mirror of
https://github.com/SillyTavern/SillyTavern.git
synced 2025-02-02 12:26:59 +01:00
Specify LLM prompt in case JSON schema is not supported
This commit is contained in:
parent
b02394008c
commit
3e60919289
@ -5,13 +5,15 @@ import { loadMovingUIState, power_user } from '../../power-user.js';
|
||||
import { registerSlashCommand } from '../../slash-commands.js';
|
||||
import { onlyUnique, debounce, getCharaFilename, trimToEndSentence, trimToStartSentence } from '../../utils.js';
|
||||
import { hideMutedSprites } from '../../group-chats.js';
|
||||
import { isJsonSchemaSupported } from '../../textgen-settings.js';
|
||||
export { MODULE_NAME };
|
||||
|
||||
const MODULE_NAME = 'expressions';
|
||||
const UPDATE_INTERVAL = 2000;
|
||||
const STREAMING_UPDATE_INTERVAL = 6000;
|
||||
const STREAMING_UPDATE_INTERVAL = 10000;
|
||||
const TALKINGCHECK_UPDATE_INTERVAL = 500;
|
||||
const DEFAULT_FALLBACK_EXPRESSION = 'joy';
|
||||
const DEFAULT_LLM_PROMPT = 'Pause your roleplay. Classify the emotion of the last message. Output just one word, e.g. "joy" or "anger". Choose only one of the following labels: {{labels}}';
|
||||
const DEFAULT_EXPRESSIONS = [
|
||||
'talkinghead',
|
||||
'admiration',
|
||||
@ -976,9 +978,49 @@ function sampleClassifyText(text) {
|
||||
return result.trim();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the classification prompt for the LLM API.
|
||||
* @param {string[]} labels A list of labels to search for.
|
||||
* @returns {Promise<string>} Prompt for the LLM API.
|
||||
*/
|
||||
async function getLlmPrompt(labels) {
|
||||
if (isJsonSchemaSupported()) {
|
||||
return '';
|
||||
}
|
||||
|
||||
const prompt = String(extension_settings.expressions.llmPrompt).replace(/{{labels}}/gi, labels.map(x => `"${x}"`).join(', '));
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parses the emotion response from the LLM API.
|
||||
* @param {string} emotionResponse The response from the LLM API.
|
||||
* @param {string[]} labels A list of labels to search for.
|
||||
* @returns {string} The parsed emotion or the fallback expression.
|
||||
*/
|
||||
function parseLlmResponse(emotionResponse, labels) {
|
||||
const fallbackExpression = getFallbackExpression();
|
||||
|
||||
try {
|
||||
const parsedEmotion = JSON.parse(emotionResponse);
|
||||
return parsedEmotion?.emotion ?? fallbackExpression;
|
||||
|
||||
} catch {
|
||||
const fuse = new Fuse([emotionResponse]);
|
||||
for (const label of labels) {
|
||||
const result = fuse.search(label);
|
||||
if (result.length > 0) {
|
||||
return label;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return fallbackExpression;
|
||||
}
|
||||
|
||||
function onTextGenSettingsReady(args) {
|
||||
// Only call if inside an API call
|
||||
if (inApiCall) {
|
||||
if (inApiCall && extension_settings.expressions.api === EXPRESSION_API.llm && isJsonSchemaSupported()) {
|
||||
const emotions = DEFAULT_EXPRESSIONS.filter((e) => e != 'talkinghead');
|
||||
Object.assign(args, {
|
||||
top_k: 1,
|
||||
@ -1016,8 +1058,8 @@ async function getExpressionLabel(text) {
|
||||
|
||||
try {
|
||||
switch (extension_settings.expressions.api) {
|
||||
case EXPRESSION_API.local:
|
||||
// Local BERT pipeline
|
||||
// Local BERT pipeline
|
||||
case EXPRESSION_API.local: {
|
||||
const localResult = await fetch('/api/extra/classify', {
|
||||
method: 'POST',
|
||||
headers: getRequestHeaders(),
|
||||
@ -1028,15 +1070,16 @@ async function getExpressionLabel(text) {
|
||||
const data = await localResult.json();
|
||||
return data.classification[0].label;
|
||||
}
|
||||
|
||||
break;
|
||||
case EXPRESSION_API.llm:
|
||||
// Using LLM
|
||||
const emotionResponse = await generateQuietPrompt('', false);
|
||||
const parsedEmotion = JSON.parse(emotionResponse);
|
||||
return parsedEmotion.emotion;
|
||||
default:
|
||||
// Extras
|
||||
} break;
|
||||
// Using LLM
|
||||
case EXPRESSION_API.llm: {
|
||||
const expressionsList = await getExpressionsList();
|
||||
const prompt = await getLlmPrompt(expressionsList);
|
||||
const emotionResponse = await generateQuietPrompt(prompt, false, false);
|
||||
return parseLlmResponse(emotionResponse, expressionsList);
|
||||
}
|
||||
// Extras
|
||||
default: {
|
||||
const url = new URL(getApiUrl());
|
||||
url.pathname = '/api/classify';
|
||||
|
||||
@ -1053,6 +1096,7 @@ async function getExpressionLabel(text) {
|
||||
const data = await extrasResult.json();
|
||||
return data.classification[0].label;
|
||||
}
|
||||
} break;
|
||||
}
|
||||
} catch (error) {
|
||||
toastr.info('Could not classify expression. Check the console or your backend for more information.');
|
||||
@ -1488,6 +1532,7 @@ function onExperesionApiChanged() {
|
||||
const tempApi = this.value;
|
||||
if (tempApi) {
|
||||
extension_settings.expressions.api = Number(tempApi);
|
||||
$('.expression_llm_prompt_block').toggle(extension_settings.expressions.api === EXPRESSION_API.llm);
|
||||
moduleWorker();
|
||||
saveSettingsDebounced();
|
||||
}
|
||||
@ -1760,6 +1805,11 @@ function migrateSettings() {
|
||||
delete extension_settings.expressions.local;
|
||||
saveSettingsDebounced();
|
||||
}
|
||||
|
||||
if (extension_settings.expressions.llmPrompt === undefined) {
|
||||
extension_settings.expressions.llmPrompt = DEFAULT_LLM_PROMPT;
|
||||
saveSettingsDebounced();
|
||||
}
|
||||
}
|
||||
|
||||
(async function () {
|
||||
@ -1811,7 +1861,13 @@ function migrateSettings() {
|
||||
});
|
||||
|
||||
await renderAdditionalExpressionSettings();
|
||||
$('#expression_api').val(extension_settings.expressions.api || EXPRESSION_API.extras);
|
||||
$('#expression_api').val(extension_settings.expressions.api ?? EXPRESSION_API.extras);
|
||||
$('.expression_llm_prompt_block').toggle(extension_settings.expressions.api === EXPRESSION_API.llm);
|
||||
$('#expression_llm_prompt').val(extension_settings.expressions.llmPrompt ?? '');
|
||||
$('#expression_llm_prompt').on('input', function () {
|
||||
extension_settings.expressions.llmPrompt = $(this).val();
|
||||
saveSettingsDebounced();
|
||||
});
|
||||
|
||||
$('#expression_custom_add').on('click', onClickExpressionAddCustom);
|
||||
$('#expression_custom_remove').on('click', onClickExpressionRemoveCustom);
|
||||
|
@ -27,6 +27,11 @@
|
||||
<option value="2">LLM</option>
|
||||
</select>
|
||||
</div>
|
||||
<div class="expression_llm_prompt_block m-b-1 m-t-1">
|
||||
<label for="expression_llm_prompt">LLM Prompt</label>
|
||||
<small>Will be used if the API doesn't support JSON schemas.</small>
|
||||
<textarea id="expression_llm_prompt" type="text" class="text_pole" rows="2"></textarea>
|
||||
</div>
|
||||
<div class="expression_fallback_block m-b-1 m-t-1">
|
||||
<label for="expression_fallback">Default / Fallback Expression</label>
|
||||
<small>Set the default and fallback expression being used when no matching expression is found.</small>
|
||||
|
@ -3,6 +3,7 @@ import {
|
||||
event_types,
|
||||
getRequestHeaders,
|
||||
getStoppingStrings,
|
||||
main_api,
|
||||
max_context,
|
||||
saveSettingsDebounced,
|
||||
setGenerationParamsFromPreset,
|
||||
@ -978,6 +979,10 @@ function getModel() {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
export function isJsonSchemaSupported() {
|
||||
return settings.type === TABBY && main_api === 'textgenerationwebui';
|
||||
}
|
||||
|
||||
export function getTextGenGenerationData(finalPrompt, maxTokens, isImpersonate, isContinue, cfgValues, type) {
|
||||
const canMultiSwipe = !isContinue && !isImpersonate && type !== 'quiet';
|
||||
let params = {
|
||||
|
Loading…
x
Reference in New Issue
Block a user