SillyTavern/public/scripts/tokenizers.js

439 lines
14 KiB
JavaScript
Raw Normal View History

import { characters, main_api, nai_settings, online_status, this_chid } from "../script.js";
2023-08-27 22:20:43 +02:00
import { power_user, registerDebugFunction } from "./power-user.js";
import { chat_completion_sources, oai_settings } from "./openai.js";
import { groups, selected_group } from "./group-chats.js";
import { getStringHash } from "./utils.js";
2023-09-01 01:57:35 +02:00
import { kai_flags } from "./kai-settings.js";
export const CHARACTERS_PER_TOKEN_RATIO = 3.35;
const TOKENIZER_WARNING_KEY = 'tokenizationWarningShown';
export const tokenizers = {
NONE: 0,
2023-08-27 17:27:34 +02:00
GPT2: 1,
/**
* @deprecated Use GPT2 instead.
*/
LEGACY: 2,
LLAMA: 3,
NERD: 4,
NERD2: 5,
API: 6,
BEST_MATCH: 99,
};
const objectStore = new localforage.createInstance({ name: "SillyTavern_ChatCompletions" });
let tokenCache = {};
/**
* Guesstimates the token count for a string.
* @param {string} str String to tokenize.
* @returns {number} Token count.
*/
export function guesstimate(str) {
return Math.ceil(str.length / CHARACTERS_PER_TOKEN_RATIO);
}
async function loadTokenCache() {
try {
console.debug('Chat Completions: loading token cache')
tokenCache = await objectStore.getItem('tokenCache') || {};
} catch (e) {
console.log('Chat Completions: unable to load token cache, using default value', e);
tokenCache = {};
}
}
export async function saveTokenCache() {
try {
console.debug('Chat Completions: saving token cache')
await objectStore.setItem('tokenCache', tokenCache);
} catch (e) {
console.log('Chat Completions: unable to save token cache', e);
}
}
async function resetTokenCache() {
try {
console.debug('Chat Completions: resetting token cache');
Object.keys(tokenCache).forEach(key => delete tokenCache[key]);
await objectStore.removeItem('tokenCache');
2023-08-27 22:20:43 +02:00
toastr.success('Token cache cleared. Please reload the chat to re-tokenize it.');
} catch (e) {
console.log('Chat Completions: unable to reset token cache', e);
}
}
function getTokenizerBestMatch() {
if (main_api === 'novel') {
if (nai_settings.model_novel.includes('clio')) {
return tokenizers.NERD;
}
if (nai_settings.model_novel.includes('kayra')) {
return tokenizers.NERD2;
}
}
if (main_api === 'kobold' || main_api === 'textgenerationwebui' || main_api === 'koboldhorde') {
// Try to use the API tokenizer if possible:
// - API must be connected
// - Kobold must pass a version check
// - Tokenizer haven't reported an error previously
2023-09-01 01:57:35 +02:00
if (kai_flags.can_use_tokenization && !sessionStorage.getItem(TOKENIZER_WARNING_KEY) && online_status !== 'no_connection') {
return tokenizers.API;
}
return tokenizers.LLAMA;
}
return tokenizers.NONE;
}
2023-08-27 17:27:34 +02:00
/**
* Calls the underlying tokenizer model to the token count for a string.
* @param {number} type Tokenizer type.
* @param {string} str String to tokenize.
* @param {number} padding Number of padding tokens.
* @returns {number} Token count.
*/
function callTokenizer(type, str, padding) {
switch (type) {
case tokenizers.NONE:
return guesstimate(str) + padding;
case tokenizers.GPT2:
return countTokensRemote('/tokenize_gpt2', str, padding);
case tokenizers.LLAMA:
return countTokensRemote('/tokenize_llama', str, padding);
case tokenizers.NERD:
return countTokensRemote('/tokenize_nerdstash', str, padding);
case tokenizers.NERD2:
return countTokensRemote('/tokenize_nerdstash_v2', str, padding);
case tokenizers.API:
return countTokensRemote('/tokenize_via_api', str, padding);
default:
console.warn("Unknown tokenizer type", type);
return callTokenizer(tokenizers.NONE, str, padding);
}
}
/**
* Gets the token count for a string using the current model tokenizer.
* @param {string} str String to tokenize
* @param {number | undefined} padding Optional padding tokens. Defaults to 0.
* @returns {number} Token count.
*/
export function getTokenCount(str, padding = undefined) {
if (typeof str !== 'string' || !str?.length) {
return 0;
}
let tokenizerType = power_user.tokenizer;
if (main_api === 'openai') {
if (padding === power_user.token_padding) {
// For main "shadow" prompt building
tokenizerType = tokenizers.NONE;
} else {
// For extensions and WI
return counterWrapperOpenAI(str);
}
}
if (tokenizerType === tokenizers.BEST_MATCH) {
tokenizerType = getTokenizerBestMatch();
}
if (padding === undefined) {
padding = 0;
}
const cacheObject = getTokenCacheObject();
const hash = getStringHash(str);
const cacheKey = `${tokenizerType}-${hash}+${padding}`;
if (typeof cacheObject[cacheKey] === 'number') {
return cacheObject[cacheKey];
}
2023-08-27 17:27:34 +02:00
const result = callTokenizer(tokenizerType, str, padding);
if (isNaN(result)) {
console.warn("Token count calculation returned NaN");
return 0;
}
cacheObject[cacheKey] = result;
return result;
}
/**
* Gets the token count for a string using the OpenAI tokenizer.
* @param {string} text Text to tokenize.
* @returns {number} Token count.
*/
function counterWrapperOpenAI(text) {
const message = { role: 'system', content: text };
return countTokensOpenAI(message, true);
}
export function getTokenizerModel() {
// OpenAI models always provide their own tokenizer
if (oai_settings.chat_completion_source == chat_completion_sources.OPENAI) {
return oai_settings.openai_model;
}
const turboTokenizer = 'gpt-3.5-turbo';
const gpt4Tokenizer = 'gpt-4';
const gpt2Tokenizer = 'gpt2';
const claudeTokenizer = 'claude';
// Assuming no one would use it for different models.. right?
if (oai_settings.chat_completion_source == chat_completion_sources.SCALE) {
return gpt4Tokenizer;
}
// Select correct tokenizer for WindowAI proxies
if (oai_settings.chat_completion_source == chat_completion_sources.WINDOWAI && oai_settings.windowai_model) {
if (oai_settings.windowai_model.includes('gpt-4')) {
return gpt4Tokenizer;
}
else if (oai_settings.windowai_model.includes('gpt-3.5-turbo')) {
return turboTokenizer;
}
else if (oai_settings.windowai_model.includes('claude')) {
return claudeTokenizer;
}
else if (oai_settings.windowai_model.includes('GPT-NeoXT')) {
return gpt2Tokenizer;
}
}
// And for OpenRouter (if not a site model, then it's impossible to determine the tokenizer)
if (oai_settings.chat_completion_source == chat_completion_sources.OPENROUTER && oai_settings.openrouter_model) {
if (oai_settings.openrouter_model.includes('gpt-4')) {
return gpt4Tokenizer;
}
else if (oai_settings.openrouter_model.includes('gpt-3.5-turbo')) {
return turboTokenizer;
}
else if (oai_settings.openrouter_model.includes('claude')) {
return claudeTokenizer;
}
else if (oai_settings.openrouter_model.includes('GPT-NeoXT')) {
return gpt2Tokenizer;
}
}
if (oai_settings.chat_completion_source == chat_completion_sources.CLAUDE) {
return claudeTokenizer;
}
// Default to Turbo 3.5
return turboTokenizer;
}
/**
* @param {any[] | Object} messages
*/
export function countTokensOpenAI(messages, full = false) {
const shouldTokenizeAI21 = oai_settings.chat_completion_source === chat_completion_sources.AI21 && oai_settings.use_ai21_tokenizer;
const cacheObject = getTokenCacheObject();
if (!Array.isArray(messages)) {
messages = [messages];
}
let token_count = -1;
for (const message of messages) {
const model = getTokenizerModel();
if (model === 'claude' || shouldTokenizeAI21) {
full = true;
}
const hash = getStringHash(JSON.stringify(message));
const cacheKey = `${model}-${hash}`;
const cachedCount = cacheObject[cacheKey];
if (typeof cachedCount === 'number') {
token_count += cachedCount;
}
else {
jQuery.ajax({
async: false,
type: 'POST', //
url: shouldTokenizeAI21 ? '/tokenize_ai21' : `/tokenize_openai?model=${model}`,
data: JSON.stringify([message]),
dataType: "json",
contentType: "application/json",
success: function (data) {
token_count += Number(data.token_count);
cacheObject[cacheKey] = Number(data.token_count);
}
});
}
}
if (!full) token_count -= 2;
return token_count;
}
/**
* Gets the token cache object for the current chat.
* @returns {Object} Token cache object for the current chat.
*/
function getTokenCacheObject() {
let chatId = 'undefined';
try {
if (selected_group) {
chatId = groups.find(x => x.id == selected_group)?.chat_id;
}
else if (this_chid !== undefined) {
chatId = characters[this_chid].chat;
}
} catch {
console.log('No character / group selected. Using default cache item');
}
if (typeof tokenCache[chatId] !== 'object') {
tokenCache[chatId] = {};
}
return tokenCache[String(chatId)];
}
/**
* Counts token using the remote server API.
* @param {string} endpoint API endpoint.
* @param {string} str String to tokenize.
* @param {number} padding Number of padding tokens.
* @returns {number} Token count with padding.
*/
function countTokensRemote(endpoint, str, padding) {
let tokenCount = 0;
jQuery.ajax({
async: false,
type: 'POST',
url: endpoint,
data: JSON.stringify({ text: str }),
dataType: "json",
contentType: "application/json",
success: function (data) {
if (typeof data.count === 'number') {
tokenCount = data.count;
} else {
tokenCount = guesstimate(str);
console.error("Error counting tokens");
if (!sessionStorage.getItem(TOKENIZER_WARNING_KEY)) {
toastr.warning(
"Your selected API doesn't support the tokenization endpoint. Using estimated counts.",
"Error counting tokens",
{ timeOut: 10000, preventDuplicates: true },
);
sessionStorage.setItem(TOKENIZER_WARNING_KEY, String(true));
}
}
}
});
return tokenCount + padding;
}
2023-08-27 17:27:34 +02:00
/**
* Calls the underlying tokenizer model to encode a string to tokens.
* @param {string} endpoint API endpoint.
* @param {string} str String to tokenize.
* @returns {number[]} Array of token ids.
*/
function getTextTokensRemote(endpoint, str) {
let ids = [];
jQuery.ajax({
async: false,
type: 'POST',
url: endpoint,
data: JSON.stringify({ text: str }),
dataType: "json",
contentType: "application/json",
success: function (data) {
ids = data.ids;
}
});
return ids;
}
2023-08-27 17:27:34 +02:00
/**
* Calls the underlying tokenizer model to decode token ids to text.
* @param {string} endpoint API endpoint.
* @param {number[]} ids Array of token ids
*/
function decodeTextTokensRemote(endpoint, ids) {
let text = '';
jQuery.ajax({
async: false,
type: 'POST',
url: endpoint,
data: JSON.stringify({ ids: ids }),
dataType: "json",
contentType: "application/json",
success: function (data) {
text = data.text;
}
});
return text;
}
/**
* Encodes a string to tokens using the remote server API.
* @param {number} tokenizerType Tokenizer type.
* @param {string} str String to tokenize.
* @returns {number[]} Array of token ids.
*/
export function getTextTokens(tokenizerType, str) {
switch (tokenizerType) {
2023-08-27 17:27:34 +02:00
case tokenizers.GPT2:
return getTextTokensRemote('/tokenize_gpt2', str);
case tokenizers.LLAMA:
return getTextTokensRemote('/tokenize_llama', str);
case tokenizers.NERD:
return getTextTokensRemote('/tokenize_nerdstash', str);
case tokenizers.NERD2:
return getTextTokensRemote('/tokenize_nerdstash_v2', str);
default:
console.warn("Calling getTextTokens with unsupported tokenizer type", tokenizerType);
return [];
}
}
2023-08-27 17:27:34 +02:00
/**
* Decodes token ids to text using the remote server API.
* @param {any} tokenizerType Tokenizer type.
* @param {number[]} ids Array of token ids
*/
export function decodeTextTokens(tokenizerType, ids) {
switch (tokenizerType) {
case tokenizers.GPT2:
return decodeTextTokensRemote('/decode_gpt2', ids);
case tokenizers.LLAMA:
return decodeTextTokensRemote('/decode_llama', ids);
case tokenizers.NERD:
return decodeTextTokensRemote('/decode_nerdstash', ids);
case tokenizers.NERD2:
return decodeTextTokensRemote('/decode_nerdstash_v2', ids);
default:
console.warn("Calling decodeTextTokens with unsupported tokenizer type", tokenizerType);
return '';
}
}
jQuery(async () => {
await loadTokenCache();
2023-08-27 22:20:43 +02:00
registerDebugFunction('resetTokenCache', 'Reset token cache', 'Purges the calculated token counts. Use this if you want to force a full re-tokenization of all chats or suspect the token counts are wrong.', resetTokenCache);
});