mirror of
https://github.com/SillyTavern/SillyTavern.git
synced 2025-03-05 20:29:22 +01:00
Add ollama and llamacpp as vector sources
This commit is contained in:
parent
c858fccc5f
commit
2b3dfc5ae2
@ -25,6 +25,7 @@ import { getDataBankAttachments, getFileAttachment } from '../../chats.js';
|
||||
import { debounce, getStringHash as calculateHash, waitUntilCondition, onlyUnique, splitRecursive } from '../../utils.js';
|
||||
import { debounce_timeout } from '../../constants.js';
|
||||
import { getSortedEntries } from '../../world-info.js';
|
||||
import { textgen_types, textgenerationwebui_settings } from '../../textgen-settings.js';
|
||||
|
||||
const MODULE_NAME = 'vectors';
|
||||
|
||||
@ -38,6 +39,8 @@ const settings = {
|
||||
togetherai_model: 'togethercomputer/m2-bert-80M-32k-retrieval',
|
||||
openai_model: 'text-embedding-ada-002',
|
||||
cohere_model: 'embed-english-v3.0',
|
||||
ollama_model: 'mxbai-embed-large',
|
||||
ollama_keep: false,
|
||||
summarize: false,
|
||||
summarize_sent: false,
|
||||
summary_source: 'main',
|
||||
@ -272,6 +275,10 @@ async function synchronizeChat(batchSize = 5) {
|
||||
switch (cause) {
|
||||
case 'api_key_missing':
|
||||
return 'API key missing. Save it in the "API Connections" panel.';
|
||||
case 'api_url_missing':
|
||||
return 'API URL missing. Save it in the "API Connections" panel.';
|
||||
case 'api_model_missing':
|
||||
return 'Vectorization Source Model is required, but not set.';
|
||||
case 'extras_module_missing':
|
||||
return 'Extras API must provide an "embeddings" module.';
|
||||
default:
|
||||
@ -637,6 +644,12 @@ function getVectorHeaders() {
|
||||
case 'cohere':
|
||||
addCohereHeaders(headers);
|
||||
break;
|
||||
case 'ollama':
|
||||
addOllamaHeaders(headers);
|
||||
break;
|
||||
case 'llamacpp':
|
||||
addLlamaCppHeaders(headers);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
@ -685,6 +698,28 @@ function addCohereHeaders(headers) {
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Add headers for the Ollama API source.
|
||||
* @param {object} headers Header object
|
||||
*/
|
||||
function addOllamaHeaders(headers) {
|
||||
Object.assign(headers, {
|
||||
'X-Ollama-Model': extension_settings.vectors.ollama_model,
|
||||
'X-Ollama-URL': textgenerationwebui_settings.server_urls[textgen_types.OLLAMA],
|
||||
'X-Ollama-Keep': !!extension_settings.vectors.ollama_keep,
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Add headers for the LlamaCpp API source.
|
||||
* @param {object} headers Header object
|
||||
*/
|
||||
function addLlamaCppHeaders(headers) {
|
||||
Object.assign(headers, {
|
||||
'X-LlamaCpp-URL': textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP],
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Inserts vector items into a collection
|
||||
* @param {string} collectionId - The collection to insert into
|
||||
@ -692,18 +727,7 @@ function addCohereHeaders(headers) {
|
||||
* @returns {Promise<void>}
|
||||
*/
|
||||
async function insertVectorItems(collectionId, items) {
|
||||
if (settings.source === 'openai' && !secret_state[SECRET_KEYS.OPENAI] ||
|
||||
settings.source === 'palm' && !secret_state[SECRET_KEYS.MAKERSUITE] ||
|
||||
settings.source === 'mistral' && !secret_state[SECRET_KEYS.MISTRALAI] ||
|
||||
settings.source === 'togetherai' && !secret_state[SECRET_KEYS.TOGETHERAI] ||
|
||||
settings.source === 'nomicai' && !secret_state[SECRET_KEYS.NOMICAI] ||
|
||||
settings.source === 'cohere' && !secret_state[SECRET_KEYS.COHERE]) {
|
||||
throw new Error('Vectors: API key missing', { cause: 'api_key_missing' });
|
||||
}
|
||||
|
||||
if (settings.source === 'extras' && !modules.includes('embeddings')) {
|
||||
throw new Error('Vectors: Embeddings module missing', { cause: 'extras_module_missing' });
|
||||
}
|
||||
throwIfSourceInvalid();
|
||||
|
||||
const headers = getVectorHeaders();
|
||||
|
||||
@ -722,6 +746,33 @@ async function insertVectorItems(collectionId, items) {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Throws an error if the source is invalid (missing API key or URL, or missing module)
|
||||
*/
|
||||
function throwIfSourceInvalid() {
|
||||
if (settings.source === 'openai' && !secret_state[SECRET_KEYS.OPENAI] ||
|
||||
settings.source === 'palm' && !secret_state[SECRET_KEYS.MAKERSUITE] ||
|
||||
settings.source === 'mistral' && !secret_state[SECRET_KEYS.MISTRALAI] ||
|
||||
settings.source === 'togetherai' && !secret_state[SECRET_KEYS.TOGETHERAI] ||
|
||||
settings.source === 'nomicai' && !secret_state[SECRET_KEYS.NOMICAI] ||
|
||||
settings.source === 'cohere' && !secret_state[SECRET_KEYS.COHERE]) {
|
||||
throw new Error('Vectors: API key missing', { cause: 'api_key_missing' });
|
||||
}
|
||||
|
||||
if (settings.source === 'ollama' && !textgenerationwebui_settings.server_urls[textgen_types.OLLAMA] ||
|
||||
settings.source === 'llamacpp' && !textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP]) {
|
||||
throw new Error('Vectors: API URL missing', { cause: 'api_url_missing' });
|
||||
}
|
||||
|
||||
if (settings.source === 'ollama' && !settings.ollama_model) {
|
||||
throw new Error('Vectors: API model missing', { cause: 'api_model_missing' });
|
||||
}
|
||||
|
||||
if (settings.source === 'extras' && !modules.includes('embeddings')) {
|
||||
throw new Error('Vectors: Embeddings module missing', { cause: 'extras_module_missing' });
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Deletes vector items from a collection
|
||||
* @param {string} collectionId - The collection to delete from
|
||||
@ -870,6 +921,8 @@ function toggleSettings() {
|
||||
$('#together_vectorsModel').toggle(settings.source === 'togetherai');
|
||||
$('#openai_vectorsModel').toggle(settings.source === 'openai');
|
||||
$('#cohere_vectorsModel').toggle(settings.source === 'cohere');
|
||||
$('#ollama_vectorsModel').toggle(settings.source === 'ollama');
|
||||
$('#llamacpp_vectorsModel').toggle(settings.source === 'llamacpp');
|
||||
$('#nomicai_apiKey').toggle(settings.source === 'nomicai');
|
||||
}
|
||||
|
||||
@ -1154,6 +1207,17 @@ jQuery(async () => {
|
||||
Object.assign(extension_settings.vectors, settings);
|
||||
saveSettingsDebounced();
|
||||
});
|
||||
$('#vectors_ollama_model').val(settings.ollama_model).on('input', () => {
|
||||
$('#vectors_modelWarning').show();
|
||||
settings.ollama_model = String($('#vectors_ollama_model').val());
|
||||
Object.assign(extension_settings.vectors, settings);
|
||||
saveSettingsDebounced();
|
||||
});
|
||||
$('#vectors_ollama_keep').prop('checked', settings.ollama_keep).on('input', () => {
|
||||
settings.ollama_keep = $('#vectors_ollama_keep').prop('checked');
|
||||
Object.assign(extension_settings.vectors, settings);
|
||||
saveSettingsDebounced();
|
||||
});
|
||||
$('#vectors_template').val(settings.template).on('input', () => {
|
||||
settings.template = String($('#vectors_template').val());
|
||||
Object.assign(extension_settings.vectors, settings);
|
||||
|
@ -12,14 +12,37 @@
|
||||
<select id="vectors_source" class="text_pole">
|
||||
<option value="cohere">Cohere</option>
|
||||
<option value="extras">Extras</option>
|
||||
<option value="palm">Google MakerSuite (PaLM)</option>
|
||||
<option value="palm">Google MakerSuite</option>
|
||||
<option value="llamacpp">llama.cpp</option>
|
||||
<option value="transformers">Local (Transformers)</option>
|
||||
<option value="ollama">Ollama</option>
|
||||
<option value="openai">OpenAI</option>
|
||||
<option value="mistral">MistralAI</option>
|
||||
<option value="nomicai">NomicAI</option>
|
||||
<option value="openai">OpenAI</option>
|
||||
<option value="togetherai">TogetherAI</option>
|
||||
</select>
|
||||
</div>
|
||||
<div class="flex-container flexFlowColumn" id="ollama_vectorsModel">
|
||||
<label for="vectors_ollama_model">
|
||||
Vectorization Model
|
||||
</label>
|
||||
<input id="vectors_ollama_model" class="text_pole" type="text" placeholder="Model tag, e.g. llama3" />
|
||||
<label for="vectors_ollama_keep" class="checkbox_label" title="When checked, the model will not be unloaded after use.">
|
||||
<input id="vectors_ollama_keep" type="checkbox" />
|
||||
<span>Keep model in memory</span>
|
||||
</label>
|
||||
<i>
|
||||
Hint: Download models and set the URL in the API connection settings.
|
||||
</i>
|
||||
</div>
|
||||
<div class="flex-container flexFlowColumn" id="llamacpp_vectorsModel">
|
||||
<span>
|
||||
The server MUST be started with the <code>--embedding</code> flag to use this feature!
|
||||
</span>
|
||||
<i>
|
||||
Hint: Set the URL in the API connection settings.
|
||||
</i>
|
||||
</div>
|
||||
<div class="flex-container flexFlowColumn" id="openai_vectorsModel">
|
||||
<label for="vectors_openai_model">
|
||||
Vectorization Model
|
||||
|
@ -164,6 +164,17 @@ function getOverrideHeaders(urlHost) {
|
||||
* @param {string|null} server API server for new request
|
||||
*/
|
||||
function setAdditionalHeaders(request, args, server) {
|
||||
setAdditionalHeadersByType(args.headers, request.body.api_type, server, request.user.directories);
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param {object} requestHeaders Request headers
|
||||
* @param {string} type API type
|
||||
* @param {string|null} server API server for new request
|
||||
* @param {import('./users').UserDirectoryList} directories User directories
|
||||
*/
|
||||
function setAdditionalHeadersByType(requestHeaders, type, server, directories) {
|
||||
const headerGetters = {
|
||||
[TEXTGEN_TYPES.MANCER]: getMancerHeaders,
|
||||
[TEXTGEN_TYPES.VLLM]: getVllmHeaders,
|
||||
@ -178,13 +189,13 @@ function setAdditionalHeaders(request, args, server) {
|
||||
[TEXTGEN_TYPES.LLAMACPP]: getLlamaCppHeaders,
|
||||
};
|
||||
|
||||
const getHeaders = headerGetters[request.body.api_type];
|
||||
const headers = getHeaders ? getHeaders(request.user.directories) : {};
|
||||
const getHeaders = headerGetters[type];
|
||||
const headers = getHeaders ? getHeaders(directories) : {};
|
||||
|
||||
if (typeof server === 'string' && server.length > 0) {
|
||||
try {
|
||||
const url = new URL(server);
|
||||
const overrideHeaders = getOverrideHeaders(url.host);
|
||||
const overrideHeaders = getOverrideHeaders(url.host);
|
||||
|
||||
if (overrideHeaders && Object.keys(overrideHeaders).length > 0) {
|
||||
Object.assign(headers, overrideHeaders);
|
||||
@ -194,10 +205,11 @@ function setAdditionalHeaders(request, args, server) {
|
||||
}
|
||||
}
|
||||
|
||||
Object.assign(args.headers, headers);
|
||||
Object.assign(requestHeaders, headers);
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
getOverrideHeaders,
|
||||
setAdditionalHeaders,
|
||||
setAdditionalHeadersByType,
|
||||
};
|
||||
|
@ -5,7 +5,18 @@ const sanitize = require('sanitize-filename');
|
||||
const { jsonParser } = require('../express-common');
|
||||
|
||||
// Don't forget to add new sources to the SOURCES array
|
||||
const SOURCES = ['transformers', 'mistral', 'openai', 'extras', 'palm', 'togetherai', 'nomicai', 'cohere'];
|
||||
const SOURCES = [
|
||||
'transformers',
|
||||
'mistral',
|
||||
'openai',
|
||||
'extras',
|
||||
'palm',
|
||||
'togetherai',
|
||||
'nomicai',
|
||||
'cohere',
|
||||
'ollama',
|
||||
'llamacpp',
|
||||
];
|
||||
|
||||
/**
|
||||
* Gets the vector for the given text from the given source.
|
||||
@ -32,6 +43,10 @@ async function getVector(source, sourceSettings, text, isQuery, directories) {
|
||||
return require('../vectors/makersuite-vectors').getMakerSuiteVector(text, directories);
|
||||
case 'cohere':
|
||||
return require('../vectors/cohere-vectors').getCohereVector(text, isQuery, directories, sourceSettings.model);
|
||||
case 'llamacpp':
|
||||
return require('../vectors/llamacpp-vectors').getLlamaCppVector(text, sourceSettings.apiUrl, directories);
|
||||
case 'ollama':
|
||||
return require('../vectors/ollama-vectors').getOllamaVector(text, sourceSettings.apiUrl, sourceSettings.model, sourceSettings.keep, directories);
|
||||
}
|
||||
|
||||
throw new Error(`Unknown vector source ${source}`);
|
||||
@ -73,6 +88,12 @@ async function getBatchVector(source, sourceSettings, texts, isQuery, directorie
|
||||
case 'cohere':
|
||||
results.push(...await require('../vectors/cohere-vectors').getCohereBatchVector(batch, isQuery, directories, sourceSettings.model));
|
||||
break;
|
||||
case 'llamacpp':
|
||||
results.push(...await require('../vectors/llamacpp-vectors').getLlamaCppBatchVector(batch, sourceSettings.apiUrl, directories));
|
||||
break;
|
||||
case 'ollama':
|
||||
results.push(...await require('../vectors/ollama-vectors').getOllamaBatchVector(batch, sourceSettings.apiUrl, sourceSettings.model, sourceSettings.keep, directories));
|
||||
break;
|
||||
default:
|
||||
throw new Error(`Unknown vector source ${source}`);
|
||||
}
|
||||
@ -251,7 +272,23 @@ function getSourceSettings(source, request) {
|
||||
return {
|
||||
model: model,
|
||||
};
|
||||
}else {
|
||||
} else if (source === 'llamacpp') {
|
||||
const apiUrl = String(request.headers['x-llamacpp-url']);
|
||||
|
||||
return {
|
||||
apiUrl: apiUrl,
|
||||
};
|
||||
} else if (source === 'ollama') {
|
||||
const apiUrl = String(request.headers['x-ollama-url']);
|
||||
const model = String(request.headers['x-ollama-model']);
|
||||
const keep = Boolean(request.headers['x-ollama-keep']);
|
||||
|
||||
return {
|
||||
apiUrl: apiUrl,
|
||||
model: model,
|
||||
keep: keep,
|
||||
};
|
||||
} else {
|
||||
// Extras API settings to connect to the Extras embeddings provider
|
||||
let extrasUrl = '';
|
||||
let extrasKey = '';
|
||||
|
61
src/vectors/llamacpp-vectors.js
Normal file
61
src/vectors/llamacpp-vectors.js
Normal file
@ -0,0 +1,61 @@
|
||||
const fetch = require('node-fetch').default;
|
||||
const { setAdditionalHeadersByType } = require('../additional-headers');
|
||||
const { TEXTGEN_TYPES } = require('../constants');
|
||||
|
||||
/**
|
||||
* Gets the vector for the given text from LlamaCpp
|
||||
* @param {string[]} texts - The array of texts to get the vectors for
|
||||
* @param {string} apiUrl - The API URL
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[][]>} - The array of vectors for the texts
|
||||
*/
|
||||
async function getLlamaCppBatchVector(texts, apiUrl, directories) {
|
||||
const url = new URL(apiUrl);
|
||||
url.pathname = '/v1/embeddings';
|
||||
|
||||
const headers = {};
|
||||
setAdditionalHeadersByType(headers, TEXTGEN_TYPES.LLAMACPP, apiUrl, directories);
|
||||
|
||||
const response = await fetch(url, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
...headers,
|
||||
},
|
||||
body: JSON.stringify({ input: texts }),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const responseText = await response.text();
|
||||
throw new Error(`LlamaCpp: Failed to get vector for text: ${response.statusText} ${responseText}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
|
||||
if (!Array.isArray(data?.data)) {
|
||||
throw new Error('API response was not an array');
|
||||
}
|
||||
|
||||
// Sort data by x.index to ensure the order is correct
|
||||
data.data.sort((a, b) => a.index - b.index);
|
||||
|
||||
const vectors = data.data.map(x => x.embedding);
|
||||
return vectors;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the vector for the given text from LlamaCpp
|
||||
* @param {string} text - The text to get the vector for
|
||||
* @param {string} apiUrl - The API URL
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[]>} - The vector for the text
|
||||
*/
|
||||
async function getLlamaCppVector(text, apiUrl, directories) {
|
||||
const vectors = await getLlamaCppBatchVector([text], apiUrl, directories);
|
||||
return vectors[0];
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
getLlamaCppBatchVector,
|
||||
getLlamaCppVector,
|
||||
};
|
69
src/vectors/ollama-vectors.js
Normal file
69
src/vectors/ollama-vectors.js
Normal file
@ -0,0 +1,69 @@
|
||||
const fetch = require('node-fetch').default;
|
||||
const { setAdditionalHeadersByType } = require('../additional-headers');
|
||||
const { TEXTGEN_TYPES } = require('../constants');
|
||||
|
||||
/**
|
||||
* Gets the vector for the given text from Ollama
|
||||
* @param {string[]} texts - The array of texts to get the vectors for
|
||||
* @param {string} apiUrl - The API URL
|
||||
* @param {string} model - The model to use
|
||||
* @param {boolean} keep - Keep the model loaded in memory
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[][]>} - The array of vectors for the texts
|
||||
*/
|
||||
async function getOllamaBatchVector(texts, apiUrl, model, keep, directories) {
|
||||
const result = [];
|
||||
for (const text of texts) {
|
||||
const vector = await getOllamaVector(text, apiUrl, model, keep, directories);
|
||||
result.push(vector);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the vector for the given text from Ollama
|
||||
* @param {string} text - The text to get the vector for
|
||||
* @param {string} apiUrl - The API URL
|
||||
* @param {string} model - The model to use
|
||||
* @param {boolean} keep - Keep the model loaded in memory
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[]>} - The vector for the text
|
||||
*/
|
||||
async function getOllamaVector(text, apiUrl, model, keep, directories) {
|
||||
const url = new URL(apiUrl);
|
||||
url.pathname = '/api/embeddings';
|
||||
|
||||
const headers = {};
|
||||
setAdditionalHeadersByType(headers, TEXTGEN_TYPES.OLLAMA, apiUrl, directories);
|
||||
|
||||
const response = await fetch(url, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
...headers,
|
||||
},
|
||||
body: JSON.stringify({
|
||||
prompt: text,
|
||||
model: model,
|
||||
keep_alive: keep ? -1 : undefined,
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const responseText = await response.text();
|
||||
throw new Error(`Ollama: Failed to get vector for text: ${response.statusText} ${responseText}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
|
||||
if (!Array.isArray(data?.embedding)) {
|
||||
throw new Error('API response was not an array');
|
||||
}
|
||||
|
||||
return data.embedding;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
getOllamaBatchVector,
|
||||
getOllamaVector,
|
||||
};
|
Loading…
x
Reference in New Issue
Block a user