.body) {
return response.sendStatus(400);
@ -3491,7 +3170,6 @@ app.post("/tokenize_via_api", jsonParser, async function (request, response) {
}
});
// ** REST CLIENT ASYNC WRAPPERS **
/**
@ -3519,6 +3197,9 @@ async function postAsync(url, args) { return fetchJSON(url, { method: 'POST', ti
// ** END **
// Tokenizers
require('./src/tokenizers').registerEndpoints(app, jsonParser);
// Preset management
require('./src/presets').registerEndpoints(app, jsonParser);
@ -3585,13 +3266,7 @@ const setupTasks = async function () {
contentManager.checkForNewContent();
cleanUploads();
[spp_llama, spp_nerd, spp_nerd_v2, claude_tokenizer] = await Promise.all([
loadSentencepieceTokenizer('src/sentencepiece/tokenizer.model'),
loadSentencepieceTokenizer('src/sentencepiece/nerdstash.model'),
loadSentencepieceTokenizer('src/sentencepiece/nerdstash_v2.model'),
loadClaudeTokenizer('src/claude.json'),
]);
await loadTokenizers();
await statsHelpers.loadStatsFile(DIRECTORIES.chats, DIRECTORIES.characters);
// Set up event listeners for a graceful shutdown

54
src/chat-completion.js Normal file
View File

@ -0,0 +1,54 @@
/**
* Convert a prompt from the ChatML objects to the format used by Claude.
* @param {object[]} messages Array of messages
* @param {boolean} addHumanPrefix Add Human prefix
* @param {boolean} addAssistantPostfix Add Assistant postfix
* @returns {string} Prompt for Claude
* @copyright Prompt Conversion script taken from RisuAI by kwaroran (GPLv3).
*/
function convertClaudePrompt(messages, addHumanPrefix, addAssistantPostfix) {
// Claude doesn't support message names, so we'll just add them to the message content.
for (const message of messages) {
if (message.name && message.role !== "system") {
message.content = message.name + ": " + message.content;
delete message.name;
}
}
let requestPrompt = messages.map((v) => {
let prefix = '';
switch (v.role) {
case "assistant":
prefix = "\n\nAssistant: ";
break
case "user":
prefix = "\n\nHuman: ";
break
case "system":
// According to the Claude docs, H: and A: should be used for example conversations.
if (v.name === "example_assistant") {
prefix = "\n\nA: ";
} else if (v.name === "example_user") {
prefix = "\n\nH: ";
} else {
prefix = "\n\n";
}
break
}
return prefix + v.content;
}).join('');
if (addHumanPrefix) {
requestPrompt = "\n\nHuman: " + requestPrompt;
}
if (addAssistantPostfix) {
requestPrompt = requestPrompt + '\n\nAssistant: ';
}
return requestPrompt;
}
module.exports = {
convertClaudePrompt,
}

334
src/tokenizers.js Normal file
View File

@ -0,0 +1,334 @@
const fs = require('fs');
const { SentencePieceProcessor } = require("@agnai/sentencepiece-js");
const tiktoken = require('@dqbd/tiktoken');
const { Tokenizer } = require('@agnai/web-tokenizers');
const { convertClaudePrompt } = require('./chat-completion');
const { readSecret, SECRET_KEYS } = require('./secrets');
/**
* @type {{[key: string]: import("@dqbd/tiktoken").Tiktoken}} Tokenizers cache
*/
const tokenizersCache = {};
/**
* @type {string[]}
*/
const TEXT_COMPLETION_MODELS = [
"text-davinci-003",
"text-davinci-002",
"text-davinci-001",
"text-curie-001",
"text-babbage-001",
"text-ada-001",
"code-davinci-002",
"code-davinci-001",
"code-cushman-002",
"code-cushman-001",
"text-davinci-edit-001",
"code-davinci-edit-001",
"text-embedding-ada-002",
"text-similarity-davinci-001",
"text-similarity-curie-001",
"text-similarity-babbage-001",
"text-similarity-ada-001",
"text-search-davinci-doc-001",
"text-search-curie-doc-001",
"text-search-babbage-doc-001",
"text-search-ada-doc-001",
"code-search-babbage-code-001",
"code-search-ada-code-001",
];
const CHARS_PER_TOKEN = 3.35;
let spp_llama;
let spp_nerd;
let spp_nerd_v2;
let claude_tokenizer;
async function loadSentencepieceTokenizer(modelPath) {
try {
const spp = new SentencePieceProcessor();
await spp.load(modelPath);
return spp;
} catch (error) {
console.error("Sentencepiece tokenizer failed to load: " + modelPath, error);
return null;
}
};
async function countSentencepieceTokens(spp, text) {
// Fallback to strlen estimation
if (!spp) {
return {
ids: [],
count: Math.ceil(text.length / CHARS_PER_TOKEN)
};
}
let cleaned = text; // cleanText(text); <-- cleaning text can result in an incorrect tokenization
let ids = spp.encodeIds(cleaned);
return {
ids,
count: ids.length
};
}
/**
* Gets the tokenizer model by the model name.
* @param {string} requestModel Models to use for tokenization
* @returns {string} Tokenizer model to use
*/
function getTokenizerModel(requestModel) {
if (requestModel.includes('claude')) {
return 'claude';
}
if (requestModel.includes('gpt-4-32k')) {
return 'gpt-4-32k';
}
if (requestModel.includes('gpt-4')) {
return 'gpt-4';
}
if (requestModel.includes('gpt-3.5-turbo')) {
return 'gpt-3.5-turbo';
}
if (TEXT_COMPLETION_MODELS.includes(requestModel)) {
return requestModel;
}
// default
return 'gpt-3.5-turbo';
}
function getTiktokenTokenizer(model) {
if (tokenizersCache[model]) {
return tokenizersCache[model];
}
const tokenizer = tiktoken.encoding_for_model(model);
console.log('Instantiated the tokenizer for', model);
tokenizersCache[model] = tokenizer;
return tokenizer;
}
async function loadClaudeTokenizer(modelPath) {
try {
const arrayBuffer = fs.readFileSync(modelPath).buffer;
const instance = await Tokenizer.fromJSON(arrayBuffer);
return instance;
} catch (error) {
console.error("Claude tokenizer failed to load: " + modelPath, error);
return null;
}
}
function countClaudeTokens(tokenizer, messages) {
const convertedPrompt = convertClaudePrompt(messages, false, false);
// Fallback to strlen estimation
if (!tokenizer) {
return Math.ceil(convertedPrompt.length / CHARS_PER_TOKEN);
}
const count = tokenizer.encode(convertedPrompt).length;
return count;
}
/**
* Creates an API handler for encoding Sentencepiece tokens.
* @param {function} getTokenizerFn Tokenizer provider function
* @returns {any} Handler function
*/
function createSentencepieceEncodingHandler(getTokenizerFn) {
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const tokenizer = getTokenizerFn();
const { ids, count } = await countSentencepieceTokens(tokenizer, text);
return response.send({ ids, count });
} catch (error) {
console.log(error);
return response.send({ ids: [], count: 0 });
}
};
}
/**
* Creates an API handler for decoding Sentencepiece tokens.
* @param {function} getTokenizerFn Tokenizer provider function
* @returns {any} Handler function
*/
function createSentencepieceDecodingHandler(getTokenizerFn) {
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const tokenizer = getTokenizerFn();
const text = await tokenizer.decodeIds(ids);
return response.send({ text });
} catch (error) {
console.log(error);
return response.send({ text: '' });
}
};
}
/**
* Creates an API handler for encoding Tiktoken tokens.
* @param {string} modelId Tiktoken model ID
* @returns {any} Handler function
*/
function createTiktokenEncodingHandler(modelId) {
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const tokenizer = getTiktokenTokenizer(modelId);
const tokens = Object.values(tokenizer.encode(text));
return response.send({ ids: tokens, count: tokens.length });
} catch (error) {
console.log(error);
return response.send({ ids: [], count: 0 });
}
}
}
/**
* Creates an API handler for decoding Tiktoken tokens.
* @param {string} modelId Tiktoken model ID
* @returns {any} Handler function
*/
function createTiktokenDecodingHandler(modelId) {
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const tokenizer = getTiktokenTokenizer(modelId);
const textBytes = tokenizer.decode(new Uint32Array(ids));
const text = new TextDecoder().decode(textBytes);
return response.send({ text });
} catch (error) {
console.log(error);
return response.send({ text: '' });
}
}
}
/**
* Loads the model tokenizers.
* @returns {Promise<void>} Promise that resolves when the tokenizers are loaded
*/
async function loadTokenizers() {
[spp_llama, spp_nerd, spp_nerd_v2, claude_tokenizer] = await Promise.all([
loadSentencepieceTokenizer('src/sentencepiece/tokenizer.model'),
loadSentencepieceTokenizer('src/sentencepiece/nerdstash.model'),
loadSentencepieceTokenizer('src/sentencepiece/nerdstash_v2.model'),
loadClaudeTokenizer('src/claude.json'),
]);
}
/**
* Registers the tokenization endpoints.
* @param {import('express').Express} app Express app
* @param {any} jsonParser JSON parser middleware
*/
function registerEndpoints(app, jsonParser) {
app.post("/api/tokenize/ai21", jsonParser, async function (req, res) {
if (!req.body) return res.sendStatus(400);
const options = {
method: 'POST',
headers: {
accept: 'application/json',
'content-type': 'application/json',
Authorization: `Bearer ${readSecret(SECRET_KEYS.AI21)}`
},
body: JSON.stringify({ text: req.body[0].content })
};
try {
const response = await fetch('https://api.ai21.com/studio/v1/tokenize', options);
const data = await response.json();
return res.send({ "token_count": data?.tokens?.length || 0 });
} catch (err) {
console.error(err);
return res.send({ "token_count": 0 });
}
});
app.post("/api/tokenize/llama", jsonParser, createSentencepieceEncodingHandler(() => spp_llama));
app.post("/api/tokenize/nerdstash", jsonParser, createSentencepieceEncodingHandler(() => spp_nerd));
app.post("/api/tokenize/nerdstash_v2", jsonParser, createSentencepieceEncodingHandler(() => spp_nerd_v2));
app.post("/api/tokenize/gpt2", jsonParser, createTiktokenEncodingHandler('gpt2'));
app.post("/api/decode/llama", jsonParser, createSentencepieceDecodingHandler(() => spp_llama));
app.post("/api/decode/nerdstash", jsonParser, createSentencepieceDecodingHandler(() => spp_nerd));
app.post("/api/decode/nerdstash_v2", jsonParser, createSentencepieceDecodingHandler(() => spp_nerd_v2));
app.post("/api/decode/gpt2", jsonParser, createTiktokenDecodingHandler('gpt2'));
app.post("/api/tokenize/openai", jsonParser, function (req, res) {
if (!req.body) return res.sendStatus(400);
let num_tokens = 0;
const model = getTokenizerModel(String(req.query.model || ''));
if (model == 'claude') {
num_tokens = countClaudeTokens(claude_tokenizer, req.body);
return res.send({ "token_count": num_tokens });
}
const tokensPerName = model.includes('gpt-4') ? 1 : -1;
const tokensPerMessage = model.includes('gpt-4') ? 3 : 4;
const tokensPadding = 3;
const tokenizer = getTiktokenTokenizer(model);
for (const msg of req.body) {
try {
num_tokens += tokensPerMessage;
for (const [key, value] of Object.entries(msg)) {
num_tokens += tokenizer.encode(value).length;
if (key == "name") {
num_tokens += tokensPerName;
}
}
} catch {
console.warn("Error tokenizing message:", msg);
}
}
num_tokens += tokensPadding;
// not needed for cached tokenizers
//tokenizer.free();
res.send({ "token_count": num_tokens });
});
}
module.exports = {
TEXT_COMPLETION_MODELS,
getTokenizerModel,
getTiktokenTokenizer,
loadSentencepieceTokenizer,
loadClaudeTokenizer,
countSentencepieceTokens,
countClaudeTokens,
loadTokenizers,
registerEndpoints,
}