Files
KoboldAI-Client/modeling/inference_models/generic_hf_torch/class.py
2023-07-15 20:00:29 +02:00

294 lines
13 KiB
Python

from __future__ import annotations
import os
import json
import torch
import shutil
from typing import Union
from transformers import AutoModelForCausalLM, GPTNeoForCausalLM, GPT2LMHeadModel
import utils
import modeling.lazy_loader as lazy_loader
import koboldai_settings
import importlib
from logger import logger
from modeling.inference_models.hf_torch import HFTorchInferenceModel
model_backend_name = "Huggingface"
model_backend_type = "Huggingface" #This should be a generic name in case multiple model backends are compatible (think Hugging Face Custom and Basic Hugging Face)
class model_backend(HFTorchInferenceModel):
def _initialize_model(self):
return
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
requested_parameters = super().get_requested_parameters(model_name, model_path, menu_path, parameters)
dependency_exists = importlib.util.find_spec("bitsandbytes")
if dependency_exists:
if model_name != 'customhuggingface' or "custom_model_name" in parameters:
requested_parameters.append({
"uitype": "toggle",
"unit": "bool",
"label": "Use 4-bit",
"id": "use_4_bit",
"default": False,
"tooltip": "Whether or not to use BnB's 4-bit mode",
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
else:
logger.warning("Bitsandbytes is not installed, you can not use Huggingface models in 4-bit")
return requested_parameters
def set_input_parameters(self, parameters):
super().set_input_parameters(parameters)
self.use_4_bit = parameters['use_4_bit']
def _load(self, save_model: bool, initial_load: bool) -> None:
utils.koboldai_vars.allowsp = True
# Make model path the same as the model name to make this consistent
# with the other loading method if it isn't a known model type. This
# code is not just a workaround for below, it is also used to make the
# behavior consistent with other loading methods - Henk717
# if utils.koboldai_vars.model not in ["NeoCustom", "GPT2Custom"]:
# utils.koboldai_vars.custmodpth = utils.koboldai_vars.model
if self.model_name == "NeoCustom":
self.model_name = os.path.basename(os.path.normpath(self.path))
utils.koboldai_vars.model = self.model_name
# If we specify a model and it's in the root directory, we need to move
# it to the models directory (legacy folder structure to new)
if self.get_local_model_path(legacy=True):
shutil.move(
self.get_local_model_path(legacy=True, ignore_existance=True),
self.get_local_model_path(ignore_existance=True),
)
self.init_model_config()
tf_kwargs = {
"low_cpu_mem_usage": True,
}
if self.use_4_bit:
self.lazy_load = False
tf_kwargs.update({
"load_in_4bit": True,
})
if self.model_type == "gpt2":
# We must disable low_cpu_mem_usage and if using a GPT-2 model
# because GPT-2 is not compatible with this feature yet.
tf_kwargs.pop("low_cpu_mem_usage", None)
# Also, lazy loader doesn't support GPT-2 models
self.lazy_load = False
logger.debug(
"lazy_load: {} hascuda: {} breakmodel: {} nobreakmode: {}".format(
self.lazy_load,
utils.koboldai_vars.hascuda,
self.breakmodel,
self.nobreakmodel,
)
)
# If we're using torch_lazy_loader, we need to get breakmodel config
# early so that it knows where to load the individual model tensors
if (
self.lazy_load
and utils.koboldai_vars.hascuda
and utils.koboldai_vars.breakmodel
and not utils.koboldai_vars.nobreakmodel
):
self.breakmodel_device_config(self.model_config)
if self.lazy_load:
# torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
tf_kwargs.pop("low_cpu_mem_usage", None)
# If we're using lazy loader, we need to figure out what the model's hidden layers are called
with lazy_loader.use_lazy_load(dematerialized_modules=True):
try:
metamodel = AutoModelForCausalLM.from_config(self.model_config)
utils.layers_module_names = utils.get_layers_module_names(metamodel)
utils.module_names = list(metamodel.state_dict().keys())
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
except Exception as e:
if utils.args.panic:
raise e
logger.warning(f"Gave up on lazy loading due to {e}")
self.lazy_load = False
# Download model from Huggingface if it does not exist, otherwise load locally
if self.get_local_model_path():
# Model is stored locally, load it.
self.model = self._get_model(self.get_local_model_path(), tf_kwargs)
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
else:
# Model not stored locally, we need to download it.
# _rebuild_tensor patch for casting dtype and supporting LazyTensors
old_rebuild_tensor = torch._utils._rebuild_tensor
def new_rebuild_tensor(
storage: Union[lazy_loader.LazyTensor, torch.Storage],
storage_offset,
shape,
stride,
):
if not isinstance(storage, lazy_loader.LazyTensor):
dtype = storage.dtype
else:
dtype = storage.storage_type.dtype
if not isinstance(dtype, torch.dtype):
dtype = storage.storage_type(0).dtype
if dtype is torch.float32 and len(shape) >= 2:
utils.koboldai_vars.fp32_model = True
return old_rebuild_tensor(storage, storage_offset, shape, stride)
torch._utils._rebuild_tensor = new_rebuild_tensor
self.model = self._get_model(self.model_name, tf_kwargs)
self.tokenizer = self._get_tokenizer(self.model_name)
torch._utils._rebuild_tensor = old_rebuild_tensor
if save_model:
self.tokenizer.save_pretrained(
self.get_local_model_path(ignore_existance=True)
)
if utils.koboldai_vars.fp32_model:
# Use save_pretrained to convert fp32 models to fp16,
# unless we are using disk cache because save_pretrained
# is not supported in that case
self.model = self.model.half()
self.model.save_pretrained(
self.get_local_model_path(ignore_existance=True),
max_shard_size="500MiB",
)
else:
# For fp16 models, we can just copy the model files directly
import transformers.configuration_utils
import transformers.modeling_utils
import transformers.file_utils
import huggingface_hub
# Save the config.json
shutil.move(
os.path.realpath(
huggingface_hub.hf_hub_download(
self.model_name,
transformers.configuration_utils.CONFIG_NAME,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
local_files_only=True,
legacy_cache_layout=False,
)
),
os.path.join(
self.get_local_model_path(ignore_existance=True),
transformers.configuration_utils.CONFIG_NAME,
),
)
if utils.num_shards is None:
# Save the pytorch_model.bin or model.safetensors of an unsharded model
any_success = False
possible_checkpoint_names = [
transformers.modeling_utils.WEIGHTS_NAME,
"model.safetensors",
]
for possible_checkpoint_name in possible_checkpoint_names:
try:
shutil.move(
os.path.realpath(
huggingface_hub.hf_hub_download(
self.model_name,
possible_checkpoint_name,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
local_files_only=True,
legacy_cache_layout=False,
)
),
os.path.join(
self.get_local_model_path(
ignore_existance=True
),
possible_checkpoint_name,
),
)
any_success = True
except Exception:
pass
if not any_success:
raise RuntimeError(
f"Couldn't find any of {possible_checkpoint_names} in cache for {self.model_name} @ '{utils.koboldai_vars.revisison}'"
)
else:
# Handle saving sharded models
with open(utils.from_pretrained_index_filename) as f:
map_data = json.load(f)
filenames = set(map_data["weight_map"].values())
# Save the pytorch_model.bin.index.json of a sharded model
shutil.move(
os.path.realpath(utils.from_pretrained_index_filename),
os.path.join(
self.get_local_model_path(ignore_existance=True),
transformers.modeling_utils.WEIGHTS_INDEX_NAME,
),
)
# Then save the pytorch_model-#####-of-#####.bin files
for filename in filenames:
shutil.move(
os.path.realpath(
huggingface_hub.hf_hub_download(
self.model_name,
filename,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
local_files_only=True,
legacy_cache_layout=False,
)
),
os.path.join(
self.get_local_model_path(ignore_existance=True),
filename,
),
)
shutil.rmtree("cache/")
self.patch_embedding()
self.model.kai_model = self
utils.koboldai_vars.modeldim = self.get_hidden_size()
def _save_settings(self):
with open(
"settings/{}.generic_hf_torch.model_backend.settings".format(
self.model_name.replace("/", "_")
),
"w",
) as f:
json.dump(
{
"layers": self.layers if "layers" in vars(self) else [],
"disk_layers": self.disk_layers
if "disk_layers" in vars(self)
else 0,
},
f,
indent="",
)