Add Cohere as embedding source
This commit is contained in:
parent
b69493d252
commit
25cb598694
|
@ -35,6 +35,7 @@ const settings = {
|
|||
include_wi: false,
|
||||
togetherai_model: 'togethercomputer/m2-bert-80M-32k-retrieval',
|
||||
openai_model: 'text-embedding-ada-002',
|
||||
cohere_model: 'embed-english-v3.0',
|
||||
summarize: false,
|
||||
summarize_sent: false,
|
||||
summary_source: 'main',
|
||||
|
@ -598,6 +599,9 @@ function getVectorHeaders() {
|
|||
case 'openai':
|
||||
addOpenAiHeaders(headers);
|
||||
break;
|
||||
case 'cohere':
|
||||
addCohereHeaders(headers);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
@ -636,6 +640,16 @@ function addOpenAiHeaders(headers) {
|
|||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Add headers for the Cohere API source.
|
||||
* @param {object} headers Header object
|
||||
*/
|
||||
function addCohereHeaders(headers) {
|
||||
Object.assign(headers, {
|
||||
'X-Cohere-Model': extension_settings.vectors.cohere_model,
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Inserts vector items into a collection
|
||||
* @param {string} collectionId - The collection to insert into
|
||||
|
@ -647,7 +661,8 @@ async function insertVectorItems(collectionId, items) {
|
|||
settings.source === 'palm' && !secret_state[SECRET_KEYS.MAKERSUITE] ||
|
||||
settings.source === 'mistral' && !secret_state[SECRET_KEYS.MISTRALAI] ||
|
||||
settings.source === 'togetherai' && !secret_state[SECRET_KEYS.TOGETHERAI] ||
|
||||
settings.source === 'nomicai' && !secret_state[SECRET_KEYS.NOMICAI]) {
|
||||
settings.source === 'nomicai' && !secret_state[SECRET_KEYS.NOMICAI] ||
|
||||
settings.source === 'cohere' && !secret_state[SECRET_KEYS.COHERE]) {
|
||||
throw new Error('Vectors: API key missing', { cause: 'api_key_missing' });
|
||||
}
|
||||
|
||||
|
@ -816,6 +831,7 @@ function toggleSettings() {
|
|||
$('#vectors_chats_settings').toggle(!!settings.enabled_chats);
|
||||
$('#together_vectorsModel').toggle(settings.source === 'togetherai');
|
||||
$('#openai_vectorsModel').toggle(settings.source === 'openai');
|
||||
$('#cohere_vectorsModel').toggle(settings.source === 'cohere');
|
||||
$('#nomicai_apiKey').toggle(settings.source === 'nomicai');
|
||||
}
|
||||
|
||||
|
@ -913,6 +929,12 @@ jQuery(async () => {
|
|||
Object.assign(extension_settings.vectors, settings);
|
||||
saveSettingsDebounced();
|
||||
});
|
||||
$('#vectors_cohere_model').val(settings.cohere_model).on('change', () => {
|
||||
$('#vectors_modelWarning').show();
|
||||
settings.cohere_model = String($('#vectors_cohere_model').val());
|
||||
Object.assign(extension_settings.vectors, settings);
|
||||
saveSettingsDebounced();
|
||||
});
|
||||
$('#vectors_template').val(settings.template).on('input', () => {
|
||||
settings.template = String($('#vectors_template').val());
|
||||
Object.assign(extension_settings.vectors, settings);
|
||||
|
|
|
@ -10,13 +10,14 @@
|
|||
Vectorization Source
|
||||
</label>
|
||||
<select id="vectors_source" class="text_pole">
|
||||
<option value="transformers">Local (Transformers)</option>
|
||||
<option value="cohere">Cohere</option>
|
||||
<option value="extras">Extras</option>
|
||||
<option value="openai">OpenAI</option>
|
||||
<option value="palm">Google MakerSuite (PaLM)</option>
|
||||
<option value="transformers">Local (Transformers)</option>
|
||||
<option value="mistral">MistralAI</option>
|
||||
<option value="togetherai">TogetherAI</option>
|
||||
<option value="nomicai">NomicAI</option>
|
||||
<option value="openai">OpenAI</option>
|
||||
<option value="togetherai">TogetherAI</option>
|
||||
</select>
|
||||
</div>
|
||||
<div class="flex-container flexFlowColumn" id="openai_vectorsModel">
|
||||
|
@ -29,6 +30,20 @@
|
|||
<option value="text-embedding-3-large">text-embedding-3-large</option>
|
||||
</select>
|
||||
</div>
|
||||
<div class="flex-container flexFlowColumn" id="cohere_vectorsModel">
|
||||
<label for="vectors_cohere_model">
|
||||
Vectorization Model
|
||||
</label>
|
||||
<select id="vectors_cohere_model" class="text_pole">
|
||||
<option value="embed-english-v3.0">embed-english-v3.0</option>
|
||||
<option value="embed-multilingual-v3.0">embed-multilingual-v3.0</option>
|
||||
<option value="embed-english-light-v3.0">embed-english-light-v3.0</option>
|
||||
<option value="embed-multilingual-light-v3.0">embed-multilingual-light-v3.0</option>
|
||||
<option value="embed-english-v2.0">embed-english-v2.0</option>
|
||||
<option value="embed-english-light-v2.0">embed-english-light-v2.0</option>
|
||||
<option value="embed-multilingual-v2.0">embed-multilingual-v2.0</option>
|
||||
</select>
|
||||
</div>
|
||||
<div class="flex-container flexFlowColumn" id="together_vectorsModel">
|
||||
<label for="vectors_togetherai_model">
|
||||
Vectorization Model
|
||||
|
|
|
@ -12,23 +12,26 @@ const SOURCES = ['transformers', 'mistral', 'openai', 'extras', 'palm', 'togethe
|
|||
* @param {string} source - The source of the vector
|
||||
* @param {Object} sourceSettings - Settings for the source, if it needs any
|
||||
* @param {string} text - The text to get the vector for
|
||||
* @param {boolean} isQuery - If the text is a query for embedding search
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[]>} - The vector for the text
|
||||
*/
|
||||
async function getVector(source, sourceSettings, text, directories) {
|
||||
async function getVector(source, sourceSettings, text, isQuery, directories) {
|
||||
switch (source) {
|
||||
case 'nomicai':
|
||||
return require('../nomicai-vectors').getNomicAIVector(text, source, directories);
|
||||
return require('../vectors/nomicai-vectors').getNomicAIVector(text, source, directories);
|
||||
case 'togetherai':
|
||||
case 'mistral':
|
||||
case 'openai':
|
||||
return require('../openai-vectors').getOpenAIVector(text, source, directories, sourceSettings.model);
|
||||
return require('../vectors/openai-vectors').getOpenAIVector(text, source, directories, sourceSettings.model);
|
||||
case 'transformers':
|
||||
return require('../embedding').getTransformersVector(text);
|
||||
return require('../vectors/embedding').getTransformersVector(text);
|
||||
case 'extras':
|
||||
return require('../extras-vectors').getExtrasVector(text, sourceSettings.extrasUrl, sourceSettings.extrasKey);
|
||||
return require('../vectors/extras-vectors').getExtrasVector(text, sourceSettings.extrasUrl, sourceSettings.extrasKey);
|
||||
case 'palm':
|
||||
return require('../makersuite-vectors').getMakerSuiteVector(text, directories);
|
||||
return require('../vectors/makersuite-vectors').getMakerSuiteVector(text, directories);
|
||||
case 'cohere':
|
||||
return require('../vectors/cohere-vectors').getCohereVector(text, isQuery, directories, sourceSettings.model);
|
||||
}
|
||||
|
||||
throw new Error(`Unknown vector source ${source}`);
|
||||
|
@ -39,10 +42,11 @@ async function getVector(source, sourceSettings, text, directories) {
|
|||
* @param {string} source - The source of the vector
|
||||
* @param {Object} sourceSettings - Settings for the source, if it needs any
|
||||
* @param {string[]} texts - The array of texts to get the vector for
|
||||
* @param {boolean} isQuery - If the text is a query for embedding search
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[][]>} - The array of vectors for the texts
|
||||
*/
|
||||
async function getBatchVector(source, sourceSettings, texts, directories) {
|
||||
async function getBatchVector(source, sourceSettings, texts, isQuery, directories) {
|
||||
const batchSize = 10;
|
||||
const batches = Array(Math.ceil(texts.length / batchSize)).fill(undefined).map((_, i) => texts.slice(i * batchSize, i * batchSize + batchSize));
|
||||
|
||||
|
@ -50,21 +54,24 @@ async function getBatchVector(source, sourceSettings, texts, directories) {
|
|||
for (let batch of batches) {
|
||||
switch (source) {
|
||||
case 'nomicai':
|
||||
results.push(...await require('../nomicai-vectors').getNomicAIBatchVector(batch, source, directories));
|
||||
results.push(...await require('../vectors/nomicai-vectors').getNomicAIBatchVector(batch, source, directories));
|
||||
break;
|
||||
case 'togetherai':
|
||||
case 'mistral':
|
||||
case 'openai':
|
||||
results.push(...await require('../openai-vectors').getOpenAIBatchVector(batch, source, directories, sourceSettings.model));
|
||||
results.push(...await require('../vectors/openai-vectors').getOpenAIBatchVector(batch, source, directories, sourceSettings.model));
|
||||
break;
|
||||
case 'transformers':
|
||||
results.push(...await require('../embedding').getTransformersBatchVector(batch));
|
||||
results.push(...await require('../vectors/embedding').getTransformersBatchVector(batch));
|
||||
break;
|
||||
case 'extras':
|
||||
results.push(...await require('../extras-vectors').getExtrasBatchVector(batch, sourceSettings.extrasUrl, sourceSettings.extrasKey));
|
||||
results.push(...await require('../vectors/extras-vectors').getExtrasBatchVector(batch, sourceSettings.extrasUrl, sourceSettings.extrasKey));
|
||||
break;
|
||||
case 'palm':
|
||||
results.push(...await require('../makersuite-vectors').getMakerSuiteBatchVector(batch, directories));
|
||||
results.push(...await require('../vectors/makersuite-vectors').getMakerSuiteBatchVector(batch, directories));
|
||||
break;
|
||||
case 'cohere':
|
||||
results.push(...await require('../vectors/cohere-vectors').getCohereBatchVector(batch, isQuery, directories, sourceSettings.model));
|
||||
break;
|
||||
default:
|
||||
throw new Error(`Unknown vector source ${source}`);
|
||||
|
@ -106,7 +113,7 @@ async function insertVectorItems(directories, collectionId, source, sourceSettin
|
|||
|
||||
await store.beginUpdate();
|
||||
|
||||
const vectors = await getBatchVector(source, sourceSettings, items.map(x => x.text), directories);
|
||||
const vectors = await getBatchVector(source, sourceSettings, items.map(x => x.text), false, directories);
|
||||
|
||||
for (let i = 0; i < items.length; i++) {
|
||||
const item = items[i];
|
||||
|
@ -165,7 +172,7 @@ async function deleteVectorItems(directories, collectionId, source, hashes) {
|
|||
*/
|
||||
async function queryCollection(directories, collectionId, source, sourceSettings, searchText, topK) {
|
||||
const store = await getIndex(directories, collectionId, source);
|
||||
const vector = await getVector(source, sourceSettings, searchText, directories);
|
||||
const vector = await getVector(source, sourceSettings, searchText, true, directories);
|
||||
|
||||
const result = await store.queryItems(vector, topK);
|
||||
const metadata = result.map(x => x.item.metadata);
|
||||
|
@ -184,7 +191,7 @@ async function queryCollection(directories, collectionId, source, sourceSettings
|
|||
* @returns {Promise<Record<string, { hashes: number[], metadata: object[] }>>} - The top K results from each collection
|
||||
*/
|
||||
async function multiQueryCollection(directories, collectionIds, source, sourceSettings, searchText, topK) {
|
||||
const vector = await getVector(source, sourceSettings, searchText, directories);
|
||||
const vector = await getVector(source, sourceSettings, searchText, true, directories);
|
||||
const results = [];
|
||||
|
||||
for (const collectionId of collectionIds) {
|
||||
|
@ -223,18 +230,24 @@ async function multiQueryCollection(directories, collectionIds, source, sourceSe
|
|||
*/
|
||||
function getSourceSettings(source, request) {
|
||||
if (source === 'togetherai') {
|
||||
let model = String(request.headers['x-togetherai-model']);
|
||||
const model = String(request.headers['x-togetherai-model']);
|
||||
|
||||
return {
|
||||
model: model,
|
||||
};
|
||||
} else if (source === 'openai') {
|
||||
let model = String(request.headers['x-openai-model']);
|
||||
const model = String(request.headers['x-openai-model']);
|
||||
|
||||
return {
|
||||
model: model,
|
||||
};
|
||||
} else {
|
||||
} else if (source === 'cohere') {
|
||||
const model = String(request.headers['x-cohere-model']);
|
||||
|
||||
return {
|
||||
model: model,
|
||||
};
|
||||
}else {
|
||||
// Extras API settings to connect to the Extras embeddings provider
|
||||
let extrasUrl = '';
|
||||
let extrasKey = '';
|
||||
|
|
|
@ -0,0 +1,65 @@
|
|||
const fetch = require('node-fetch').default;
|
||||
const { SECRET_KEYS, readSecret } = require('../endpoints/secrets');
|
||||
|
||||
/**
|
||||
* Gets the vector for the given text batch from an OpenAI compatible endpoint.
|
||||
* @param {string[]} texts - The array of texts to get the vector for
|
||||
* @param {boolean} isQuery - If the text is a query for embedding search
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {string} model - The model to use for the embedding
|
||||
* @returns {Promise<number[][]>} - The array of vectors for the texts
|
||||
*/
|
||||
async function getCohereBatchVector(texts, isQuery, directories, model) {
|
||||
const key = readSecret(directories, SECRET_KEYS.COHERE);
|
||||
|
||||
if (!key) {
|
||||
console.log('No API key found');
|
||||
throw new Error('No API key found');
|
||||
}
|
||||
|
||||
const response = await fetch('https://api.cohere.ai/v1/embed', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
Authorization: `Bearer ${key}`,
|
||||
},
|
||||
body: JSON.stringify({
|
||||
texts: texts,
|
||||
model: model,
|
||||
input_type: isQuery ? 'search_query' : 'search_document',
|
||||
truncate: 'END',
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const text = await response.text();
|
||||
console.log('API request failed', response.statusText, text);
|
||||
throw new Error('API request failed');
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
if (!Array.isArray(data?.embeddings)) {
|
||||
console.log('API response was not an array');
|
||||
throw new Error('API response was not an array');
|
||||
}
|
||||
|
||||
return data.embeddings;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the vector for the given text from an OpenAI compatible endpoint.
|
||||
* @param {string} text - The text to get the vector for
|
||||
* @param {boolean} isQuery - If the text is a query for embedding search
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {string} model - The model to use for the embedding
|
||||
* @returns {Promise<number[]>} - The vector for the text
|
||||
*/
|
||||
async function getCohereVector(text, isQuery, directories, model) {
|
||||
const vectors = await getCohereBatchVector([text], isQuery, directories, model);
|
||||
return vectors[0];
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
getCohereBatchVector,
|
||||
getCohereVector,
|
||||
};
|
|
@ -6,7 +6,7 @@ const TASK = 'feature-extraction';
|
|||
* @returns {Promise<number[]>} - The vectorized text in form of an array of numbers
|
||||
*/
|
||||
async function getTransformersVector(text) {
|
||||
const module = await import('./transformers.mjs');
|
||||
const module = await import('../transformers.mjs');
|
||||
const pipe = await module.default.getPipeline(TASK);
|
||||
const result = await pipe(text, { pooling: 'mean', normalize: true });
|
||||
const vector = Array.from(result.data);
|
|
@ -1,10 +1,10 @@
|
|||
const fetch = require('node-fetch').default;
|
||||
const { SECRET_KEYS, readSecret } = require('./endpoints/secrets');
|
||||
const { SECRET_KEYS, readSecret } = require('../endpoints/secrets');
|
||||
|
||||
/**
|
||||
* Gets the vector for the given text from gecko model
|
||||
* @param {string[]} texts - The array of texts to get the vector for
|
||||
* @param {import('./users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[][]>} - The array of vectors for the texts
|
||||
*/
|
||||
async function getMakerSuiteBatchVector(texts, directories) {
|
||||
|
@ -16,7 +16,7 @@ async function getMakerSuiteBatchVector(texts, directories) {
|
|||
/**
|
||||
* Gets the vector for the given text from PaLM gecko model
|
||||
* @param {string} text - The text to get the vector for
|
||||
* @param {import('./users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[]>} - The vector for the text
|
||||
*/
|
||||
async function getMakerSuiteVector(text, directories) {
|
|
@ -1,5 +1,5 @@
|
|||
const fetch = require('node-fetch').default;
|
||||
const { SECRET_KEYS, readSecret } = require('./endpoints/secrets');
|
||||
const { SECRET_KEYS, readSecret } = require('../endpoints/secrets');
|
||||
|
||||
const SOURCES = {
|
||||
'nomicai': {
|
||||
|
@ -13,7 +13,7 @@ const SOURCES = {
|
|||
* Gets the vector for the given text batch from an OpenAI compatible endpoint.
|
||||
* @param {string[]} texts - The array of texts to get the vector for
|
||||
* @param {string} source - The source of the vector
|
||||
* @param {import('./users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[][]>} - The array of vectors for the texts
|
||||
*/
|
||||
async function getNomicAIBatchVector(texts, source, directories) {
|
||||
|
@ -64,7 +64,7 @@ async function getNomicAIBatchVector(texts, source, directories) {
|
|||
* Gets the vector for the given text from an OpenAI compatible endpoint.
|
||||
* @param {string} text - The text to get the vector for
|
||||
* @param {string} source - The source of the vector
|
||||
* @param {import('./users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @returns {Promise<number[]>} - The vector for the text
|
||||
*/
|
||||
async function getNomicAIVector(text, source, directories) {
|
|
@ -1,5 +1,5 @@
|
|||
const fetch = require('node-fetch').default;
|
||||
const { SECRET_KEYS, readSecret } = require('./endpoints/secrets');
|
||||
const { SECRET_KEYS, readSecret } = require('../endpoints/secrets');
|
||||
|
||||
const SOURCES = {
|
||||
'togetherai': {
|
||||
|
@ -23,7 +23,7 @@ const SOURCES = {
|
|||
* Gets the vector for the given text batch from an OpenAI compatible endpoint.
|
||||
* @param {string[]} texts - The array of texts to get the vector for
|
||||
* @param {string} source - The source of the vector
|
||||
* @param {import('./users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {string} model - The model to use for the embedding
|
||||
* @returns {Promise<number[][]>} - The array of vectors for the texts
|
||||
*/
|
||||
|
@ -79,7 +79,7 @@ async function getOpenAIBatchVector(texts, source, directories, model = '') {
|
|||
* Gets the vector for the given text from an OpenAI compatible endpoint.
|
||||
* @param {string} text - The text to get the vector for
|
||||
* @param {string} source - The source of the vector
|
||||
* @param {import('./users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
|
||||
* @param {string} model - The model to use for the embedding
|
||||
* @returns {Promise<number[]>} - The vector for the text
|
||||
*/
|
Loading…
Reference in New Issue