4384 lines
191 KiB
Python
4384 lines
191 KiB
Python
#!/usr/bin/python3
|
|
#==================================================================#
|
|
# KoboldAI
|
|
# Version: 1.16.4
|
|
# By: KoboldAIDev and the KoboldAI Community
|
|
#==================================================================#
|
|
|
|
# External packages
|
|
import eventlet
|
|
eventlet.monkey_patch(all=True, thread=False)
|
|
import os
|
|
os.system("")
|
|
os.environ['EVENTLET_THREADPOOL_SIZE'] = '50'
|
|
from eventlet import tpool
|
|
|
|
from os import path, getcwd
|
|
import re
|
|
import json
|
|
import collections
|
|
import zipfile
|
|
import packaging
|
|
import contextlib
|
|
import traceback
|
|
import threading
|
|
from typing import Any, Callable, TypeVar, Union, Dict, Set, List
|
|
|
|
import requests
|
|
import html
|
|
import argparse
|
|
import sys
|
|
import gc
|
|
|
|
import lupa
|
|
|
|
# KoboldAI
|
|
import fileops
|
|
import gensettings
|
|
from utils import debounce
|
|
import utils
|
|
import structures
|
|
|
|
|
|
if lupa.LUA_VERSION[:2] != (5, 4):
|
|
print(f"Please install lupa==1.10. You have lupa {lupa.__version__}.", file=sys.stderr)
|
|
|
|
|
|
#==================================================================#
|
|
# Variables & Storage
|
|
#==================================================================#
|
|
|
|
# Terminal tags for colored text
|
|
class colors:
|
|
PURPLE = '\033[95m'
|
|
BLUE = '\033[94m'
|
|
CYAN = '\033[96m'
|
|
GREEN = '\033[92m'
|
|
YELLOW = '\033[93m'
|
|
RED = '\033[91m'
|
|
END = '\033[0m'
|
|
UNDERLINE = '\033[4m'
|
|
|
|
# AI models
|
|
modellist = [
|
|
["Load a model from its directory", "NeoCustom", ""],
|
|
["Load an old GPT-2 model (eg CloverEdition)", "GPT2Custom", ""],
|
|
["Skein 6B (Hybrid)", "KoboldAI/GPT-J-6B-Skein", "12GB"],
|
|
["Adventure 6B", "KoboldAI/GPT-J-6B-Adventure", "12GB"],
|
|
["Lit 6B (NSFW)", "hakurei/lit-6B", "12GB"],
|
|
["C1 6B (Chatbot)", "hakurei/c1-6B", "12GB"],
|
|
["Picard 2.7B (Novel)", "KoboldAI/GPT-Neo-2.7B-Picard", "6GB"],
|
|
["Horni 2.7B (NSFW)", "KoboldAI/GPT-Neo-2.7B-Horni", "6GB"],
|
|
["Horni-LN 2.7B (Novel/NSFW)", "KoboldAI/GPT-Neo-2.7B-Horni-LN", "6GB"],
|
|
["Shinen 2.7B (NSFW)", "KoboldAI/GPT-Neo-2.7B-Shinen", "6GB"],
|
|
["GPT-J 6B", "EleutherAI/gpt-j-6B", "12GB"],
|
|
["GPT-Neo 2.7B", "EleutherAI/gpt-neo-2.7B", "6GB"],
|
|
["GPT-Neo 1.3B", "EleutherAI/gpt-neo-1.3B", "3GB"],
|
|
["GPT-2 XL", "gpt2-xl", "8GB"],
|
|
["GPT-2 Large", "gpt2-large", "4GB"],
|
|
["GPT-2 Med", "gpt2-medium", "2GB"],
|
|
["GPT-2", "gpt2", "1GB"],
|
|
["OpenAI API (requires API key)", "OAI", ""],
|
|
["InferKit API (requires API key)", "InferKit", ""],
|
|
["KoboldAI Server API (Old Google Colab)", "Colab", ""],
|
|
["Read Only (No AI)", "ReadOnly", ""]
|
|
]
|
|
|
|
# Variables
|
|
class vars:
|
|
lastact = "" # The last action received from the user
|
|
submission = "" # Same as above, but after applying input formatting
|
|
lastctx = "" # The last context submitted to the generator
|
|
model = "" # Model ID string chosen at startup
|
|
model_type = "" # Model Type (Automatically taken from the model config)
|
|
noai = False # Runs the script without starting up the transformers pipeline
|
|
aibusy = False # Stops submissions while the AI is working
|
|
max_length = 1024 # Maximum number of tokens to submit per action
|
|
ikmax = 3000 # Maximum number of characters to submit to InferKit
|
|
genamt = 80 # Amount of text for each action to generate
|
|
ikgen = 200 # Number of characters for InferKit to generate
|
|
rep_pen = 1.1 # Default generator repetition_penalty
|
|
temp = 0.5 # Default generator temperature
|
|
top_p = 0.9 # Default generator top_p
|
|
top_k = 0 # Default generator top_k
|
|
tfs = 1.0 # Default generator tfs (tail-free sampling)
|
|
numseqs = 1 # Number of sequences to ask the generator to create
|
|
gamestarted = False # Whether the game has started (disables UI elements)
|
|
serverstarted = False # Whether or not the Flask server has started
|
|
prompt = "" # Prompt
|
|
memory = "" # Text submitted to memory field
|
|
authornote = "" # Text submitted to Author's Note field
|
|
authornotetemplate = "[Author's note: <|>]" # Author's note template
|
|
setauthornotetemplate = authornotetemplate # Saved author's note template in settings
|
|
andepth = 3 # How far back in history to append author's note
|
|
actions = structures.KoboldStoryRegister() # Actions submitted by user and AI
|
|
worldinfo = [] # List of World Info key/value objects
|
|
worldinfo_i = [] # List of World Info key/value objects sans uninitialized entries
|
|
worldinfo_u = {} # Dictionary of World Info UID - key/value pairs
|
|
wifolders_d = {} # Dictionary of World Info folder UID-info pairs
|
|
wifolders_l = [] # List of World Info folder UIDs
|
|
wifolders_u = {} # Dictionary of pairs of folder UID - list of WI UID
|
|
lua_state = None # Lua state of the Lua scripting system
|
|
lua_koboldbridge = None # `koboldbridge` from bridge.lua
|
|
lua_kobold = None # `kobold` from` bridge.lua
|
|
lua_koboldcore = None # `koboldcore` from bridge.lua
|
|
lua_logname = ... # Name of previous userscript that logged to terminal
|
|
lua_running = False # Whether or not Lua is running (i.e. wasn't stopped due to an error)
|
|
lua_edited = set() # Set of chunk numbers that were edited from a Lua generation modifier
|
|
lua_deleted = set() # Set of chunk numbers that were deleted from a Lua generation modifier
|
|
generated_tkns = 0 # If using a backend that supports Lua generation modifiers, how many tokens have already been generated, otherwise 0
|
|
spfilename = "" # Filename of soft prompt to load, or an empty string if not using a soft prompt
|
|
userscripts = [] # List of userscripts to load
|
|
last_userscripts = [] # List of previous userscript filenames from the previous time userscripts were send via usstatitems
|
|
corescript = "default.lua" # Filename of corescript to load
|
|
# badwords = [] # Array of str/chr values that should be removed from output
|
|
badwordsids = [[13460], [6880], [50256], [42496], [4613], [17414], [22039], [16410], [27], [29], [38430], [37922], [15913], [24618], [28725], [58], [47175], [36937], [26700], [12878], [16471], [37981], [5218], [29795], [13412], [45160], [3693], [49778], [4211], [20598], [36475], [33409], [44167], [32406], [29847], [29342], [42669], [685], [25787], [7359], [3784], [5320], [33994], [33490], [34516], [43734], [17635], [24293], [9959], [23785], [21737], [28401], [18161], [26358], [32509], [1279], [38155], [18189], [26894], [6927], [14610], [23834], [11037], [14631], [26933], [46904], [22330], [25915], [47934], [38214], [1875], [14692], [41832], [13163], [25970], [29565], [44926], [19841], [37250], [49029], [9609], [44438], [16791], [17816], [30109], [41888], [47527], [42924], [23984], [49074], [33717], [31161], [49082], [30138], [31175], [12240], [14804], [7131], [26076], [33250], [3556], [38381], [36338], [32756], [46581], [17912], [49146]] # Tokenized array of badwords used to prevent AI artifacting
|
|
deletewi = None # Temporary storage for UID to delete
|
|
wirmvwhtsp = False # Whether to remove leading whitespace from WI entries
|
|
widepth = 3 # How many historical actions to scan for WI hits
|
|
mode = "play" # Whether the interface is in play, memory, or edit mode
|
|
editln = 0 # Which line was last selected in Edit Mode
|
|
gpu_device = 0 # Which PyTorch device to use when using pure GPU generation
|
|
url = "https://api.inferkit.com/v1/models/standard/generate" # InferKit API URL
|
|
oaiurl = "" # OpenAI API URL
|
|
oaiengines = "https://api.openai.com/v1/engines"
|
|
colaburl = "" # Ngrok url for Google Colab mode
|
|
apikey = "" # API key to use for InferKit API calls
|
|
oaiapikey = "" # API key to use for OpenAI API calls
|
|
savedir = getcwd()+"\stories"
|
|
hascuda = False # Whether torch has detected CUDA on the system
|
|
usegpu = False # Whether to launch pipeline with GPU support
|
|
custmodpth = "" # Filesystem location of custom model to run
|
|
formatoptns = {'frmttriminc': True, 'frmtrmblln': False, 'frmtrmspch': False, 'frmtadsnsp': False, 'singleline': False} # Container for state of formatting options
|
|
importnum = -1 # Selection on import popup list
|
|
importjs = {} # Temporary storage for import data
|
|
loadselect = "" # Temporary storage for story filename to load
|
|
spselect = "" # Temporary storage for soft prompt filename to load
|
|
spmeta = None # Metadata of current soft prompt, or None if not using a soft prompt
|
|
sp = None # Current soft prompt tensor (as a NumPy array)
|
|
sp_length = 0 # Length of current soft prompt in tokens, or 0 if not using a soft prompt
|
|
svowname = "" # Filename that was flagged for overwrite confirm
|
|
saveow = False # Whether or not overwrite confirm has been displayed
|
|
genseqs = [] # Temporary storage for generated sequences
|
|
recentback = False # Whether Back button was recently used without Submitting or Retrying after
|
|
recentrng = None # If a new random game was recently generated without Submitting after, this is the topic used (as a string), otherwise this is None
|
|
recentrngm = None # If a new random game was recently generated without Submitting after, this is the memory used (as a string), otherwise this is None
|
|
useprompt = False # Whether to send the full prompt with every submit action
|
|
breakmodel = False # For GPU users, whether to use both system RAM and VRAM to conserve VRAM while offering speedup compared to CPU-only
|
|
bmsupported = False # Whether the breakmodel option is supported (GPT-Neo/GPT-J only, currently)
|
|
smandelete = False # Whether stories can be deleted from inside the browser
|
|
smanrename = False # Whether stories can be renamed from inside the browser
|
|
allowsp = False # Whether we are allowed to use soft prompts (by default enabled if we're using GPT-2, GPT-Neo or GPT-J)
|
|
modeldim = -1 # Embedding dimension of your model (e.g. it's 4096 for GPT-J-6B and 2560 for GPT-Neo-2.7B)
|
|
laststory = None # Filename (without extension) of most recent story JSON file we loaded
|
|
regex_sl = re.compile(r'\n*(?<=.) *\n(.|\n)*') # Pattern for limiting the output to a single line
|
|
acregex_ai = re.compile(r'\n* *>(.|\n)*') # Pattern for matching adventure actions from the AI so we can remove them
|
|
acregex_ui = re.compile(r'^ *(>.*)$', re.MULTILINE) # Pattern for matching actions in the HTML-escaped story so we can apply colouring, etc (make sure to encase part to format in parentheses)
|
|
comregex_ai = re.compile(r'(?:\n<\|(?:.|\n)*?\|>(?=\n|$))|(?:<\|(?:.|\n)*?\|>\n?)') # Pattern for matching comments to remove them before sending them to the AI
|
|
comregex_ui = re.compile(r'(<\|(?:.|\n)*?\|>)') # Pattern for matching comments in the editor
|
|
chatmode = False
|
|
chatname = "You"
|
|
adventure = False
|
|
actionmode = 1
|
|
dynamicscan = False
|
|
remote = False
|
|
nopromptgen = False
|
|
rngpersist = False
|
|
|
|
#==================================================================#
|
|
# Function to get model selection at startup
|
|
#==================================================================#
|
|
def getModelSelection():
|
|
print(" # Model V/RAM\n =========================================")
|
|
i = 1
|
|
for m in modellist:
|
|
print(" {0} - {1}\t\t{2}".format("{:<2}".format(i), m[0].ljust(15), m[2]))
|
|
i += 1
|
|
print(" ");
|
|
modelsel = 0
|
|
vars.model = ''
|
|
while(vars.model == ''):
|
|
modelsel = input("Model #> ")
|
|
if(modelsel.isnumeric() and int(modelsel) > 0 and int(modelsel) <= len(modellist)):
|
|
vars.model = modellist[int(modelsel)-1][1]
|
|
else:
|
|
print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END))
|
|
|
|
# If custom model was selected, get the filesystem location and store it
|
|
if(vars.model == "NeoCustom" or vars.model == "GPT2Custom"):
|
|
print("{0}Please choose the folder where pytorch_model.bin is located:{1}\n".format(colors.CYAN, colors.END))
|
|
|
|
modpath = fileops.getdirpath(getcwd(), "Select Model Folder")
|
|
|
|
if(modpath):
|
|
# Save directory to vars
|
|
vars.custmodpth = modpath
|
|
else:
|
|
# Print error and retry model selection
|
|
print("{0}Model select cancelled!{1}".format(colors.RED, colors.END))
|
|
print("{0}Select an AI model to continue:{1}\n".format(colors.CYAN, colors.END))
|
|
getModelSelection()
|
|
|
|
#==================================================================#
|
|
# Return all keys in tokenizer dictionary containing char
|
|
#==================================================================#
|
|
def gettokenids(char):
|
|
keys = []
|
|
for key in vocab_keys:
|
|
if(key.find(char) != -1):
|
|
keys.append(key)
|
|
return keys
|
|
|
|
#==================================================================#
|
|
# Return Model Name
|
|
#==================================================================#
|
|
def getmodelname():
|
|
if(args.configname):
|
|
modelname = args.configname
|
|
return modelname
|
|
if(vars.model in ("NeoCustom", "GPT2Custom", "TPUMeshTransformerGPTJ")):
|
|
modelname = os.path.basename(os.path.normpath(vars.custmodpth))
|
|
return modelname
|
|
else:
|
|
modelname = vars.model
|
|
return modelname
|
|
|
|
#==================================================================#
|
|
# Breakmodel configuration functions
|
|
#==================================================================#
|
|
def device_list(n_layers, primary=None, selected=None):
|
|
device_count = torch.cuda.device_count()
|
|
if(device_count < 2):
|
|
primary = None
|
|
gpu_blocks = breakmodel.gpu_blocks + (device_count - len(breakmodel.gpu_blocks))*[0]
|
|
print(f"{colors.YELLOW} DEVICE ID | LAYERS | DEVICE NAME{colors.END}")
|
|
for i in range(device_count):
|
|
name = torch.cuda.get_device_name(i)
|
|
if(len(name) > 47):
|
|
name = "..." + name[-44:]
|
|
row_color = colors.END
|
|
sep_color = colors.YELLOW
|
|
print(f"{row_color}{colors.YELLOW + '->' + row_color if i == selected else ' '} {'(primary)' if i == primary else ' '*9} {i:3} {sep_color}|{row_color} {gpu_blocks[i]:3} {sep_color}|{row_color} {name}{colors.END}")
|
|
row_color = colors.END
|
|
sep_color = colors.YELLOW
|
|
print(f"{row_color} {' '*9} N/A {sep_color}|{row_color} {n_layers:3} {sep_color}|{row_color} (CPU){colors.END}")
|
|
|
|
def device_config(model):
|
|
global breakmodel, generator
|
|
import breakmodel
|
|
n_layers = model.config.num_layers if hasattr(model.config, "num_layers") else model.config.n_layer
|
|
if(args.breakmodel_gpulayers is not None):
|
|
try:
|
|
breakmodel.gpu_blocks = list(map(int, args.breakmodel_gpulayers.split(',')))
|
|
assert len(breakmodel.gpu_blocks) <= torch.cuda.device_count()
|
|
s = n_layers
|
|
for i in range(len(breakmodel.gpu_blocks)):
|
|
if(breakmodel.gpu_blocks[i] <= -1):
|
|
breakmodel.gpu_blocks[i] = s
|
|
break
|
|
else:
|
|
s -= breakmodel.gpu_blocks[i]
|
|
assert sum(breakmodel.gpu_blocks) <= n_layers
|
|
n_layers -= sum(breakmodel.gpu_blocks)
|
|
except:
|
|
print("WARNING: --layers is malformatted. Please use the --help option to see correct usage of --layers. Defaulting to all layers on device 0.", file=sys.stderr)
|
|
breakmodel.gpu_blocks = [n_layers]
|
|
n_layers = 0
|
|
elif(args.breakmodel_layers is not None):
|
|
breakmodel.gpu_blocks = [n_layers - max(0, min(n_layers, args.breakmodel_layers))]
|
|
n_layers -= sum(breakmodel.gpu_blocks)
|
|
elif(args.model is not None):
|
|
print("Breakmodel not specified, assuming GPU 0")
|
|
breakmodel.gpu_blocks = [n_layers]
|
|
n_layers = 0
|
|
else:
|
|
device_count = torch.cuda.device_count()
|
|
if(device_count > 1):
|
|
print(colors.CYAN + "\nPlease select one of your GPUs to be your primary GPU.")
|
|
print("VRAM usage in your primary GPU will be higher than for your other ones.")
|
|
print("It is recommended you make your fastest GPU your primary GPU.")
|
|
device_list(n_layers)
|
|
while(True):
|
|
primaryselect = input("device ID> ")
|
|
if(primaryselect.isnumeric() and 0 <= int(primaryselect) < device_count):
|
|
breakmodel.primary_device = int(primaryselect)
|
|
break
|
|
else:
|
|
print(f"{colors.RED}Please enter an integer between 0 and {device_count-1}.{colors.END}")
|
|
else:
|
|
breakmodel.primary_device = 0
|
|
|
|
print(colors.PURPLE + "\nIf you don't have enough VRAM to run the model on a single GPU")
|
|
print("you can split the model between your CPU and your GPU(s), or between")
|
|
print("multiple GPUs if you have more than one.")
|
|
print("By putting more 'layers' on a GPU or CPU, more computations will be")
|
|
print("done on that device and more VRAM or RAM will be required on that device")
|
|
print("(roughly proportional to number of layers).")
|
|
print("It should be noted that GPUs are orders of magnitude faster than the CPU.")
|
|
print(f"This model has{colors.YELLOW} {n_layers} {colors.PURPLE}layers.{colors.END}\n")
|
|
|
|
for i in range(device_count):
|
|
device_list(n_layers, primary=breakmodel.primary_device, selected=i)
|
|
print(f"{colors.CYAN}\nHow many of the remaining{colors.YELLOW} {n_layers} {colors.CYAN}layers would you like to put into device {i}?\nYou can also enter -1 to allocate all remaining layers to this device.{colors.END}\n")
|
|
while(True):
|
|
layerselect = input("# of layers> ")
|
|
if((layerselect.isnumeric() or layerselect.strip() == '-1') and -1 <= int(layerselect) <= n_layers):
|
|
layerselect = int(layerselect)
|
|
layerselect = n_layers if layerselect == -1 else layerselect
|
|
breakmodel.gpu_blocks.append(layerselect)
|
|
n_layers -= layerselect
|
|
break
|
|
else:
|
|
print(f"{colors.RED}Please enter an integer between -1 and {n_layers}.{colors.END}")
|
|
if(n_layers == 0):
|
|
break
|
|
|
|
print(colors.PURPLE + "\nFinal device configuration:")
|
|
device_list(n_layers)
|
|
|
|
# If all layers are on the same device, use the old GPU generation mode
|
|
while(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] == 0):
|
|
breakmodel.gpu_blocks.pop()
|
|
if(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] in (-1, model.config.num_layers if hasattr(model.config, "num_layers") else model.config.n_layer)):
|
|
vars.breakmodel = False
|
|
vars.usegpu = True
|
|
vars.gpu_device = len(breakmodel.gpu_blocks)-1
|
|
model = model.half().to(vars.gpu_device)
|
|
generator = model.generate
|
|
return
|
|
|
|
if(not breakmodel.gpu_blocks):
|
|
print("Nothing assigned to a GPU, reverting to CPU only mode")
|
|
vars.breakmodel = False
|
|
vars.usegpu = False
|
|
model = model.to('cpu').float()
|
|
generator = model.generate
|
|
return
|
|
model.half().to('cpu')
|
|
gc.collect()
|
|
model.transformer.wte.to(breakmodel.primary_device)
|
|
model.transformer.ln_f.to(breakmodel.primary_device)
|
|
if(hasattr(model, 'lm_head')):
|
|
model.lm_head.to(breakmodel.primary_device)
|
|
if(hasattr(model.transformer, 'wpe')):
|
|
model.transformer.wpe.to(breakmodel.primary_device)
|
|
gc.collect()
|
|
GPTNeoModel.forward = breakmodel.new_forward
|
|
if("GPTJModel" in globals()):
|
|
GPTJModel.forward = breakmodel.new_forward
|
|
generator = model.generate
|
|
breakmodel.move_hidden_layers(model.transformer)
|
|
|
|
#==================================================================#
|
|
# Startup
|
|
#==================================================================#
|
|
|
|
# Parsing Parameters
|
|
parser = argparse.ArgumentParser(description="KoboldAI Server")
|
|
parser.add_argument("--remote", action='store_true', help="Optimizes KoboldAI for Remote Play")
|
|
parser.add_argument("--ngrok", action='store_true', help="Optimizes KoboldAI for Remote Play using Ngrok")
|
|
parser.add_argument("--model", help="Specify the Model Type to skip the Menu")
|
|
parser.add_argument("--path", help="Specify the Path for local models (For model NeoCustom or GPT2Custom)")
|
|
parser.add_argument("--cpu", action='store_true', help="By default unattended launches are on the GPU use this option to force CPU usage.")
|
|
parser.add_argument("--breakmodel", action='store_true', help=argparse.SUPPRESS)
|
|
parser.add_argument("--breakmodel_layers", type=int, help=argparse.SUPPRESS)
|
|
parser.add_argument("--breakmodel_gpulayers", type=str, help="If using a model that supports hybrid generation, this is a comma-separated list that specifies how many layers to put on each GPU device. For example to put 8 layers on device 0, 9 layers on device 1 and 11 layers on device 2, use --layers 8,9,11")
|
|
parser.add_argument("--override_delete", action='store_true', help="Deleting stories from inside the browser is disabled if you are using --remote and enabled otherwise. Using this option will instead allow deleting stories if using --remote and prevent deleting stories otherwise.")
|
|
parser.add_argument("--override_rename", action='store_true', help="Renaming stories from inside the browser is disabled if you are using --remote and enabled otherwise. Using this option will instead allow renaming stories if using --remote and prevent renaming stories otherwise.")
|
|
parser.add_argument("--configname", help="Force a fixed configuration name to aid with config management.")
|
|
|
|
args: argparse.Namespace = None
|
|
if(os.environ.get("KOBOLDAI_ARGS") is not None):
|
|
import shlex
|
|
args = parser.parse_args(shlex.split(os.environ["KOBOLDAI_ARGS"]))
|
|
else:
|
|
args = parser.parse_args()
|
|
vars.model = args.model;
|
|
|
|
if args.remote:
|
|
vars.remote = True;
|
|
|
|
if args.ngrok:
|
|
vars.remote = True;
|
|
|
|
vars.smandelete = vars.remote == args.override_delete
|
|
vars.smanrename = vars.remote == args.override_rename
|
|
|
|
# Select a model to run
|
|
if args.model:
|
|
print("Welcome to KoboldAI!\nYou have selected the following Model:", vars.model)
|
|
if args.path:
|
|
print("You have selected the following path for your Model :", args.path)
|
|
vars.custmodpth = args.path;
|
|
vars.colaburl = args.path + "/request"; # Lets just use the same parameter to keep it simple
|
|
|
|
else:
|
|
print("{0}Welcome to the KoboldAI Server!\nSelect an AI model to continue:{1}\n".format(colors.CYAN, colors.END))
|
|
getModelSelection()
|
|
|
|
# If transformers model was selected & GPU available, ask to use CPU or GPU
|
|
if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransformerGPTJ"]):
|
|
vars.allowsp = True
|
|
# Test for GPU support
|
|
import torch
|
|
|
|
# Make model path the same as the model name to make this consistent with the other loading method if it isn't a known model type
|
|
# This code is not just a workaround for below, it is also used to make the behavior consistent with other loading methods - Henk717
|
|
if(not vars.model in ["NeoCustom", "GPT2Custom"]):
|
|
vars.custmodpth = vars.model
|
|
elif(vars.model == "NeoCustom"):
|
|
vars.model = os.path.basename(os.path.normpath(vars.custmodpth))
|
|
|
|
# Get the model_type from the config or assume a model type if it isn't present
|
|
from transformers import AutoConfig
|
|
if(os.path.isdir(vars.custmodpth.replace('/', '_'))):
|
|
try:
|
|
model_config = AutoConfig.from_pretrained(vars.custmodpth.replace('/', '_'), cache_dir="cache/")
|
|
vars.model_type = model_config.model_type
|
|
except ValueError as e:
|
|
vars.model_type = "not_found"
|
|
else:
|
|
try:
|
|
model_config = AutoConfig.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
|
vars.model_type = model_config.model_type
|
|
except ValueError as e:
|
|
vars.model_type = "not_found"
|
|
if(vars.model_type == "not_found" and vars.model == "NeoCustom"):
|
|
vars.model_type = "gpt_neo"
|
|
elif(vars.model_type == "not_found" and vars.model == "GPT2Custom"):
|
|
vars.model_type = "gpt2"
|
|
elif(vars.model_type == "not_found"):
|
|
print("WARNING: No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)")
|
|
vars.model_type = "gpt_neo"
|
|
print("{0}Looking for GPU support...{1}".format(colors.PURPLE, colors.END), end="")
|
|
vars.hascuda = torch.cuda.is_available()
|
|
vars.bmsupported = vars.model_type in ("gpt_neo", "gptj")
|
|
if(args.breakmodel is not None and args.breakmodel):
|
|
print("WARNING: --breakmodel is no longer supported. Breakmodel mode is now automatically enabled when --layers is used (see --help for details).", file=sys.stderr)
|
|
if(args.breakmodel_layers is not None):
|
|
print("WARNING: --breakmodel_layers is deprecated. Use --layers instead (see --help for details).", file=sys.stderr)
|
|
if(not vars.bmsupported and (args.breakmodel_gpulayers is not None or args.breakmodel_layers is not None)):
|
|
print("WARNING: This model does not support hybrid generation. --layers will be ignored.", file=sys.stderr)
|
|
if(vars.hascuda):
|
|
print("{0}FOUND!{1}".format(colors.GREEN, colors.END))
|
|
else:
|
|
print("{0}NOT FOUND!{1}".format(colors.YELLOW, colors.END))
|
|
|
|
if args.model:
|
|
if(vars.hascuda):
|
|
genselected = True
|
|
vars.usegpu = True
|
|
vars.breakmodel = False
|
|
if(vars.bmsupported):
|
|
vars.usegpu = False
|
|
vars.breakmodel = True
|
|
if(args.cpu):
|
|
vars.usegpu = False
|
|
vars.breakmodel = False
|
|
elif(vars.hascuda):
|
|
if(vars.bmsupported):
|
|
genselected = True
|
|
vars.usegpu = False
|
|
vars.breakmodel = True
|
|
else:
|
|
print(" 1 - GPU\n 2 - CPU\n")
|
|
genselected = False
|
|
else:
|
|
genselected = False
|
|
|
|
if(vars.hascuda):
|
|
while(genselected == False):
|
|
genselect = input("Mode> ")
|
|
if(genselect == ""):
|
|
vars.breakmodel = False
|
|
vars.usegpu = True
|
|
genselected = True
|
|
elif(genselect.isnumeric() and int(genselect) == 1):
|
|
if(vars.bmsupported):
|
|
vars.breakmodel = True
|
|
vars.usegpu = False
|
|
genselected = True
|
|
else:
|
|
vars.breakmodel = False
|
|
vars.usegpu = True
|
|
genselected = True
|
|
elif(genselect.isnumeric() and int(genselect) == 2):
|
|
vars.breakmodel = False
|
|
vars.usegpu = False
|
|
genselected = True
|
|
else:
|
|
print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END))
|
|
|
|
# Ask for API key if InferKit was selected
|
|
if(vars.model == "InferKit"):
|
|
if(not path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")):
|
|
# If the client settings file doesn't exist, create it
|
|
print("{0}Please enter your InferKit API key:{1}\n".format(colors.CYAN, colors.END))
|
|
vars.apikey = input("Key> ")
|
|
# Write API key to file
|
|
os.makedirs('settings', exist_ok=True)
|
|
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w")
|
|
try:
|
|
js = {"apikey": vars.apikey}
|
|
file.write(json.dumps(js, indent=3))
|
|
finally:
|
|
file.close()
|
|
else:
|
|
# Otherwise open it up
|
|
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r")
|
|
# Check if API key exists
|
|
js = json.load(file)
|
|
if("apikey" in js and js["apikey"] != ""):
|
|
# API key exists, grab it and close the file
|
|
vars.apikey = js["apikey"]
|
|
file.close()
|
|
else:
|
|
# Get API key, add it to settings object, and write it to disk
|
|
print("{0}Please enter your InferKit API key:{1}\n".format(colors.CYAN, colors.END))
|
|
vars.apikey = input("Key> ")
|
|
js["apikey"] = vars.apikey
|
|
# Write API key to file
|
|
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w")
|
|
try:
|
|
file.write(json.dumps(js, indent=3))
|
|
finally:
|
|
file.close()
|
|
|
|
# Ask for API key if OpenAI was selected
|
|
if(vars.model == "OAI"):
|
|
if(not path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")):
|
|
# If the client settings file doesn't exist, create it
|
|
print("{0}Please enter your OpenAI API key:{1}\n".format(colors.CYAN, colors.END))
|
|
vars.oaiapikey = input("Key> ")
|
|
# Write API key to file
|
|
os.makedirs('settings', exist_ok=True)
|
|
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w")
|
|
try:
|
|
js = {"oaiapikey": vars.oaiapikey}
|
|
file.write(json.dumps(js, indent=3))
|
|
finally:
|
|
file.close()
|
|
else:
|
|
# Otherwise open it up
|
|
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r")
|
|
# Check if API key exists
|
|
js = json.load(file)
|
|
if("oaiapikey" in js and js["oaiapikey"] != ""):
|
|
# API key exists, grab it and close the file
|
|
vars.oaiapikey = js["oaiapikey"]
|
|
file.close()
|
|
else:
|
|
# Get API key, add it to settings object, and write it to disk
|
|
print("{0}Please enter your OpenAI API key:{1}\n".format(colors.CYAN, colors.END))
|
|
vars.oaiapikey = input("Key> ")
|
|
js["oaiapikey"] = vars.oaiapikey
|
|
# Write API key to file
|
|
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w")
|
|
try:
|
|
file.write(json.dumps(js, indent=3))
|
|
finally:
|
|
file.close()
|
|
|
|
# Get list of models from OAI
|
|
print("{0}Retrieving engine list...{1}".format(colors.PURPLE, colors.END), end="")
|
|
req = requests.get(
|
|
vars.oaiengines,
|
|
headers = {
|
|
'Authorization': 'Bearer '+vars.oaiapikey
|
|
}
|
|
)
|
|
if(req.status_code == 200):
|
|
print("{0}OK!{1}".format(colors.GREEN, colors.END))
|
|
print("{0}Please select an engine to use:{1}\n".format(colors.CYAN, colors.END))
|
|
engines = req.json()["data"]
|
|
# Print list of engines
|
|
i = 0
|
|
for en in engines:
|
|
print(" {0} - {1} ({2})".format(i, en["id"], "\033[92mready\033[0m" if en["ready"] == True else "\033[91mnot ready\033[0m"))
|
|
i += 1
|
|
# Get engine to use
|
|
print("")
|
|
engselected = False
|
|
while(engselected == False):
|
|
engine = input("Engine #> ")
|
|
if(engine.isnumeric() and int(engine) < len(engines)):
|
|
vars.oaiurl = "https://api.openai.com/v1/engines/{0}/completions".format(engines[int(engine)]["id"])
|
|
engselected = True
|
|
else:
|
|
print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END))
|
|
else:
|
|
# Something went wrong, print the message and quit since we can't initialize an engine
|
|
print("{0}ERROR!{1}".format(colors.RED, colors.END))
|
|
print(req.json())
|
|
quit()
|
|
|
|
# Ask for ngrok url if Google Colab was selected
|
|
if(vars.model == "Colab"):
|
|
if(vars.colaburl == ""):
|
|
print("{0}NOTE: For the modern KoboldAI Colab's you open the links directly in your browser.\nThis option is only for the KoboldAI Server API, not all features are supported in this mode.\n".format(colors.YELLOW, colors.END))
|
|
print("{0}Enter the URL of the server (For example a trycloudflare link):{1}\n".format(colors.CYAN, colors.END))
|
|
vars.colaburl = input("URL> ") + "/request"
|
|
|
|
if(vars.model == "ReadOnly"):
|
|
vars.noai = True
|
|
|
|
# Set logging level to reduce chatter from Flask
|
|
import logging
|
|
log = logging.getLogger('werkzeug')
|
|
log.setLevel(logging.ERROR)
|
|
|
|
# Start flask & SocketIO
|
|
print("{0}Initializing Flask... {1}".format(colors.PURPLE, colors.END), end="")
|
|
from flask import Flask, render_template, Response, request
|
|
from flask_socketio import SocketIO, emit
|
|
app = Flask(__name__)
|
|
app.config['SECRET KEY'] = 'secret!'
|
|
socketio = SocketIO(app, async_method="eventlet")
|
|
print("{0}OK!{1}".format(colors.GREEN, colors.END))
|
|
|
|
# Start transformers and create pipeline
|
|
if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransformerGPTJ"]):
|
|
if(not vars.noai):
|
|
print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END))
|
|
from transformers import StoppingCriteria, GPT2TokenizerFast, GPT2LMHeadModel, GPTNeoForCausalLM, GPTNeoModel, AutoModelForCausalLM, AutoTokenizer
|
|
try:
|
|
from transformers import GPTJModel
|
|
except:
|
|
pass
|
|
import transformers.generation_utils
|
|
from transformers import __version__ as transformers_version
|
|
|
|
# Patch transformers to use our soft prompt
|
|
def patch_causallm(cls):
|
|
old_forward = cls.forward
|
|
def new_causallm_forward(self, *args, **kwargs):
|
|
input_ids = kwargs.get('input_ids').to(self.device)
|
|
assert input_ids is not None
|
|
kwargs['input_ids'] = None
|
|
if(vars.sp is not None):
|
|
shifted_input_ids = input_ids - self.config.vocab_size
|
|
input_ids.clamp_(max=self.config.vocab_size-1)
|
|
inputs_embeds = self.transformer.wte(input_ids)
|
|
if(vars.sp is not None):
|
|
vars.sp = vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device)
|
|
inputs_embeds = torch.where(
|
|
(shifted_input_ids >= 0)[..., None],
|
|
vars.sp[shifted_input_ids.clamp(min=0)],
|
|
inputs_embeds,
|
|
)
|
|
kwargs['inputs_embeds'] = inputs_embeds
|
|
return old_forward(self, *args, **kwargs)
|
|
cls.forward = new_causallm_forward
|
|
for cls in (GPT2LMHeadModel, GPTNeoForCausalLM):
|
|
patch_causallm(cls)
|
|
try:
|
|
from transformers import GPTJForCausalLM
|
|
patch_causallm(GPTJForCausalLM)
|
|
except:
|
|
pass
|
|
|
|
|
|
# Patch transformers to use our custom logit warpers
|
|
from transformers import LogitsProcessorList, LogitsWarper, LogitsProcessor, TopKLogitsWarper, TopPLogitsWarper, TemperatureLogitsWarper, RepetitionPenaltyLogitsProcessor
|
|
|
|
def dynamic_processor_wrap(cls, field_name, var_name, cond=None):
|
|
old_call = cls.__call__
|
|
def new_call(self, *args, **kwargs):
|
|
setattr(self, field_name, getattr(vars, var_name))
|
|
assert len(args) == 2
|
|
if(cond is None or cond(getattr(vars, var_name))):
|
|
return old_call(self, *args, **kwargs)
|
|
return args[1]
|
|
cls.__call__ = new_call
|
|
dynamic_processor_wrap(RepetitionPenaltyLogitsProcessor, "penalty", "rep_pen", cond=lambda x: x != 1.0)
|
|
dynamic_processor_wrap(TopKLogitsWarper, "top_k", "top_k", cond=lambda x: x > 0)
|
|
dynamic_processor_wrap(TopPLogitsWarper, "top_p", "top_p", cond=lambda x: x < 1.0)
|
|
dynamic_processor_wrap(TemperatureLogitsWarper, "temperature", "temp", cond=lambda x: x != 1.0)
|
|
|
|
class TailFreeLogitsWarper(LogitsWarper):
|
|
|
|
def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
|
tfs = float(tfs)
|
|
if tfs < 0 or tfs > 1.0:
|
|
raise ValueError(f"`tfs` has to be a float > 0 and < 1, but is {tfs}")
|
|
self.tfs = tfs
|
|
self.filter_value = filter_value
|
|
self.min_tokens_to_keep = min_tokens_to_keep
|
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
|
self.tfs = vars.tfs
|
|
|
|
if self.filter_value >= 1.0:
|
|
return scores
|
|
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
|
|
probs = sorted_logits.softmax(dim=-1)
|
|
|
|
# Compute second derivative normalized CDF
|
|
d2 = probs.diff().diff().abs()
|
|
normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True)
|
|
normalized_d2_cdf = normalized_d2.cumsum(dim=-1)
|
|
|
|
# Remove tokens with CDF value above the threshold (token with 0 are kept)
|
|
sorted_indices_to_remove = normalized_d2_cdf > self.tfs
|
|
|
|
# Centre the distribution around the cutoff as in the original implementation of the algorithm
|
|
sorted_indices_to_remove = torch.cat(
|
|
(
|
|
torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
|
|
sorted_indices_to_remove,
|
|
torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
|
|
),
|
|
dim=-1,
|
|
)
|
|
|
|
if self.min_tokens_to_keep > 1:
|
|
# Keep at least min_tokens_to_keep
|
|
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
|
scores = scores.masked_fill(indices_to_remove, self.filter_value)
|
|
return scores
|
|
|
|
class LuaLogitsProcessor(LogitsProcessor):
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
|
assert scores.ndim == 2
|
|
assert input_ids.ndim == 2
|
|
self.regeneration_required = False
|
|
self.halt = False
|
|
|
|
scores_shape = scores.shape
|
|
scores_list = scores.tolist()
|
|
vars.lua_koboldbridge.logits = vars.lua_state.table()
|
|
for r, row in enumerate(scores_list):
|
|
vars.lua_koboldbridge.logits[r+1] = vars.lua_state.table(*row)
|
|
vars.lua_koboldbridge.vocab_size = scores_shape[-1]
|
|
|
|
execute_genmod()
|
|
|
|
scores = torch.tensor(
|
|
tuple(tuple(row.values()) for row in vars.lua_koboldbridge.logits.values()),
|
|
device=scores.device,
|
|
dtype=scores.dtype,
|
|
)
|
|
assert scores.shape == scores_shape
|
|
|
|
return scores
|
|
|
|
def new_get_logits_processor(*args, **kwargs) -> LogitsProcessorList:
|
|
processors = new_get_logits_processor.old_get_logits_processor(*args, **kwargs)
|
|
processors.insert(0, LuaLogitsProcessor())
|
|
return processors
|
|
new_get_logits_processor.old_get_logits_processor = transformers.generation_utils.GenerationMixin._get_logits_processor
|
|
transformers.generation_utils.GenerationMixin._get_logits_processor = new_get_logits_processor
|
|
|
|
def new_get_logits_warper(beams: int = 1,) -> LogitsProcessorList:
|
|
warper_list = LogitsProcessorList()
|
|
warper_list.append(TopKLogitsWarper(top_k=1, min_tokens_to_keep=1 + (beams > 1)))
|
|
warper_list.append(TopPLogitsWarper(top_p=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
|
warper_list.append(TailFreeLogitsWarper(tfs=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
|
warper_list.append(TemperatureLogitsWarper(temperature=0.5))
|
|
return warper_list
|
|
|
|
def new_sample(self, *args, **kwargs):
|
|
assert kwargs.pop("logits_warper", None) is not None
|
|
kwargs["logits_warper"] = new_get_logits_warper(
|
|
beams=1,
|
|
)
|
|
return new_sample.old_sample(self, *args, **kwargs)
|
|
new_sample.old_sample = transformers.generation_utils.GenerationMixin.sample
|
|
transformers.generation_utils.GenerationMixin.sample = new_sample
|
|
|
|
|
|
# Allow bad words filter to ban <|endoftext|> token
|
|
import transformers.generation_logits_process
|
|
def new_init(self, bad_words_ids: List[List[int]], eos_token_id: int):
|
|
return new_init.old_init(self, bad_words_ids, -1)
|
|
new_init.old_init = transformers.generation_logits_process.NoBadWordsLogitsProcessor.__init__
|
|
transformers.generation_logits_process.NoBadWordsLogitsProcessor.__init__ = new_init
|
|
|
|
|
|
# Sets up dynamic world info scanner
|
|
class DynamicWorldInfoScanCriteria(StoppingCriteria):
|
|
def __init__(
|
|
self,
|
|
tokenizer,
|
|
excluded_world_info: List[Set],
|
|
head_length: int,
|
|
):
|
|
self.regeneration_required = False
|
|
self.halt = False
|
|
self.tokenizer = tokenizer
|
|
self.excluded_world_info = excluded_world_info
|
|
self.head_length = head_length
|
|
def __call__(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
scores: torch.FloatTensor,
|
|
**kwargs,
|
|
) -> bool:
|
|
vars.generated_tkns += 1
|
|
if(vars.lua_koboldbridge.generated_cols and vars.generated_tkns != vars.lua_koboldbridge.generated_cols):
|
|
raise RuntimeError(f"Inconsistency detected between KoboldAI Python and Lua backends ({vars.generated_tkns} != {vars.lua_koboldbridge.generated_cols})")
|
|
if(vars.generated_tkns >= vars.genamt):
|
|
self.regeneration_required = False
|
|
self.halt = False
|
|
return True
|
|
|
|
assert input_ids.ndim == 2
|
|
assert len(self.excluded_world_info) == input_ids.shape[0]
|
|
self.regeneration_required = vars.lua_koboldbridge.regeneration_required
|
|
self.halt = not vars.lua_koboldbridge.generating
|
|
vars.lua_koboldbridge.regeneration_required = False
|
|
|
|
for i in range(vars.numseqs):
|
|
vars.lua_koboldbridge.generated[i+1][vars.generated_tkns] = int(input_ids[i, -1].item())
|
|
|
|
if(not vars.dynamicscan):
|
|
return self.regeneration_required or self.halt
|
|
tail = input_ids[..., self.head_length:]
|
|
for i, t in enumerate(tail):
|
|
decoded = tokenizer.decode(t)
|
|
_, found = checkworldinfo(decoded, force_use_txt=True)
|
|
found -= self.excluded_world_info[i]
|
|
if(len(found) != 0):
|
|
self.regeneration_required = True
|
|
break
|
|
return self.regeneration_required or self.halt
|
|
old_get_stopping_criteria = transformers.generation_utils.GenerationMixin._get_stopping_criteria
|
|
def new_get_stopping_criteria(self, *args, **kwargs):
|
|
stopping_criteria = old_get_stopping_criteria(self, *args, **kwargs)
|
|
global tokenizer
|
|
self.kai_scanner = DynamicWorldInfoScanCriteria(
|
|
tokenizer=tokenizer,
|
|
excluded_world_info=self.kai_scanner_excluded_world_info,
|
|
head_length=self.kai_scanner_head_length,
|
|
)
|
|
stopping_criteria.insert(0, self.kai_scanner)
|
|
return stopping_criteria
|
|
transformers.generation_utils.GenerationMixin._get_stopping_criteria = new_get_stopping_criteria
|
|
|
|
def get_hidden_size_from_model(model):
|
|
try:
|
|
return int(model.transformer.hidden_size)
|
|
except:
|
|
try:
|
|
return int(model.transformer.embed_dim)
|
|
except:
|
|
return int(model.lm_head.in_features)
|
|
|
|
def maybe_low_cpu_mem_usage() -> Dict[str, Any]:
|
|
if(packaging.version.parse(transformers_version) < packaging.version.parse("4.11.0")):
|
|
print(f"\nWARNING: Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.", file=sys.stderr)
|
|
return {}
|
|
return {"low_cpu_mem_usage": True}
|
|
|
|
@contextlib.contextmanager
|
|
def maybe_use_float16(always_use=False):
|
|
if(always_use or (vars.hascuda and (vars.usegpu or vars.breakmodel))):
|
|
original_dtype = torch.get_default_dtype()
|
|
torch.set_default_dtype(torch.float16)
|
|
yield True
|
|
torch.set_default_dtype(original_dtype)
|
|
else:
|
|
yield False
|
|
|
|
# If custom GPT2 model was chosen
|
|
if(vars.model == "GPT2Custom"):
|
|
model_config = open(vars.custmodpth + "/config.json", "r")
|
|
js = json.load(model_config)
|
|
with(maybe_use_float16()):
|
|
model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
|
tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
|
vars.modeldim = get_hidden_size_from_model(model)
|
|
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
|
if(vars.hascuda and vars.usegpu):
|
|
model = model.half().to(vars.gpu_device)
|
|
generator = model.generate
|
|
else:
|
|
model = model.to('cpu').float()
|
|
generator = model.generate
|
|
# Use the Generic implementation
|
|
else:
|
|
lowmem = maybe_low_cpu_mem_usage()
|
|
# We must disable low_cpu_mem_usage (by setting lowmem to {}) if
|
|
# using a GPT-2 model because GPT-2 is not compatible with this
|
|
# feature yet
|
|
if("/" not in vars.model and vars.model.lower().startswith("gpt2")):
|
|
lowmem = {}
|
|
|
|
# Download model from Huggingface if it does not exist, otherwise load locally
|
|
if(os.path.isdir(vars.custmodpth)):
|
|
with(maybe_use_float16()):
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
|
except ValueError as e:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
|
try:
|
|
model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **lowmem)
|
|
except ValueError as e:
|
|
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **lowmem)
|
|
elif(os.path.isdir(vars.model.replace('/', '_'))):
|
|
with(maybe_use_float16()):
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/")
|
|
except ValueError as e:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/")
|
|
try:
|
|
model = AutoModelForCausalLM.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/", **lowmem)
|
|
except ValueError as e:
|
|
model = GPTNeoForCausalLM.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/", **lowmem)
|
|
else:
|
|
print("Model does not exist locally, attempting to download from Huggingface...")
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(vars.model, cache_dir="cache/")
|
|
except ValueError as e:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained(vars.model, cache_dir="cache/")
|
|
with(maybe_use_float16()):
|
|
try:
|
|
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **lowmem)
|
|
except ValueError as e:
|
|
model = GPTNeoForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **lowmem)
|
|
model = model.half()
|
|
import shutil
|
|
shutil.rmtree("cache/")
|
|
model.save_pretrained(vars.model.replace('/', '_'))
|
|
tokenizer.save_pretrained(vars.model.replace('/', '_'))
|
|
|
|
if(vars.hascuda):
|
|
if(vars.usegpu):
|
|
vars.modeldim = get_hidden_size_from_model(model)
|
|
model = model.half().to(vars.gpu_device)
|
|
generator = model.generate
|
|
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
|
|
vars.modeldim = get_hidden_size_from_model(model)
|
|
device_config(model)
|
|
else:
|
|
model = model.to('cpu').float()
|
|
vars.modeldim = get_hidden_size_from_model(model)
|
|
generator = model.generate
|
|
else:
|
|
model.to('cpu').float()
|
|
vars.modeldim = get_hidden_size_from_model(model)
|
|
generator = model.generate
|
|
|
|
# Suppress Author's Note by flagging square brackets (Old implementation)
|
|
#vocab = tokenizer.get_vocab()
|
|
#vocab_keys = vocab.keys()
|
|
#vars.badwords = gettokenids("[")
|
|
#for key in vars.badwords:
|
|
# vars.badwordsids.append([vocab[key]])
|
|
|
|
print("{0}OK! {1} pipeline created!{2}".format(colors.GREEN, vars.model, colors.END))
|
|
|
|
else:
|
|
from transformers import GPT2TokenizerFast
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/")
|
|
else:
|
|
def tpumtjgetsofttokens():
|
|
soft_tokens = None
|
|
if(vars.sp is None):
|
|
global np
|
|
if 'np' not in globals():
|
|
import numpy as np
|
|
tensor = np.zeros((1, tpu_mtj_backend.params["d_model"]), dtype=np.float32)
|
|
rows = tensor.shape[0]
|
|
padding_amount = tpu_mtj_backend.params["seq"] - (tpu_mtj_backend.params["seq"] % -tpu_mtj_backend.params["cores_per_replica"]) - rows
|
|
tensor = np.pad(tensor, ((0, padding_amount), (0, 0)))
|
|
tensor = tensor.reshape(
|
|
tpu_mtj_backend.params["cores_per_replica"],
|
|
-1,
|
|
tpu_mtj_backend.params["d_model"],
|
|
)
|
|
vars.sp = tensor
|
|
soft_tokens = np.arange(
|
|
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"],
|
|
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"] + vars.sp_length,
|
|
dtype=np.uint32
|
|
)
|
|
return soft_tokens
|
|
|
|
# If we're running Colab or OAI, we still need a tokenizer.
|
|
if(vars.model == "Colab"):
|
|
from transformers import GPT2TokenizerFast
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("EleutherAI/gpt-neo-2.7B", cache_dir="cache/")
|
|
elif(vars.model == "OAI"):
|
|
from transformers import GPT2TokenizerFast
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/")
|
|
# Load the TPU backend if requested
|
|
elif(vars.model == "TPUMeshTransformerGPTJ"):
|
|
print("{0}Initializing Mesh Transformer JAX, please wait...{1}".format(colors.PURPLE, colors.END))
|
|
assert vars.model == "TPUMeshTransformerGPTJ" and vars.custmodpth and os.path.isdir(vars.custmodpth)
|
|
import tpu_mtj_backend
|
|
tpu_mtj_backend.load_model(vars.custmodpth)
|
|
vars.allowsp = True
|
|
vars.modeldim = int(tpu_mtj_backend.params["d_model"])
|
|
tokenizer = tpu_mtj_backend.tokenizer
|
|
soft_tokens = tpumtjgetsofttokens()
|
|
threading.Thread( # Compile backend code in background
|
|
target=tpu_mtj_backend.infer,
|
|
args=(np.uint32((23403, 727, 20185)),),
|
|
kwargs={
|
|
"soft_embeddings": vars.sp,
|
|
"soft_tokens": soft_tokens,
|
|
"gen_len": 1,
|
|
"numseqs": vars.numseqs,
|
|
},
|
|
).start()
|
|
|
|
# Set up Flask routes
|
|
@app.route('/')
|
|
@app.route('/index')
|
|
def index():
|
|
return render_template('index.html')
|
|
@app.route('/download')
|
|
def download():
|
|
save_format = request.args.get("format", "json").strip().lower()
|
|
|
|
if(save_format == "plaintext"):
|
|
txt = vars.prompt + "".join(vars.actions.values())
|
|
save = Response(txt)
|
|
filename = path.basename(vars.savedir)
|
|
if filename[-5:] == ".json":
|
|
filename = filename[:-5]
|
|
save.headers.set('Content-Disposition', 'attachment', filename='%s.txt' % filename)
|
|
return(save)
|
|
|
|
# Build json to write
|
|
js = {}
|
|
js["gamestarted"] = vars.gamestarted
|
|
js["prompt"] = vars.prompt
|
|
js["memory"] = vars.memory
|
|
js["authorsnote"] = vars.authornote
|
|
js["anotetemplate"] = vars.authornotetemplate
|
|
js["actions"] = tuple(vars.actions.values())
|
|
js["worldinfo"] = []
|
|
|
|
# Extract only the important bits of WI
|
|
for wi in vars.worldinfo:
|
|
if(wi["constant"] or wi["key"] != ""):
|
|
js["worldinfo"].append({
|
|
"key": wi["key"],
|
|
"keysecondary": wi["keysecondary"],
|
|
"content": wi["content"],
|
|
"comment": wi["comment"],
|
|
"folder": wi["folder"],
|
|
"selective": wi["selective"],
|
|
"constant": wi["constant"]
|
|
})
|
|
|
|
save = Response(json.dumps(js, indent=3))
|
|
filename = path.basename(vars.savedir)
|
|
if filename[-5:] == ".json":
|
|
filename = filename[:-5]
|
|
save.headers.set('Content-Disposition', 'attachment', filename='%s.json' % filename)
|
|
return(save)
|
|
|
|
|
|
#============================ LUA API =============================#
|
|
|
|
if(path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")):
|
|
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r")
|
|
js = json.load(file)
|
|
if("userscripts" in js):
|
|
vars.userscripts = []
|
|
for userscript in js["userscripts"]:
|
|
if type(userscript) is not str:
|
|
continue
|
|
userscript = userscript.strip()
|
|
if len(userscript) != 0 and all(q not in userscript for q in ("..", ":")) and all(userscript[0] not in q for q in ("/", "\\")) and os.path.exists(fileops.uspath(userscript)):
|
|
vars.userscripts.append(userscript)
|
|
if("corescript" in js and type(js["corescript"]) is str and all(q not in js["corescript"] for q in ("..", ":")) and all(js["corescript"][0] not in q for q in ("/", "\\"))):
|
|
vars.corescript = js["corescript"]
|
|
else:
|
|
vars.corescript = "default.lua"
|
|
file.close()
|
|
|
|
def lua_log_format_name(name):
|
|
return f"[{name}]" if type(name) is str else "CORE"
|
|
|
|
_bridged = {}
|
|
F = TypeVar("F", bound=Callable)
|
|
def bridged_kwarg(name=None):
|
|
def _bridged_kwarg(f: F):
|
|
_bridged[name if name is not None else f.__name__[4:] if f.__name__[:4] == "lua_" else f.__name__] = f
|
|
return f
|
|
return _bridged_kwarg
|
|
|
|
#==================================================================#
|
|
# Event triggered when a userscript is loaded
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def load_callback(filename, modulename):
|
|
print(colors.GREEN + f"Loading Userscript [{modulename}] <{filename}>" + colors.END)
|
|
|
|
#==================================================================#
|
|
# Load all Lua scripts
|
|
#==================================================================#
|
|
def load_lua_scripts():
|
|
print(colors.GREEN + "Loading Core Script" + colors.END)
|
|
|
|
filenames = []
|
|
modulenames = []
|
|
descriptions = []
|
|
|
|
lst = fileops.getusfiles(long_desc=True)
|
|
filenames_dict = {ob["filename"]: i for i, ob in enumerate(lst)}
|
|
|
|
for filename in vars.userscripts:
|
|
if filename in filenames_dict:
|
|
i = filenames_dict[filename]
|
|
filenames.append(filename)
|
|
modulenames.append(lst[i]["modulename"])
|
|
descriptions.append(lst[i]["description"])
|
|
|
|
try:
|
|
vars.lua_koboldbridge.obliterate_multiverse()
|
|
tpool.execute(vars.lua_koboldbridge.load_corescript, vars.corescript)
|
|
tpool.execute(vars.lua_koboldbridge.load_userscripts, filenames, modulenames, descriptions)
|
|
vars.lua_running = True
|
|
except lupa.LuaError as e:
|
|
vars.lua_koboldbridge.obliterate_multiverse()
|
|
vars.lua_running = False
|
|
if(vars.serverstarted):
|
|
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error, please check console.'}, broadcast=True)
|
|
sendUSStatItems()
|
|
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
|
|
if(vars.serverstarted):
|
|
set_aibusy(0)
|
|
|
|
#==================================================================#
|
|
# Print message that originates from the userscript with the given name
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_print(msg):
|
|
if(vars.lua_logname != vars.lua_koboldbridge.logging_name):
|
|
vars.lua_logname = vars.lua_koboldbridge.logging_name
|
|
print(colors.BLUE + lua_log_format_name(vars.lua_logname) + ":" + colors.END, file=sys.stderr)
|
|
print(colors.PURPLE + msg.replace("\033", "") + colors.END)
|
|
|
|
#==================================================================#
|
|
# Print warning that originates from the userscript with the given name
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_warn(msg):
|
|
if(vars.lua_logname != vars.lua_koboldbridge.logging_name):
|
|
vars.lua_logname = vars.lua_koboldbridge.logging_name
|
|
print(colors.BLUE + lua_log_format_name(vars.lua_logname) + ":" + colors.END, file=sys.stderr)
|
|
print(colors.YELLOW + msg.replace("\033", "") + colors.END)
|
|
|
|
#==================================================================#
|
|
# Decode tokens into a string using current tokenizer
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_decode(tokens):
|
|
tokens = list(tokens.values())
|
|
assert type(tokens) is list
|
|
if("tokenizer" not in globals()):
|
|
from transformers import GPT2TokenizerFast
|
|
global tokenizer
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/")
|
|
return tokenizer.decode(tokens)
|
|
|
|
#==================================================================#
|
|
# Encode string into list of token IDs using current tokenizer
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_encode(string):
|
|
assert type(string) is str
|
|
if("tokenizer" not in globals()):
|
|
from transformers import GPT2TokenizerFast
|
|
global tokenizer
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/")
|
|
return tokenizer.encode(string, max_length=int(4e9), truncation=True)
|
|
|
|
#==================================================================#
|
|
# Computes context given a submission, Lua array of entry UIDs and a Lua array
|
|
# of folder UIDs
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_compute_context(submission, entries, folders, kwargs):
|
|
assert type(submission) is str
|
|
if(kwargs is None):
|
|
kwargs = vars.lua_state.table()
|
|
actions = vars._actions if vars.lua_koboldbridge.userstate == "genmod" else vars.actions
|
|
allowed_entries = None
|
|
allowed_folders = None
|
|
if(entries is not None):
|
|
allowed_entries = set()
|
|
i = 1
|
|
while(entries[i] is not None):
|
|
allowed_entries.add(int(entries[i]))
|
|
i += 1
|
|
if(folders is not None):
|
|
allowed_folders = set()
|
|
i = 1
|
|
while(folders[i] is not None):
|
|
allowed_folders.add(int(folders[i]))
|
|
i += 1
|
|
winfo, mem, anotetxt, _ = calcsubmitbudgetheader(
|
|
submission,
|
|
allowed_entries=allowed_entries,
|
|
allowed_folders=allowed_folders,
|
|
force_use_txt=True,
|
|
scan_story=kwargs["scan_story"] if kwargs["scan_story"] != None else True,
|
|
)
|
|
txt, _, _ = calcsubmitbudget(
|
|
len(actions),
|
|
winfo,
|
|
mem,
|
|
anotetxt,
|
|
actions,
|
|
)
|
|
return tokenizer.decode(txt)
|
|
|
|
#==================================================================#
|
|
# Get property of a world info entry given its UID and property name
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_get_attr(uid, k):
|
|
assert type(uid) is int and type(k) is str
|
|
if(uid in vars.worldinfo_u and k in (
|
|
"key",
|
|
"keysecondary",
|
|
"content",
|
|
"comment",
|
|
"folder",
|
|
"num",
|
|
"selective",
|
|
"constant",
|
|
"uid",
|
|
)):
|
|
return vars.worldinfo_u[uid][k]
|
|
|
|
#==================================================================#
|
|
# Set property of a world info entry given its UID, property name and new value
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_set_attr(uid, k, v):
|
|
assert type(uid) is int and type(k) is str
|
|
assert uid in vars.worldinfo_u and k in (
|
|
"key",
|
|
"keysecondary",
|
|
"content",
|
|
"comment",
|
|
"selective",
|
|
"constant",
|
|
)
|
|
if(type(vars.worldinfo_u[uid][k]) is int and type(v) is float):
|
|
v = int(v)
|
|
assert type(vars.worldinfo_u[uid][k]) is type(v)
|
|
vars.worldinfo_u[uid][k] = v
|
|
print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set {k} of world info entry {uid} to {v}" + colors.END)
|
|
|
|
#==================================================================#
|
|
# Get property of a world info folder given its UID and property name
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_folder_get_attr(uid, k):
|
|
assert type(uid) is int and type(k) is str
|
|
if(uid in vars.wifolders_d and k in (
|
|
"name",
|
|
)):
|
|
return vars.wifolders_d[uid][k]
|
|
|
|
#==================================================================#
|
|
# Set property of a world info folder given its UID, property name and new value
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_folder_set_attr(uid, k, v):
|
|
assert type(uid) is int and type(k) is str
|
|
assert uid in vars.wifolders_d and k in (
|
|
"name",
|
|
)
|
|
if(type(vars.wifolders_d[uid][k]) is int and type(v) is float):
|
|
v = int(v)
|
|
assert type(vars.wifolders_d[uid][k]) is type(v)
|
|
vars.wifolders_d[uid][k] = v
|
|
print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set {k} of world info folder {uid} to {v}" + colors.END)
|
|
|
|
#==================================================================#
|
|
# Get the "Amount to Generate"
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_get_genamt():
|
|
return vars.genamt
|
|
|
|
#==================================================================#
|
|
# Set the "Amount to Generate"
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_set_genamt(genamt):
|
|
assert vars.lua_koboldbridge.userstate != "genmod" and type(genamt) in (int, float) and genamt >= 0
|
|
print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set genamt to {int(genamt)}" + colors.END)
|
|
vars.genamt = int(genamt)
|
|
|
|
#==================================================================#
|
|
# Get the "Gens Per Action"
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_get_numseqs():
|
|
return vars.numseqs
|
|
|
|
#==================================================================#
|
|
# Set the "Gens Per Action"
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_set_numseqs(numseqs):
|
|
assert type(numseqs) in (int, float) and numseqs >= 1
|
|
print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set numseqs to {int(numseqs)}" + colors.END)
|
|
vars.numseqs = int(numseqs)
|
|
|
|
#==================================================================#
|
|
# Check if a setting exists with the given name
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_has_setting(setting):
|
|
return setting in (
|
|
"anotedepth",
|
|
"settemp",
|
|
"settopp",
|
|
"settopk",
|
|
"settfs",
|
|
"setreppen",
|
|
"settknmax",
|
|
"setwidepth",
|
|
"setuseprompt",
|
|
"setadventure",
|
|
"setchatmode",
|
|
"setdynamicscan",
|
|
"setnopromptgen",
|
|
"setrngpersist",
|
|
"temp",
|
|
"topp",
|
|
"top_p",
|
|
"topk",
|
|
"top_k",
|
|
"tfs",
|
|
"reppen",
|
|
"tknmax",
|
|
"widepth",
|
|
"useprompt",
|
|
"chatmode",
|
|
"chatname",
|
|
"adventure",
|
|
"dynamicscan",
|
|
"nopromptgen",
|
|
"rngpersist",
|
|
"frmttriminc",
|
|
"frmtrmblln",
|
|
"frmtrmspch",
|
|
"frmtadsnsp",
|
|
"frmtsingleline",
|
|
"triminc",
|
|
"rmblln",
|
|
"rmspch",
|
|
"adsnsp",
|
|
"singleline",
|
|
)
|
|
|
|
#==================================================================#
|
|
# Return the setting with the given name if it exists
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_get_setting(setting):
|
|
if(setting in ("settemp", "temp")): return vars.temp
|
|
if(setting in ("settopp", "topp", "top_p")): return vars.top_p
|
|
if(setting in ("settopk", "topk", "top_k")): return vars.top_k
|
|
if(setting in ("settfs", "tfs")): return vars.tfs
|
|
if(setting in ("setreppen", "reppen")): return vars.rep_pen
|
|
if(setting in ("settknmax", "tknmax")): return vars.max_length
|
|
if(setting == "anotedepth"): return vars.andepth
|
|
if(setting in ("setwidepth", "widepth")): return vars.widepth
|
|
if(setting in ("setuseprompt", "useprompt")): return vars.useprompt
|
|
if(setting in ("setadventure", "adventure")): return vars.adventure
|
|
if(setting in ("setchatmode", "chatmode")): return vars.chatmode
|
|
if(setting in ("setdynamicscan", "dynamicscan")): return vars.dynamicscan
|
|
if(setting in ("setnopromptgen", "nopromptgen")): return vars.nopromptgen
|
|
if(setting in ("setrngpersist", "rngpersist")): return vars.rngpersist
|
|
if(setting in ("frmttriminc", "triminc")): return vars.formatoptns["frmttriminc"]
|
|
if(setting in ("frmtrmblln", "rmblln")): return vars.formatoptns["frmttrmblln"]
|
|
if(setting in ("frmtrmspch", "rmspch")): return vars.formatoptns["frmttrmspch"]
|
|
if(setting in ("frmtadsnsp", "adsnsp")): return vars.formatoptns["frmtadsnsp"]
|
|
if(setting in ("frmtsingleline", "singleline")): return vars.formatoptns["singleline"]
|
|
|
|
#==================================================================#
|
|
# Set the setting with the given name if it exists
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_set_setting(setting, v):
|
|
actual_type = type(lua_get_setting(setting))
|
|
assert v is not None and (actual_type is type(v) or (actual_type is int and type(v) is float))
|
|
v = actual_type(v)
|
|
print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set {setting} to {v}" + colors.END)
|
|
if(setting in ("setadventure", "adventure") and v):
|
|
vars.actionmode = 1
|
|
if(setting in ("settemp", "temp")): vars.temp = v
|
|
if(setting in ("settopp", "topp")): vars.top_p = v
|
|
if(setting in ("settopk", "topk")): vars.top_k = v
|
|
if(setting in ("settfs", "tfs")): vars.tfs = v
|
|
if(setting in ("setreppen", "reppen")): vars.rep_pen = v
|
|
if(setting in ("settknmax", "tknmax")): vars.max_length = v; return True
|
|
if(setting == "anotedepth"): vars.andepth = v; return True
|
|
if(setting in ("setwidepth", "widepth")): vars.widepth = v; return True
|
|
if(setting in ("setuseprompt", "useprompt")): vars.useprompt = v; return True
|
|
if(setting in ("setadventure", "adventure")): vars.adventure = v
|
|
if(setting in ("setdynamicscan", "dynamicscan")): vars.dynamicscan = v
|
|
if(setting in ("setnopromptgen", "nopromptgen")): vars.nopromptgen = v
|
|
if(setting in ("setrngpersist", "rngpersist")): vars.rngpersist = v
|
|
if(setting in ("setchatmode", "chatmode")): vars.chatmode = v
|
|
if(setting in ("frmttriminc", "triminc")): vars.formatoptns["frmttriminc"] = v
|
|
if(setting in ("frmtrmblln", "rmblln")): vars.formatoptns["frmttrmblln"] = v
|
|
if(setting in ("frmtrmspch", "rmspch")): vars.formatoptns["frmttrmspch"] = v
|
|
if(setting in ("frmtadsnsp", "adsnsp")): vars.formatoptns["frmtadsnsp"] = v
|
|
if(setting in ("frmtsingleline", "singleline")): vars.formatoptns["singleline"] = v
|
|
|
|
#==================================================================#
|
|
# Get contents of memory
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_get_memory():
|
|
return vars.memory
|
|
|
|
#==================================================================#
|
|
# Set contents of memory
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_set_memory(m):
|
|
assert type(m) is str
|
|
vars.memory = m
|
|
|
|
#==================================================================#
|
|
# Get contents of author's note
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_get_authorsnote():
|
|
return vars.authornote
|
|
|
|
#==================================================================#
|
|
# Set contents of author's note
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_set_authorsnote(m):
|
|
assert type(m) is str
|
|
vars.authornote = m
|
|
|
|
#==================================================================#
|
|
# Get contents of author's note template
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_get_authorsnotetemplate():
|
|
return vars.authornotetemplate
|
|
|
|
#==================================================================#
|
|
# Set contents of author's note template
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_set_authorsnotetemplate(m):
|
|
assert type(m) is str
|
|
vars.authornotetemplate = m
|
|
|
|
#==================================================================#
|
|
# Save settings and send them to client
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_resend_settings():
|
|
settingschanged()
|
|
refresh_settings()
|
|
|
|
#==================================================================#
|
|
# Set story chunk text and delete the chunk if the new chunk is empty
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_set_chunk(k, v):
|
|
assert type(k) in (int, None) and type(v) is str
|
|
assert k >= 0
|
|
assert k != 0 or len(v) != 0
|
|
if(len(v) == 0):
|
|
print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} deleted story chunk {k}" + colors.END)
|
|
chunk = int(k)
|
|
if(vars.lua_koboldbridge.userstate == "genmod"):
|
|
del vars._actions[chunk-1]
|
|
vars.lua_deleted.add(chunk)
|
|
if(not hasattr(vars, "_actions") or vars._actions is not vars.actions):
|
|
del vars.actions[chunk-1]
|
|
else:
|
|
if(k == 0):
|
|
print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} edited prompt chunk" + colors.END)
|
|
else:
|
|
print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} edited story chunk {k}" + colors.END)
|
|
chunk = int(k)
|
|
if(chunk == 0):
|
|
if(vars.lua_koboldbridge.userstate == "genmod"):
|
|
vars._prompt = v
|
|
vars.lua_edited.add(chunk)
|
|
vars.prompt = v
|
|
else:
|
|
if(vars.lua_koboldbridge.userstate == "genmod"):
|
|
vars._actions[chunk-1] = v
|
|
vars.lua_edited.add(chunk)
|
|
vars.actions[chunk-1] = v
|
|
|
|
#==================================================================#
|
|
# Get model type as "gpt-2-xl", "gpt-neo-2.7B", etc.
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_get_modeltype():
|
|
if(vars.noai):
|
|
return "readonly"
|
|
if(vars.model in ("Colab", "OAI", "InferKit")):
|
|
return "api"
|
|
if(vars.model not in ("TPUMeshTransformerGPTJ",) and (vars.model in ("GPT2Custom", "NeoCustom") or vars.model_type in ("gpt2", "gpt_neo", "gptj"))):
|
|
hidden_size = get_hidden_size_from_model(model)
|
|
if(vars.model in ("gpt2",) or (vars.model_type == "gpt2" and hidden_size == 768)):
|
|
return "gpt2"
|
|
if(vars.model in ("gpt2-medium",) or (vars.model_type == "gpt2" and hidden_size == 1024)):
|
|
return "gpt2-medium"
|
|
if(vars.model in ("gpt2-large",) or (vars.model_type == "gpt2" and hidden_size == 1280)):
|
|
return "gpt2-large"
|
|
if(vars.model in ("gpt2-xl",) or (vars.model_type == "gpt2" and hidden_size == 1600)):
|
|
return "gpt2-xl"
|
|
if(vars.model_type == "gpt_neo" and hidden_size == 768):
|
|
return "gpt-neo-125M"
|
|
if(vars.model in ("EleutherAI/gpt-neo-1.3B",) or (vars.model_type == "gpt_neo" and hidden_size == 2048)):
|
|
return "gpt-neo-1.3B"
|
|
if(vars.model in ("EleutherAI/gpt-neo-2.7B",) or (vars.model_type == "gpt_neo" and hidden_size == 2560)):
|
|
return "gpt-neo-2.7B"
|
|
if(vars.model in ("EleutherAI/gpt-j-6B",) or (vars.model == "TPUMeshTransformerGPTJ" and tpu_mtj_backend.params["d_model"] == 4096) or (vars.model_type in ("gpt_neo", "gptj") and hidden_size == 4096)):
|
|
return "gpt-j-6B"
|
|
return "unknown"
|
|
|
|
#==================================================================#
|
|
# Get model backend as "transformers" or "mtj"
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_get_modelbackend():
|
|
if(vars.noai):
|
|
return "readonly"
|
|
if(vars.model in ("Colab", "OAI", "InferKit")):
|
|
return "api"
|
|
if(vars.model in ("TPUMeshTransformerGPTJ",)):
|
|
return "mtj"
|
|
return "transformers"
|
|
|
|
#==================================================================#
|
|
# Check whether model is loaded from a custom path
|
|
#==================================================================#
|
|
@bridged_kwarg()
|
|
def lua_is_custommodel():
|
|
return vars.model in ("GPT2Custom", "NeoCustom", "TPUMeshTransformerGPTJ")
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def execute_inmod():
|
|
vars.lua_logname = ...
|
|
vars.lua_edited = set()
|
|
vars.lua_deleted = set()
|
|
try:
|
|
tpool.execute(vars.lua_koboldbridge.execute_inmod)
|
|
except lupa.LuaError as e:
|
|
vars.lua_koboldbridge.obliterate_multiverse()
|
|
vars.lua_running = False
|
|
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error, please check console.'}, broadcast=True)
|
|
sendUSStatItems()
|
|
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
|
|
set_aibusy(0)
|
|
|
|
def execute_genmod():
|
|
vars.lua_koboldbridge.execute_genmod()
|
|
|
|
def execute_outmod():
|
|
try:
|
|
tpool.execute(vars.lua_koboldbridge.execute_outmod)
|
|
except lupa.LuaError as e:
|
|
vars.lua_koboldbridge.obliterate_multiverse()
|
|
vars.lua_running = False
|
|
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error, please check console.'}, broadcast=True)
|
|
sendUSStatItems()
|
|
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
|
|
set_aibusy(0)
|
|
if(vars.lua_koboldbridge.resend_settings_required):
|
|
vars.lua_koboldbridge.resend_settings_required = False
|
|
lua_resend_settings()
|
|
for k in vars.lua_edited:
|
|
inlineedit(k, vars.actions[k])
|
|
for k in vars.lua_deleted:
|
|
inlinedelete(k)
|
|
|
|
#==================================================================#
|
|
# Lua runtime startup
|
|
#==================================================================#
|
|
|
|
print("", end="", flush=True)
|
|
print(colors.PURPLE + "Initializing Lua Bridge... " + colors.END, end="", flush=True)
|
|
|
|
# Set up Lua state
|
|
vars.lua_state = lupa.LuaRuntime(unpack_returned_tuples=True)
|
|
|
|
# Load bridge.lua
|
|
bridged = {
|
|
"corescript_path": os.path.join(os.path.dirname(os.path.realpath(__file__)), "cores"),
|
|
"userscript_path": os.path.join(os.path.dirname(os.path.realpath(__file__)), "userscripts"),
|
|
"config_path": os.path.join(os.path.dirname(os.path.realpath(__file__)), "userscripts"),
|
|
"lib_paths": vars.lua_state.table(os.path.join(os.path.dirname(os.path.realpath(__file__)), "lualibs"), os.path.join(os.path.dirname(os.path.realpath(__file__)), "extern", "lualibs")),
|
|
"vars": vars,
|
|
}
|
|
for kwarg in _bridged:
|
|
bridged[kwarg] = _bridged[kwarg]
|
|
try:
|
|
vars.lua_kobold, vars.lua_koboldcore, vars.lua_koboldbridge = vars.lua_state.globals().dofile(os.path.join(os.path.dirname(os.path.realpath(__file__)), "bridge.lua"))(
|
|
vars.lua_state.globals().python,
|
|
bridged,
|
|
)
|
|
except lupa.LuaError as e:
|
|
print(colors.RED + "ERROR!" + colors.END)
|
|
vars.lua_koboldbridge.obliterate_multiverse()
|
|
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
|
|
exit(1)
|
|
print(colors.GREEN + "OK!" + colors.END)
|
|
|
|
# Load scripts
|
|
load_lua_scripts()
|
|
|
|
|
|
#============================ METHODS =============================#
|
|
|
|
#==================================================================#
|
|
# Event triggered when browser SocketIO is loaded and connects to server
|
|
#==================================================================#
|
|
@socketio.on('connect')
|
|
def do_connect():
|
|
print("{0}Client connected!{1}".format(colors.GREEN, colors.END))
|
|
emit('from_server', {'cmd': 'setchatname', 'data': vars.chatname})
|
|
emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate})
|
|
emit('from_server', {'cmd': 'connected', 'smandelete': vars.smandelete, 'smanrename': vars.smanrename})
|
|
if(vars.remote):
|
|
emit('from_server', {'cmd': 'runs_remotely'})
|
|
if(vars.allowsp):
|
|
emit('from_server', {'cmd': 'allowsp', 'data': vars.allowsp})
|
|
|
|
sendUSStatItems()
|
|
emit('from_server', {'cmd': 'spstatitems', 'data': {vars.spfilename: vars.spmeta} if vars.allowsp and len(vars.spfilename) else {}}, broadcast=True)
|
|
|
|
if(not vars.gamestarted):
|
|
setStartState()
|
|
sendsettings()
|
|
refresh_settings()
|
|
vars.laststory = None
|
|
emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory})
|
|
sendwi()
|
|
emit('from_server', {'cmd': 'setmemory', 'data': vars.memory})
|
|
emit('from_server', {'cmd': 'setanote', 'data': vars.authornote})
|
|
vars.mode = "play"
|
|
else:
|
|
# Game in session, send current game data and ready state to browser
|
|
refresh_story()
|
|
sendsettings()
|
|
refresh_settings()
|
|
emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory})
|
|
sendwi()
|
|
emit('from_server', {'cmd': 'setmemory', 'data': vars.memory})
|
|
emit('from_server', {'cmd': 'setanote', 'data': vars.authornote})
|
|
if(vars.mode == "play"):
|
|
if(not vars.aibusy):
|
|
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'})
|
|
else:
|
|
emit('from_server', {'cmd': 'setgamestate', 'data': 'wait'})
|
|
elif(vars.mode == "edit"):
|
|
emit('from_server', {'cmd': 'editmode', 'data': 'true'})
|
|
elif(vars.mode == "memory"):
|
|
emit('from_server', {'cmd': 'memmode', 'data': 'true'})
|
|
elif(vars.mode == "wi"):
|
|
emit('from_server', {'cmd': 'wimode', 'data': 'true'})
|
|
|
|
#==================================================================#
|
|
# Event triggered when browser SocketIO sends data to the server
|
|
#==================================================================#
|
|
@socketio.on('message')
|
|
def get_message(msg):
|
|
print("{0}Data received:{1}{2}".format(colors.GREEN, msg, colors.END))
|
|
# Submit action
|
|
if(msg['cmd'] == 'submit'):
|
|
if(vars.mode == "play"):
|
|
vars.lua_koboldbridge.feedback = None
|
|
if(vars.chatmode):
|
|
if(type(msg['chatname']) is not str):
|
|
raise ValueError("Chatname must be a string")
|
|
vars.chatname = msg['chatname']
|
|
settingschanged()
|
|
emit('from_server', {'cmd': 'setchatname', 'data': vars.chatname}, broadcast=True)
|
|
vars.recentrng = vars.recentrngm = None
|
|
actionsubmit(msg['data'], actionmode=msg['actionmode'])
|
|
elif(vars.mode == "edit"):
|
|
editsubmit(msg['data'])
|
|
elif(vars.mode == "memory"):
|
|
memsubmit(msg['data'])
|
|
# Retry Action
|
|
elif(msg['cmd'] == 'retry'):
|
|
if(vars.chatmode):
|
|
if(type(msg['chatname']) is not str):
|
|
raise ValueError("Chatname must be a string")
|
|
vars.chatname = msg['chatname']
|
|
settingschanged()
|
|
emit('from_server', {'cmd': 'setchatname', 'data': vars.chatname}, broadcast=True)
|
|
actionretry(msg['data'])
|
|
# Back/Undo Action
|
|
elif(msg['cmd'] == 'back'):
|
|
actionback()
|
|
# EditMode Action (old)
|
|
elif(msg['cmd'] == 'edit'):
|
|
if(vars.mode == "play"):
|
|
vars.mode = "edit"
|
|
emit('from_server', {'cmd': 'editmode', 'data': 'true'}, broadcast=True)
|
|
elif(vars.mode == "edit"):
|
|
vars.mode = "play"
|
|
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
|
|
# EditLine Action (old)
|
|
elif(msg['cmd'] == 'editline'):
|
|
editrequest(int(msg['data']))
|
|
# Inline edit
|
|
elif(msg['cmd'] == 'inlineedit'):
|
|
inlineedit(msg['chunk'], msg['data'])
|
|
elif(msg['cmd'] == 'inlinedelete'):
|
|
inlinedelete(msg['data'])
|
|
# DeleteLine Action (old)
|
|
elif(msg['cmd'] == 'delete'):
|
|
deleterequest()
|
|
elif(msg['cmd'] == 'memory'):
|
|
togglememorymode()
|
|
elif(not vars.remote and msg['cmd'] == 'savetofile'):
|
|
savetofile()
|
|
elif(not vars.remote and msg['cmd'] == 'loadfromfile'):
|
|
loadfromfile()
|
|
elif(msg['cmd'] == 'loadfromstring'):
|
|
loadRequest(json.loads(msg['data']), filename=msg['filename'])
|
|
elif(not vars.remote and msg['cmd'] == 'import'):
|
|
importRequest()
|
|
elif(msg['cmd'] == 'newgame'):
|
|
newGameRequest()
|
|
elif(msg['cmd'] == 'rndgame'):
|
|
randomGameRequest(msg['data'], memory=msg['memory'])
|
|
elif(msg['cmd'] == 'settemp'):
|
|
vars.temp = float(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabeltemp', 'data': msg['data']}, broadcast=True)
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'settopp'):
|
|
vars.top_p = float(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabeltopp', 'data': msg['data']}, broadcast=True)
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'settopk'):
|
|
vars.top_k = int(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabeltopk', 'data': msg['data']}, broadcast=True)
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'settfs'):
|
|
vars.tfs = float(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabeltfs', 'data': msg['data']}, broadcast=True)
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setreppen'):
|
|
vars.rep_pen = float(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabelreppen', 'data': msg['data']}, broadcast=True)
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setoutput'):
|
|
vars.genamt = int(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabeloutput', 'data': msg['data']}, broadcast=True)
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'settknmax'):
|
|
vars.max_length = int(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabeltknmax', 'data': msg['data']}, broadcast=True)
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setikgen'):
|
|
vars.ikgen = int(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabelikgen', 'data': msg['data']}, broadcast=True)
|
|
settingschanged()
|
|
refresh_settings()
|
|
# Author's Note field update
|
|
elif(msg['cmd'] == 'anote'):
|
|
anotesubmit(msg['data'], template=msg['template'])
|
|
# Author's Note depth update
|
|
elif(msg['cmd'] == 'anotedepth'):
|
|
vars.andepth = int(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabelanotedepth', 'data': msg['data']}, broadcast=True)
|
|
settingschanged()
|
|
refresh_settings()
|
|
# Format - Trim incomplete sentences
|
|
elif(msg['cmd'] == 'frmttriminc'):
|
|
if('frmttriminc' in vars.formatoptns):
|
|
vars.formatoptns["frmttriminc"] = msg['data']
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'frmtrmblln'):
|
|
if('frmtrmblln' in vars.formatoptns):
|
|
vars.formatoptns["frmtrmblln"] = msg['data']
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'frmtrmspch'):
|
|
if('frmtrmspch' in vars.formatoptns):
|
|
vars.formatoptns["frmtrmspch"] = msg['data']
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'frmtadsnsp'):
|
|
if('frmtadsnsp' in vars.formatoptns):
|
|
vars.formatoptns["frmtadsnsp"] = msg['data']
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'singleline'):
|
|
if('singleline' in vars.formatoptns):
|
|
vars.formatoptns["singleline"] = msg['data']
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'importselect'):
|
|
vars.importnum = int(msg["data"].replace("import", ""))
|
|
elif(msg['cmd'] == 'importcancel'):
|
|
emit('from_server', {'cmd': 'popupshow', 'data': False})
|
|
vars.importjs = {}
|
|
elif(msg['cmd'] == 'importaccept'):
|
|
emit('from_server', {'cmd': 'popupshow', 'data': False})
|
|
importgame()
|
|
elif(msg['cmd'] == 'wi'):
|
|
togglewimode()
|
|
elif(msg['cmd'] == 'wiinit'):
|
|
if(int(msg['data']) < len(vars.worldinfo)):
|
|
vars.worldinfo[msg['data']]["init"] = True
|
|
addwiitem(folder_uid=msg['folder'])
|
|
elif(msg['cmd'] == 'wifolderinit'):
|
|
addwifolder()
|
|
elif(msg['cmd'] == 'wimoveitem'):
|
|
movewiitem(msg['destination'], msg['data'])
|
|
elif(msg['cmd'] == 'wimovefolder'):
|
|
movewifolder(msg['destination'], msg['data'])
|
|
elif(msg['cmd'] == 'widelete'):
|
|
deletewi(msg['data'])
|
|
elif(msg['cmd'] == 'wifolderdelete'):
|
|
deletewifolder(msg['data'])
|
|
elif(msg['cmd'] == 'wiexpand'):
|
|
assert 0 <= int(msg['data']) < len(vars.worldinfo)
|
|
emit('from_server', {'cmd': 'wiexpand', 'data': msg['data']}, broadcast=True)
|
|
elif(msg['cmd'] == 'wiexpandfolder'):
|
|
assert 0 <= int(msg['data']) < len(vars.worldinfo)
|
|
emit('from_server', {'cmd': 'wiexpandfolder', 'data': msg['data']}, broadcast=True)
|
|
elif(msg['cmd'] == 'wifoldercollapsecontent'):
|
|
vars.wifolders_d[msg['data']]['collapsed'] = True
|
|
emit('from_server', {'cmd': 'wifoldercollapsecontent', 'data': msg['data']}, broadcast=True)
|
|
elif(msg['cmd'] == 'wifolderexpandcontent'):
|
|
vars.wifolders_d[msg['data']]['collapsed'] = False
|
|
emit('from_server', {'cmd': 'wifolderexpandcontent', 'data': msg['data']}, broadcast=True)
|
|
elif(msg['cmd'] == 'wiupdate'):
|
|
num = int(msg['num'])
|
|
fields = ("key", "keysecondary", "content", "comment")
|
|
for field in fields:
|
|
if(field in msg['data'] and type(msg['data'][field]) is str):
|
|
vars.worldinfo[num][field] = msg['data'][field]
|
|
emit('from_server', {'cmd': 'wiupdate', 'num': msg['num'], 'data': {field: vars.worldinfo[num][field] for field in fields}}, broadcast=True)
|
|
elif(msg['cmd'] == 'wifolderupdate'):
|
|
uid = int(msg['uid'])
|
|
fields = ("name", "collapsed")
|
|
for field in fields:
|
|
if(field in msg['data'] and type(msg['data'][field]) is (str if field != "collapsed" else bool)):
|
|
vars.wifolders_d[uid][field] = msg['data'][field]
|
|
emit('from_server', {'cmd': 'wifolderupdate', 'uid': msg['uid'], 'data': {field: vars.wifolders_d[uid][field] for field in fields}}, broadcast=True)
|
|
elif(msg['cmd'] == 'wiselon'):
|
|
vars.worldinfo[msg['data']]["selective"] = True
|
|
emit('from_server', {'cmd': 'wiselon', 'data': msg['data']}, broadcast=True)
|
|
elif(msg['cmd'] == 'wiseloff'):
|
|
vars.worldinfo[msg['data']]["selective"] = False
|
|
emit('from_server', {'cmd': 'wiseloff', 'data': msg['data']}, broadcast=True)
|
|
elif(msg['cmd'] == 'wiconstanton'):
|
|
vars.worldinfo[msg['data']]["constant"] = True
|
|
emit('from_server', {'cmd': 'wiconstanton', 'data': msg['data']}, broadcast=True)
|
|
elif(msg['cmd'] == 'wiconstantoff'):
|
|
vars.worldinfo[msg['data']]["constant"] = False
|
|
emit('from_server', {'cmd': 'wiconstantoff', 'data': msg['data']}, broadcast=True)
|
|
elif(msg['cmd'] == 'sendwilist'):
|
|
commitwi(msg['data'])
|
|
elif(msg['cmd'] == 'aidgimport'):
|
|
importAidgRequest(msg['data'])
|
|
elif(msg['cmd'] == 'saveasrequest'):
|
|
saveas(msg['data'])
|
|
elif(msg['cmd'] == 'saverequest'):
|
|
save()
|
|
elif(msg['cmd'] == 'loadlistrequest'):
|
|
getloadlist()
|
|
elif(msg['cmd'] == 'splistrequest'):
|
|
getsplist()
|
|
elif(msg['cmd'] == 'uslistrequest'):
|
|
unloaded, loaded = getuslist()
|
|
emit('from_server', {'cmd': 'buildus', 'data': {"unloaded": unloaded, "loaded": loaded}})
|
|
elif(msg['cmd'] == 'usloaded'):
|
|
vars.userscripts = []
|
|
for userscript in msg['data']:
|
|
if type(userscript) is not str:
|
|
continue
|
|
userscript = userscript.strip()
|
|
if len(userscript) != 0 and all(q not in userscript for q in ("..", ":")) and all(userscript[0] not in q for q in ("/", "\\")) and os.path.exists(fileops.uspath(userscript)):
|
|
vars.userscripts.append(userscript)
|
|
settingschanged()
|
|
elif(msg['cmd'] == 'usload'):
|
|
load_lua_scripts()
|
|
unloaded, loaded = getuslist()
|
|
sendUSStatItems()
|
|
elif(msg['cmd'] == 'loadselect'):
|
|
vars.loadselect = msg["data"]
|
|
elif(msg['cmd'] == 'spselect'):
|
|
vars.spselect = msg["data"]
|
|
elif(msg['cmd'] == 'loadrequest'):
|
|
loadRequest(fileops.storypath(vars.loadselect))
|
|
elif(msg['cmd'] == 'sprequest'):
|
|
spRequest(vars.spselect)
|
|
emit('from_server', {'cmd': 'spstatitems', 'data': {vars.spfilename: vars.spmeta} if vars.allowsp and len(vars.spfilename) else {}}, broadcast=True)
|
|
elif(msg['cmd'] == 'deletestory'):
|
|
deletesave(msg['data'])
|
|
elif(msg['cmd'] == 'renamestory'):
|
|
renamesave(msg['data'], msg['newname'])
|
|
elif(msg['cmd'] == 'clearoverwrite'):
|
|
vars.svowname = ""
|
|
vars.saveow = False
|
|
elif(msg['cmd'] == 'seqsel'):
|
|
selectsequence(msg['data'])
|
|
elif(msg['cmd'] == 'setnumseq'):
|
|
vars.numseqs = int(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabelnumseq', 'data': msg['data']})
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setwidepth'):
|
|
vars.widepth = int(msg['data'])
|
|
emit('from_server', {'cmd': 'setlabelwidepth', 'data': msg['data']})
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setuseprompt'):
|
|
vars.useprompt = msg['data']
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setadventure'):
|
|
vars.adventure = msg['data']
|
|
vars.chatmode = False
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setchatmode'):
|
|
vars.chatmode = msg['data']
|
|
vars.adventure = False
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setdynamicscan'):
|
|
vars.dynamicscan = msg['data']
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setnopromptgen'):
|
|
vars.nopromptgen = msg['data']
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(msg['cmd'] == 'setrngpersist'):
|
|
vars.rngpersist = msg['data']
|
|
settingschanged()
|
|
refresh_settings()
|
|
elif(not vars.remote and msg['cmd'] == 'importwi'):
|
|
wiimportrequest()
|
|
|
|
#==================================================================#
|
|
# Send userscripts list to client
|
|
#==================================================================#
|
|
def sendUSStatItems():
|
|
_, loaded = getuslist()
|
|
loaded = loaded if vars.lua_running else []
|
|
last_userscripts = [e["filename"] for e in loaded]
|
|
emit('from_server', {'cmd': 'usstatitems', 'data': loaded, 'flash': last_userscripts != vars.last_userscripts}, broadcast=True)
|
|
vars.last_userscripts = last_userscripts
|
|
|
|
#==================================================================#
|
|
# Send start message and tell Javascript to set UI state
|
|
#==================================================================#
|
|
def setStartState():
|
|
txt = "<span>Welcome to <span class=\"color_cyan\">KoboldAI</span>! You are running <span class=\"color_green\">"+getmodelname()+"</span>.<br/>"
|
|
if(not vars.noai):
|
|
txt = txt + "Please load a game or enter a prompt below to begin!</span>"
|
|
else:
|
|
txt = txt + "Please load or import a story to read. There is no AI in this mode."
|
|
emit('from_server', {'cmd': 'updatescreen', 'gamestarted': vars.gamestarted, 'data': txt}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setgamestate', 'data': 'start'}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Transmit applicable settings to SocketIO to build UI sliders/toggles
|
|
#==================================================================#
|
|
def sendsettings():
|
|
# Send settings for selected AI type
|
|
if(vars.model != "InferKit"):
|
|
for set in gensettings.gensettingstf:
|
|
emit('from_server', {'cmd': 'addsetting', 'data': set})
|
|
else:
|
|
for set in gensettings.gensettingsik:
|
|
emit('from_server', {'cmd': 'addsetting', 'data': set})
|
|
|
|
# Send formatting options
|
|
for frm in gensettings.formatcontrols:
|
|
emit('from_server', {'cmd': 'addformat', 'data': frm})
|
|
# Add format key to vars if it wasn't loaded with client.settings
|
|
if(not frm["id"] in vars.formatoptns):
|
|
vars.formatoptns[frm["id"]] = False;
|
|
|
|
#==================================================================#
|
|
# Take settings from vars and write them to client settings file
|
|
#==================================================================#
|
|
def savesettings():
|
|
# Build json to write
|
|
js = {}
|
|
js["apikey"] = vars.apikey
|
|
js["andepth"] = vars.andepth
|
|
js["temp"] = vars.temp
|
|
js["top_p"] = vars.top_p
|
|
js["top_k"] = vars.top_k
|
|
js["tfs"] = vars.tfs
|
|
js["rep_pen"] = vars.rep_pen
|
|
js["genamt"] = vars.genamt
|
|
js["max_length"] = vars.max_length
|
|
js["ikgen"] = vars.ikgen
|
|
js["formatoptns"] = vars.formatoptns
|
|
js["numseqs"] = vars.numseqs
|
|
js["widepth"] = vars.widepth
|
|
js["useprompt"] = vars.useprompt
|
|
js["adventure"] = vars.adventure
|
|
js["chatmode"] = vars.chatmode
|
|
js["chatname"] = vars.chatname
|
|
js["dynamicscan"] = vars.dynamicscan
|
|
js["nopromptgen"] = vars.nopromptgen
|
|
js["rngpersist"] = vars.rngpersist
|
|
js["antemplate"] = vars.setauthornotetemplate
|
|
|
|
js["userscripts"] = vars.userscripts
|
|
js["corescript"] = vars.corescript
|
|
js["softprompt"] = vars.spfilename
|
|
|
|
# Write it
|
|
if not os.path.exists('settings'):
|
|
os.mkdir('settings')
|
|
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w")
|
|
try:
|
|
file.write(json.dumps(js, indent=3))
|
|
finally:
|
|
file.close()
|
|
|
|
#==================================================================#
|
|
# Read settings from client file JSON and send to vars
|
|
#==================================================================#
|
|
def loadsettings():
|
|
if(path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")):
|
|
# Read file contents into JSON object
|
|
file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r")
|
|
js = json.load(file)
|
|
|
|
# Copy file contents to vars
|
|
if("apikey" in js):
|
|
vars.apikey = js["apikey"]
|
|
if("andepth" in js):
|
|
vars.andepth = js["andepth"]
|
|
if("temp" in js):
|
|
vars.temp = js["temp"]
|
|
if("top_p" in js):
|
|
vars.top_p = js["top_p"]
|
|
if("top_k" in js):
|
|
vars.top_k = js["top_k"]
|
|
if("tfs" in js):
|
|
vars.tfs = js["tfs"]
|
|
if("rep_pen" in js):
|
|
vars.rep_pen = js["rep_pen"]
|
|
if("genamt" in js):
|
|
vars.genamt = js["genamt"]
|
|
if("max_length" in js):
|
|
vars.max_length = js["max_length"]
|
|
if("ikgen" in js):
|
|
vars.ikgen = js["ikgen"]
|
|
if("formatoptns" in js):
|
|
vars.formatoptns = js["formatoptns"]
|
|
if("numseqs" in js):
|
|
vars.numseqs = js["numseqs"]
|
|
if("widepth" in js):
|
|
vars.widepth = js["widepth"]
|
|
if("useprompt" in js):
|
|
vars.useprompt = js["useprompt"]
|
|
if("adventure" in js):
|
|
vars.adventure = js["adventure"]
|
|
if("chatmode" in js):
|
|
vars.chatmode = js["chatmode"]
|
|
if("chatname" in js):
|
|
vars.chatname = js["chatname"]
|
|
if("dynamicscan" in js):
|
|
vars.dynamicscan = js["dynamicscan"]
|
|
if("nopromptgen" in js):
|
|
vars.nopromptgen = js["nopromptgen"]
|
|
if("rngpersist" in js):
|
|
vars.rngpersist = js["rngpersist"]
|
|
|
|
if("antemplate" in js):
|
|
vars.setauthornotetemplate = js["antemplate"]
|
|
if(not vars.gamestarted):
|
|
vars.authornotetemplate = vars.setauthornotetemplate
|
|
|
|
if("userscripts" in js):
|
|
vars.userscripts = []
|
|
for userscript in js["userscripts"]:
|
|
if type(userscript) is not str:
|
|
continue
|
|
userscript = userscript.strip()
|
|
if len(userscript) != 0 and all(q not in userscript for q in ("..", ":")) and all(userscript[0] not in q for q in ("/", "\\")) and os.path.exists(fileops.uspath(userscript)):
|
|
vars.userscripts.append(userscript)
|
|
|
|
if("corescript" in js and type(js["corescript"]) is str and all(q not in js["corescript"] for q in ("..", ":")) and all(js["corescript"][0] not in q for q in ("/", "\\"))):
|
|
vars.corescript = js["corescript"]
|
|
else:
|
|
vars.corescript = "default.lua"
|
|
|
|
if(vars.allowsp and "softprompt" in js and type(js["softprompt"]) is str and all(q not in js["softprompt"] for q in ("..", ":")) and (len(js["softprompt"]) == 0 or all(js["softprompt"][0] not in q for q in ("/", "\\")))):
|
|
spRequest(js["softprompt"])
|
|
else:
|
|
vars.spfilename = ""
|
|
|
|
file.close()
|
|
|
|
#==================================================================#
|
|
# Allow the models to override some settings
|
|
#==================================================================#
|
|
def loadmodelsettings():
|
|
if(path.exists(vars.custmodpth.replace('/', '_') + "/config.json")):
|
|
model_config = open(vars.custmodpth.replace('/', '_') + "/config.json", "r")
|
|
js = json.load(model_config)
|
|
if("badwordsids" in js):
|
|
vars.badwordsids = js["badwordsids"]
|
|
if("temp" in js):
|
|
vars.temp = js["temp"]
|
|
if("top_p" in js):
|
|
vars.top_p = js["top_p"]
|
|
if("top_k" in js):
|
|
vars.top_k = js["top_k"]
|
|
if("tfs" in js):
|
|
vars.tfs = js["tfs"]
|
|
if("rep_pen" in js):
|
|
vars.rep_pen = js["rep_pen"]
|
|
if("adventure" in js):
|
|
vars.adventure = js["adventure"]
|
|
if("chatmode" in js):
|
|
vars.chatmode = js["chatmode"]
|
|
if("dynamicscan" in js):
|
|
vars.dynamicscan = js["dynamicscan"]
|
|
if("formatoptns" in js):
|
|
vars.formatoptns = js["formatoptns"]
|
|
if("antemplate" in js):
|
|
vars.setauthornotetemplate = js["antemplate"]
|
|
if(not vars.gamestarted):
|
|
vars.authornotetemplate = vars.setauthornotetemplate
|
|
model_config.close()
|
|
|
|
#==================================================================#
|
|
# Don't save settings unless 2 seconds have passed without modification
|
|
#==================================================================#
|
|
@debounce(2)
|
|
def settingschanged():
|
|
print("{0}Saving settings!{1}".format(colors.GREEN, colors.END))
|
|
savesettings()
|
|
|
|
#==================================================================#
|
|
# Take input text from SocketIO and decide what to do with it
|
|
#==================================================================#
|
|
def actionsubmit(data, actionmode=0, force_submit=False, force_prompt_gen=False, disable_recentrng=False):
|
|
# Ignore new submissions if the AI is currently busy
|
|
if(vars.aibusy):
|
|
return
|
|
|
|
while(True):
|
|
set_aibusy(1)
|
|
|
|
if(disable_recentrng):
|
|
vars.recentrng = vars.recentrngm = None
|
|
|
|
vars.recentback = False
|
|
vars.recentedit = False
|
|
vars.actionmode = actionmode
|
|
|
|
# "Action" mode
|
|
if(actionmode == 1):
|
|
data = data.strip().lstrip('>')
|
|
data = re.sub(r'\n+', ' ', data)
|
|
if(len(data)):
|
|
data = f"\n\n> {data}\n"
|
|
|
|
# "Chat" mode
|
|
if(vars.chatmode and vars.gamestarted):
|
|
data = re.sub(r'\n+', ' ', data)
|
|
if(len(data)):
|
|
data = f"\n{vars.chatname} : {data}\n"
|
|
|
|
# If we're not continuing, store a copy of the raw input
|
|
if(data != ""):
|
|
vars.lastact = data
|
|
|
|
if(not vars.gamestarted):
|
|
vars.submission = data
|
|
execute_inmod()
|
|
data = vars.submission
|
|
if(not force_submit and len(data.strip()) == 0):
|
|
assert False
|
|
# Start the game
|
|
vars.gamestarted = True
|
|
if(not vars.noai and vars.lua_koboldbridge.generating and (not vars.nopromptgen or force_prompt_gen)):
|
|
# Save this first action as the prompt
|
|
vars.prompt = data
|
|
# Clear the startup text from game screen
|
|
emit('from_server', {'cmd': 'updatescreen', 'gamestarted': False, 'data': 'Please wait, generating story...'}, broadcast=True)
|
|
calcsubmit(data) # Run the first action through the generator
|
|
if(vars.lua_koboldbridge.restart_sequence is not None and len(vars.genseqs) == 0):
|
|
data = ""
|
|
force_submit = True
|
|
disable_recentrng = True
|
|
continue
|
|
emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True)
|
|
break
|
|
else:
|
|
# Save this first action as the prompt
|
|
vars.prompt = data
|
|
for i in range(vars.numseqs):
|
|
vars.lua_koboldbridge.outputs[i+1] = ""
|
|
execute_outmod()
|
|
vars.lua_koboldbridge.regeneration_required = False
|
|
genout = []
|
|
for i in range(vars.numseqs):
|
|
genout.append({"generated_text": vars.lua_koboldbridge.outputs[i+1]})
|
|
assert type(genout[-1]["generated_text"]) is str
|
|
if(len(genout) == 1):
|
|
genresult(genout[0]["generated_text"], flash=False)
|
|
refresh_story()
|
|
if(len(vars.actions) > 0):
|
|
emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1}, broadcast=True)
|
|
if(vars.lua_koboldbridge.restart_sequence is not None):
|
|
data = ""
|
|
force_submit = True
|
|
disable_recentrng = True
|
|
continue
|
|
else:
|
|
if(vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0):
|
|
genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"], flash=False)
|
|
refresh_story()
|
|
data = ""
|
|
force_submit = True
|
|
disable_recentrng = True
|
|
continue
|
|
genselect(genout)
|
|
refresh_story()
|
|
set_aibusy(0)
|
|
emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True)
|
|
break
|
|
else:
|
|
# Apply input formatting & scripts before sending to tokenizer
|
|
if(vars.actionmode == 0):
|
|
data = applyinputformatting(data)
|
|
vars.submission = data
|
|
execute_inmod()
|
|
data = vars.submission
|
|
# Dont append submission if it's a blank/continue action
|
|
if(data != ""):
|
|
# Store the result in the Action log
|
|
if(len(vars.prompt.strip()) == 0):
|
|
vars.prompt = data
|
|
else:
|
|
vars.actions.append(data)
|
|
update_story_chunk('last')
|
|
|
|
if(not vars.noai and vars.lua_koboldbridge.generating):
|
|
# Off to the tokenizer!
|
|
calcsubmit(data)
|
|
if(vars.lua_koboldbridge.restart_sequence is not None and len(vars.genseqs) == 0):
|
|
data = ""
|
|
force_submit = True
|
|
disable_recentrng = True
|
|
continue
|
|
emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True)
|
|
break
|
|
else:
|
|
for i in range(vars.numseqs):
|
|
vars.lua_koboldbridge.outputs[i+1] = ""
|
|
execute_outmod()
|
|
vars.lua_koboldbridge.regeneration_required = False
|
|
genout = []
|
|
for i in range(vars.numseqs):
|
|
genout.append({"generated_text": vars.lua_koboldbridge.outputs[i+1]})
|
|
assert type(genout[-1]["generated_text"]) is str
|
|
if(len(genout) == 1):
|
|
genresult(genout[0]["generated_text"])
|
|
if(vars.lua_koboldbridge.restart_sequence is not None):
|
|
data = ""
|
|
force_submit = True
|
|
disable_recentrng = True
|
|
continue
|
|
else:
|
|
if(vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0):
|
|
genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"])
|
|
data = ""
|
|
force_submit = True
|
|
disable_recentrng = True
|
|
continue
|
|
genselect(genout)
|
|
set_aibusy(0)
|
|
emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True)
|
|
break
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def actionretry(data):
|
|
if(vars.noai):
|
|
emit('from_server', {'cmd': 'errmsg', 'data': "Retry function unavailable in Read Only mode."})
|
|
return
|
|
if(vars.aibusy):
|
|
return
|
|
if(vars.recentrng is not None):
|
|
randomGameRequest(vars.recentrng, memory=vars.recentrngm)
|
|
return
|
|
# Remove last action if possible and resubmit
|
|
if(vars.gamestarted if vars.useprompt else len(vars.actions) > 0):
|
|
if(not vars.recentback and len(vars.actions) != 0 and len(vars.genseqs) == 0): # Don't pop if we're in the "Select sequence to keep" menu or if there are no non-prompt actions
|
|
last_key = vars.actions.get_last_key()
|
|
vars.actions.pop()
|
|
remove_story_chunk(last_key + 1)
|
|
vars.recentback = False
|
|
vars.recentedit = False
|
|
vars.lua_koboldbridge.feedback = None
|
|
actionsubmit("", actionmode=vars.actionmode, force_submit=True)
|
|
elif(not vars.useprompt):
|
|
emit('from_server', {'cmd': 'errmsg', 'data': "Please enable \"Always Add Prompt\" to retry with your prompt."})
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def actionback():
|
|
if(vars.aibusy):
|
|
return
|
|
# Remove last index of actions and refresh game screen
|
|
if(len(vars.genseqs) == 0 and len(vars.actions) > 0):
|
|
last_key = vars.actions.get_last_key()
|
|
vars.actions.pop()
|
|
vars.recentback = True
|
|
remove_story_chunk(last_key + 1)
|
|
elif(len(vars.genseqs) == 0):
|
|
emit('from_server', {'cmd': 'errmsg', 'data': "Cannot delete the prompt."})
|
|
else:
|
|
vars.genseqs = []
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def calcsubmitbudgetheader(txt, **kwargs):
|
|
# Scan for WorldInfo matches
|
|
winfo, found_entries = checkworldinfo(txt, **kwargs)
|
|
|
|
# Add a newline to the end of memory
|
|
if(vars.memory != "" and vars.memory[-1] != "\n"):
|
|
mem = vars.memory + "\n"
|
|
else:
|
|
mem = vars.memory
|
|
|
|
# Build Author's Note if set
|
|
if(vars.authornote != ""):
|
|
anotetxt = ("\n" + vars.authornotetemplate + "\n").replace("<|>", vars.authornote)
|
|
else:
|
|
anotetxt = ""
|
|
|
|
return winfo, mem, anotetxt, found_entries
|
|
|
|
def calcsubmitbudget(actionlen, winfo, mem, anotetxt, actions, submission=None, budget_deduction=0):
|
|
forceanote = False # In case we don't have enough actions to hit A.N. depth
|
|
anoteadded = False # In case our budget runs out before we hit A.N. depth
|
|
anotetkns = [] # Placeholder for Author's Note tokens
|
|
lnanote = 0 # Placeholder for Author's Note length
|
|
|
|
lnsp = vars.sp.shape[0] if vars.sp is not None else 0
|
|
|
|
if("tokenizer" not in globals()):
|
|
from transformers import GPT2TokenizerFast
|
|
global tokenizer
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/")
|
|
|
|
# Calculate token budget
|
|
prompttkns = tokenizer.encode(vars.comregex_ai.sub('', vars.prompt), max_length=int(2e9), truncation=True)
|
|
lnprompt = len(prompttkns)
|
|
|
|
memtokens = tokenizer.encode(mem, max_length=int(2e9), truncation=True)
|
|
lnmem = len(memtokens)
|
|
if(lnmem > vars.max_length - lnsp - vars.genamt - budget_deduction):
|
|
raise OverflowError("The memory in your story is too long. Please either write a shorter memory text or increase the Max Tokens setting. If you are using a soft prompt, additionally consider using a smaller soft prompt.")
|
|
|
|
witokens = tokenizer.encode(winfo, max_length=int(2e9), truncation=True)
|
|
lnwi = len(witokens)
|
|
if(lnmem + lnwi > vars.max_length - lnsp - vars.genamt - budget_deduction):
|
|
raise OverflowError("The current active world info keys take up too many tokens. Please either write shorter world info, decrease World Info Depth or increase the Max Tokens setting. If you are using a soft prompt, additionally consider using a smaller soft prompt.")
|
|
|
|
if(anotetxt != ""):
|
|
anotetkns = tokenizer.encode(anotetxt, max_length=int(2e9), truncation=True)
|
|
lnanote = len(anotetkns)
|
|
if(lnmem + lnwi + lnanote > vars.max_length - lnsp - vars.genamt - budget_deduction):
|
|
raise OverflowError("The author's note in your story is too long. Please either write a shorter author's note or increase the Max Tokens setting. If you are using a soft prompt, additionally consider using a smaller soft prompt.")
|
|
|
|
if(vars.useprompt):
|
|
budget = vars.max_length - lnsp - lnprompt - lnmem - lnanote - lnwi - vars.genamt - budget_deduction
|
|
else:
|
|
budget = vars.max_length - lnsp - lnmem - lnanote - lnwi - vars.genamt - budget_deduction
|
|
|
|
lnsubmission = len(tokenizer.encode(vars.comregex_ai.sub('', submission), max_length=int(2e9), truncation=True)) if submission is not None else 0
|
|
maybe_lnprompt = lnprompt if vars.useprompt and actionlen > 0 else 0
|
|
|
|
if(lnmem + lnwi + lnanote + maybe_lnprompt + lnsubmission > vars.max_length - lnsp - vars.genamt - budget_deduction):
|
|
raise OverflowError("Your submission is too long. Please either write a shorter submission or increase the Max Tokens setting. If you are using a soft prompt, additionally consider using a smaller soft prompt. If you are using the Always Add Prompt setting, turning it off may help.")
|
|
|
|
assert budget >= 0
|
|
|
|
if(actionlen == 0):
|
|
# First/Prompt action
|
|
tokens = memtokens + witokens + anotetkns + prompttkns
|
|
assert len(tokens) <= vars.max_length - lnsp - vars.genamt - budget_deduction
|
|
ln = len(tokens) + lnsp
|
|
return tokens, ln+1, ln+vars.genamt
|
|
else:
|
|
tokens = []
|
|
|
|
# Check if we have the action depth to hit our A.N. depth
|
|
if(anotetxt != "" and actionlen < vars.andepth):
|
|
forceanote = True
|
|
|
|
# Get most recent action tokens up to our budget
|
|
n = 0
|
|
for key in reversed(actions):
|
|
chunk = vars.comregex_ai.sub('', actions[key])
|
|
|
|
assert budget >= 0
|
|
if(budget <= 0):
|
|
break
|
|
acttkns = tokenizer.encode(chunk, max_length=int(2e9), truncation=True)
|
|
tknlen = len(acttkns)
|
|
if(tknlen < budget):
|
|
tokens = acttkns + tokens
|
|
budget -= tknlen
|
|
else:
|
|
count = budget * -1
|
|
tokens = acttkns[count:] + tokens
|
|
budget = 0
|
|
break
|
|
|
|
# Inject Author's Note if we've reached the desired depth
|
|
if(n == vars.andepth-1):
|
|
if(anotetxt != ""):
|
|
tokens = anotetkns + tokens # A.N. len already taken from bdgt
|
|
anoteadded = True
|
|
n += 1
|
|
|
|
# If we're not using the prompt every time and there's still budget left,
|
|
# add some prompt.
|
|
if(not vars.useprompt):
|
|
if(budget > 0):
|
|
prompttkns = prompttkns[-budget:]
|
|
else:
|
|
prompttkns = []
|
|
|
|
# Did we get to add the A.N.? If not, do it here
|
|
if(anotetxt != ""):
|
|
if((not anoteadded) or forceanote):
|
|
tokens = memtokens + witokens + anotetkns + prompttkns + tokens
|
|
else:
|
|
tokens = memtokens + witokens + prompttkns + tokens
|
|
else:
|
|
# Prepend Memory, WI, and Prompt before action tokens
|
|
tokens = memtokens + witokens + prompttkns + tokens
|
|
|
|
# Send completed bundle to generator
|
|
assert len(tokens) <= vars.max_length - lnsp - vars.genamt - budget_deduction
|
|
ln = len(tokens) + lnsp
|
|
return tokens, ln+1, ln+vars.genamt
|
|
|
|
#==================================================================#
|
|
# Take submitted text and build the text to be given to generator
|
|
#==================================================================#
|
|
def calcsubmit(txt):
|
|
anotetxt = "" # Placeholder for Author's Note text
|
|
forceanote = False # In case we don't have enough actions to hit A.N. depth
|
|
anoteadded = False # In case our budget runs out before we hit A.N. depth
|
|
actionlen = len(vars.actions)
|
|
|
|
winfo, mem, anotetxt, found_entries = calcsubmitbudgetheader(txt)
|
|
|
|
# For all transformers models
|
|
if(vars.model != "InferKit"):
|
|
subtxt, min, max = calcsubmitbudget(actionlen, winfo, mem, anotetxt, vars.actions, submission=txt)
|
|
if(actionlen == 0):
|
|
if(not vars.model in ["Colab", "OAI", "TPUMeshTransformerGPTJ"]):
|
|
generate(subtxt, min, max, found_entries=found_entries)
|
|
elif(vars.model == "Colab"):
|
|
sendtocolab(tokenizer.decode(subtxt), min, max)
|
|
elif(vars.model == "OAI"):
|
|
oairequest(tokenizer.decode(subtxt), min, max)
|
|
elif(vars.model == "TPUMeshTransformerGPTJ"):
|
|
tpumtjgenerate(subtxt, min, max, found_entries=found_entries)
|
|
else:
|
|
if(not vars.model in ["Colab", "OAI", "TPUMeshTransformerGPTJ"]):
|
|
generate(subtxt, min, max, found_entries=found_entries)
|
|
elif(vars.model == "Colab"):
|
|
sendtocolab(tokenizer.decode(subtxt), min, max)
|
|
elif(vars.model == "OAI"):
|
|
oairequest(tokenizer.decode(subtxt), min, max)
|
|
elif(vars.model == "TPUMeshTransformerGPTJ"):
|
|
tpumtjgenerate(subtxt, min, max, found_entries=found_entries)
|
|
|
|
# For InferKit web API
|
|
else:
|
|
# Check if we have the action depth to hit our A.N. depth
|
|
if(anotetxt != "" and actionlen < vars.andepth):
|
|
forceanote = True
|
|
|
|
if(vars.useprompt):
|
|
budget = vars.ikmax - len(vars.comregex_ai.sub('', vars.prompt)) - len(anotetxt) - len(mem) - len(winfo) - 1
|
|
else:
|
|
budget = vars.ikmax - len(anotetxt) - len(mem) - len(winfo) - 1
|
|
|
|
subtxt = ""
|
|
prompt = vars.comregex_ai.sub('', vars.prompt)
|
|
n = 0
|
|
for key in reversed(vars.actions):
|
|
chunk = vars.actions[key]
|
|
|
|
if(budget <= 0):
|
|
break
|
|
actlen = len(chunk)
|
|
if(actlen < budget):
|
|
subtxt = chunk + subtxt
|
|
budget -= actlen
|
|
else:
|
|
count = budget * -1
|
|
subtxt = chunk[count:] + subtxt
|
|
budget = 0
|
|
break
|
|
|
|
# If we're not using the prompt every time and there's still budget left,
|
|
# add some prompt.
|
|
if(not vars.useprompt):
|
|
if(budget > 0):
|
|
prompt = vars.comregex_ai.sub('', vars.prompt)[-budget:]
|
|
else:
|
|
prompt = ""
|
|
|
|
# Inject Author's Note if we've reached the desired depth
|
|
if(n == vars.andepth-1):
|
|
if(anotetxt != ""):
|
|
subtxt = anotetxt + subtxt # A.N. len already taken from bdgt
|
|
anoteadded = True
|
|
n += 1
|
|
|
|
# Did we get to add the A.N.? If not, do it here
|
|
if(anotetxt != ""):
|
|
if((not anoteadded) or forceanote):
|
|
subtxt = mem + winfo + anotetxt + prompt + subtxt
|
|
else:
|
|
subtxt = mem + winfo + prompt + subtxt
|
|
else:
|
|
subtxt = mem + winfo + prompt + subtxt
|
|
|
|
# Send it!
|
|
ikrequest(subtxt)
|
|
|
|
#==================================================================#
|
|
# Send text to generator and deal with output
|
|
#==================================================================#
|
|
|
|
def _generate(txt, minimum, maximum, found_entries):
|
|
gen_in = torch.tensor(txt, dtype=torch.long)[None]
|
|
if(vars.sp is not None):
|
|
soft_tokens = torch.arange(
|
|
model.config.vocab_size,
|
|
model.config.vocab_size + vars.sp.shape[0],
|
|
)
|
|
gen_in = torch.cat((soft_tokens[None], gen_in), dim=-1)
|
|
assert gen_in.shape[-1] + vars.genamt <= vars.max_length
|
|
|
|
if(vars.hascuda and vars.usegpu):
|
|
gen_in = gen_in.to(vars.gpu_device)
|
|
elif(vars.hascuda and vars.breakmodel):
|
|
gen_in = gen_in.to(breakmodel.primary_device)
|
|
else:
|
|
gen_in = gen_in.to('cpu')
|
|
|
|
model.kai_scanner_head_length = gen_in.shape[-1]
|
|
model.kai_scanner_excluded_world_info = found_entries
|
|
|
|
vars._actions = vars.actions
|
|
vars._prompt = vars.prompt
|
|
if(vars.dynamicscan):
|
|
vars._actions = vars._actions.copy()
|
|
|
|
with torch.no_grad():
|
|
already_generated = 0
|
|
numseqs = vars.numseqs
|
|
while True:
|
|
genout = generator(
|
|
gen_in,
|
|
do_sample=True,
|
|
min_length=minimum,
|
|
max_length=int(2e9),
|
|
repetition_penalty=1.1,
|
|
bad_words_ids=vars.badwordsids,
|
|
use_cache=True,
|
|
num_return_sequences=numseqs
|
|
)
|
|
already_generated += len(genout[0]) - len(gen_in[0])
|
|
assert already_generated <= vars.genamt
|
|
if(model.kai_scanner.halt or not model.kai_scanner.regeneration_required):
|
|
break
|
|
assert genout.ndim >= 2
|
|
assert genout.shape[0] == vars.numseqs
|
|
if(vars.lua_koboldbridge.generated_cols and vars.generated_tkns != vars.lua_koboldbridge.generated_cols):
|
|
raise RuntimeError("Inconsistency detected between KoboldAI Python and Lua backends")
|
|
if(already_generated != vars.generated_tkns):
|
|
raise RuntimeError("WI scanning error")
|
|
for r in range(vars.numseqs):
|
|
for c in range(already_generated):
|
|
assert vars.lua_koboldbridge.generated[r+1][c+1] is not None
|
|
genout[r][genout.shape[-1] - already_generated + c] = vars.lua_koboldbridge.generated[r+1][c+1]
|
|
encoded = []
|
|
for i in range(vars.numseqs):
|
|
txt = tokenizer.decode(genout[i, -already_generated:])
|
|
winfo, mem, anotetxt, _found_entries = calcsubmitbudgetheader(txt, force_use_txt=True)
|
|
found_entries[i].update(_found_entries)
|
|
txt, _, _ = calcsubmitbudget(len(vars._actions), winfo, mem, anotetxt, vars._actions, submission=txt)
|
|
encoded.append(torch.tensor(txt, dtype=torch.long, device=genout.device))
|
|
max_length = len(max(encoded, key=len))
|
|
encoded = torch.stack(tuple(torch.nn.functional.pad(e, (max_length - len(e), 0), value=model.config.pad_token_id or model.config.eos_token_id) for e in encoded))
|
|
genout = torch.cat(
|
|
(
|
|
encoded,
|
|
genout[..., -already_generated:],
|
|
),
|
|
dim=-1
|
|
)
|
|
if(vars.sp is not None):
|
|
soft_tokens = torch.arange(
|
|
model.config.vocab_size,
|
|
model.config.vocab_size + vars.sp.shape[0],
|
|
device=genout.device,
|
|
)
|
|
genout = torch.cat((soft_tokens.tile(vars.numseqs, 1), genout), dim=-1)
|
|
assert genout.shape[-1] + vars.genamt - already_generated <= vars.max_length
|
|
diff = genout.shape[-1] - gen_in.shape[-1]
|
|
minimum += diff
|
|
maximum += diff
|
|
gen_in = genout
|
|
model.kai_scanner_head_length = encoded.shape[-1]
|
|
numseqs = 1
|
|
|
|
return genout, already_generated
|
|
|
|
|
|
def generate(txt, minimum, maximum, found_entries=None):
|
|
vars.generated_tkns = 0
|
|
|
|
if(found_entries is None):
|
|
found_entries = set()
|
|
found_entries = tuple(found_entries.copy() for _ in range(vars.numseqs))
|
|
|
|
print("{0}Min:{1}, Max:{2}, Txt:{3}{4}".format(colors.YELLOW, minimum, maximum, tokenizer.decode(txt), colors.END))
|
|
|
|
# Store context in memory to use it for comparison with generated content
|
|
vars.lastctx = tokenizer.decode(txt)
|
|
|
|
# Clear CUDA cache if using GPU
|
|
if(vars.hascuda and (vars.usegpu or vars.breakmodel)):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
# Submit input text to generator
|
|
try:
|
|
genout, already_generated = tpool.execute(_generate, txt, minimum, maximum, found_entries)
|
|
except Exception as e:
|
|
if(issubclass(type(e), lupa.LuaError)):
|
|
vars.lua_koboldbridge.obliterate_multiverse()
|
|
vars.lua_running = False
|
|
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error, please check console.'}, broadcast=True)
|
|
sendUSStatItems()
|
|
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
|
|
else:
|
|
emit('from_server', {'cmd': 'errmsg', 'data': 'Error occured during generator call, please check console.'}, broadcast=True)
|
|
print("{0}{1}{2}".format(colors.RED, traceback.format_exc().replace("\033", ""), colors.END), file=sys.stderr)
|
|
set_aibusy(0)
|
|
return
|
|
|
|
for i in range(vars.numseqs):
|
|
vars.lua_koboldbridge.generated[i+1][vars.generated_tkns] = int(genout[i, -1].item())
|
|
vars.lua_koboldbridge.outputs[i+1] = tokenizer.decode(genout[i, -already_generated:])
|
|
|
|
execute_outmod()
|
|
if(vars.lua_koboldbridge.regeneration_required):
|
|
vars.lua_koboldbridge.regeneration_required = False
|
|
genout = []
|
|
for i in range(vars.numseqs):
|
|
genout.append({"generated_text": vars.lua_koboldbridge.outputs[i+1]})
|
|
assert type(genout[-1]["generated_text"]) is str
|
|
else:
|
|
genout = [{"generated_text": tokenizer.decode(tokens[-already_generated:])} for tokens in genout]
|
|
|
|
if(len(genout) == 1):
|
|
genresult(genout[0]["generated_text"])
|
|
else:
|
|
if(vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0):
|
|
genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"])
|
|
else:
|
|
genselect(genout)
|
|
|
|
# Clear CUDA cache again if using GPU
|
|
if(vars.hascuda and (vars.usegpu or vars.breakmodel)):
|
|
del genout
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
set_aibusy(0)
|
|
|
|
#==================================================================#
|
|
# Deal with a single return sequence from generate()
|
|
#==================================================================#
|
|
def genresult(genout, flash=True):
|
|
print("{0}{1}{2}".format(colors.CYAN, genout, colors.END))
|
|
|
|
# Format output before continuing
|
|
genout = applyoutputformatting(genout)
|
|
|
|
vars.lua_koboldbridge.feedback = genout
|
|
|
|
if(len(genout) == 0):
|
|
return
|
|
|
|
# Add formatted text to Actions array and refresh the game screen
|
|
if(len(vars.prompt.strip()) == 0):
|
|
vars.prompt = genout
|
|
else:
|
|
vars.actions.append(genout)
|
|
update_story_chunk('last')
|
|
if(flash):
|
|
emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1 if len(vars.actions) else 0}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Send generator sequences to the UI for selection
|
|
#==================================================================#
|
|
def genselect(genout):
|
|
i = 0
|
|
for result in genout:
|
|
# Apply output formatting rules to sequences
|
|
result["generated_text"] = applyoutputformatting(result["generated_text"])
|
|
print("{0}[Result {1}]\n{2}{3}".format(colors.CYAN, i, result["generated_text"], colors.END))
|
|
i += 1
|
|
|
|
# Store sequences in memory until selection is made
|
|
vars.genseqs = genout
|
|
|
|
# Send sequences to UI for selection
|
|
emit('from_server', {'cmd': 'genseqs', 'data': genout}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Send selected sequence to action log and refresh UI
|
|
#==================================================================#
|
|
def selectsequence(n):
|
|
if(len(vars.genseqs) == 0):
|
|
return
|
|
vars.lua_koboldbridge.feedback = vars.genseqs[int(n)]["generated_text"]
|
|
if(len(vars.lua_koboldbridge.feedback) != 0):
|
|
vars.actions.append(vars.lua_koboldbridge.feedback)
|
|
update_story_chunk('last')
|
|
emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1 if len(vars.actions) else 0}, broadcast=True)
|
|
emit('from_server', {'cmd': 'hidegenseqs', 'data': ''}, broadcast=True)
|
|
vars.genseqs = []
|
|
|
|
if(vars.lua_koboldbridge.restart_sequence is not None):
|
|
actionsubmit("", actionmode=vars.actionmode, force_submit=True, disable_recentrng=True)
|
|
|
|
#==================================================================#
|
|
# Send transformers-style request to ngrok/colab host
|
|
#==================================================================#
|
|
def sendtocolab(txt, min, max):
|
|
# Log request to console
|
|
print("{0}Tokens:{1}, Txt:{2}{3}".format(colors.YELLOW, min-1, txt, colors.END))
|
|
|
|
# Store context in memory to use it for comparison with generated content
|
|
vars.lastctx = txt
|
|
|
|
# Build request JSON data
|
|
reqdata = {
|
|
'text': txt,
|
|
'min': min,
|
|
'max': max,
|
|
'rep_pen': vars.rep_pen,
|
|
'temperature': vars.temp,
|
|
'top_p': vars.top_p,
|
|
'top_k': vars.top_k,
|
|
'tfs': vars.tfs,
|
|
'numseqs': vars.numseqs,
|
|
'retfultxt': False
|
|
}
|
|
|
|
# Create request
|
|
req = requests.post(
|
|
vars.colaburl,
|
|
json = reqdata
|
|
)
|
|
|
|
# Deal with the response
|
|
if(req.status_code == 200):
|
|
js = req.json()["data"]
|
|
|
|
# Try to be backwards compatible with outdated colab
|
|
if("text" in js):
|
|
genout = [getnewcontent(js["text"])]
|
|
else:
|
|
genout = js["seqs"]
|
|
|
|
for i in range(vars.numseqs):
|
|
vars.lua_koboldbridge.outputs[i+1] = genout[i]
|
|
|
|
execute_outmod()
|
|
if(vars.lua_koboldbridge.regeneration_required):
|
|
vars.lua_koboldbridge.regeneration_required = False
|
|
genout = []
|
|
for i in range(vars.numseqs):
|
|
genout.append(vars.lua_koboldbridge.outputs[i+1])
|
|
assert type(genout[-1]) is str
|
|
|
|
if(len(genout) == 1):
|
|
genresult(genout[0])
|
|
else:
|
|
# Convert torch output format to transformers
|
|
seqs = []
|
|
for seq in genout:
|
|
seqs.append({"generated_text": seq})
|
|
if(vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0):
|
|
genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"])
|
|
else:
|
|
genselect(genout)
|
|
|
|
# Format output before continuing
|
|
#genout = applyoutputformatting(getnewcontent(genout))
|
|
|
|
# Add formatted text to Actions array and refresh the game screen
|
|
#vars.actions.append(genout)
|
|
#refresh_story()
|
|
#emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1 if len(vars.actions) else 0})
|
|
|
|
set_aibusy(0)
|
|
else:
|
|
errmsg = "Colab API Error: Failed to get a reply from the server. Please check the colab console."
|
|
print("{0}{1}{2}".format(colors.RED, errmsg, colors.END))
|
|
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
|
|
set_aibusy(0)
|
|
|
|
#==================================================================#
|
|
# Send text to TPU mesh transformer backend
|
|
#==================================================================#
|
|
def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
|
|
if(found_entries is None):
|
|
found_entries = set()
|
|
found_entries = tuple(found_entries.copy() for _ in range(vars.numseqs))
|
|
|
|
print("{0}Min:{1}, Max:{2}, Txt:{3}{4}".format(colors.YELLOW, minimum, maximum, tokenizer.decode(txt), colors.END))
|
|
|
|
# Submit input text to generator
|
|
try:
|
|
if(vars.dynamicscan):
|
|
raise ValueError("Dynamic world info scanning is not supported by the TPU backend yet")
|
|
|
|
soft_tokens = tpumtjgetsofttokens()
|
|
|
|
genout = tpool.execute(
|
|
tpu_mtj_backend.infer,
|
|
np.uint32(txt),
|
|
gen_len = maximum-minimum+1,
|
|
temp=vars.temp,
|
|
top_p=vars.top_p,
|
|
top_k=vars.top_k,
|
|
tfs=vars.tfs,
|
|
numseqs=vars.numseqs,
|
|
repetition_penalty=vars.rep_pen,
|
|
soft_embeddings=vars.sp,
|
|
soft_tokens=soft_tokens,
|
|
)
|
|
|
|
except Exception as e:
|
|
if(issubclass(type(e), lupa.LuaError)):
|
|
vars.lua_koboldbridge.obliterate_multiverse()
|
|
vars.lua_running = False
|
|
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error, please check console.'}, broadcast=True)
|
|
sendUSStatItems()
|
|
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
|
|
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
|
|
else:
|
|
emit('from_server', {'cmd': 'errmsg', 'data': 'Error occured during generator call, please check console.'}, broadcast=True)
|
|
print("{0}{1}{2}".format(colors.RED, traceback.format_exc().replace("\033", ""), colors.END), file=sys.stderr)
|
|
set_aibusy(0)
|
|
return
|
|
|
|
for i in range(vars.numseqs):
|
|
vars.lua_koboldbridge.generated[i+1] = vars.lua_state.table(*genout[i].tolist())
|
|
vars.lua_koboldbridge.outputs[i+1] = tokenizer.decode(genout[i])
|
|
|
|
execute_outmod()
|
|
if(vars.lua_koboldbridge.regeneration_required):
|
|
vars.lua_koboldbridge.regeneration_required = False
|
|
genout = []
|
|
for i in range(vars.numseqs):
|
|
genout.append({"generated_text": vars.lua_koboldbridge.outputs[i+1]})
|
|
assert type(genout[-1]["generated_text"]) is str
|
|
else:
|
|
genout = [{"generated_text": tokenizer.decode(txt)} for txt in genout]
|
|
|
|
if(len(genout) == 1):
|
|
genresult(genout[0]["generated_text"])
|
|
else:
|
|
if(vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0):
|
|
genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"])
|
|
else:
|
|
genselect(genout)
|
|
|
|
set_aibusy(0)
|
|
|
|
|
|
#==================================================================#
|
|
# Replaces returns and newlines with HTML breaks
|
|
#==================================================================#
|
|
def formatforhtml(txt):
|
|
return txt.replace("\\r\\n", "<br/>").replace("\\r", "<br/>").replace("\\n", "<br/>").replace("\r\n", "<br/>").replace('\n', '<br/>').replace('\r', '<br/>')
|
|
|
|
#==================================================================#
|
|
# Strips submitted text from the text returned by the AI
|
|
#==================================================================#
|
|
def getnewcontent(txt):
|
|
# If the submitted context was blank, then everything is new
|
|
if(vars.lastctx == ""):
|
|
return txt
|
|
|
|
# Tokenize the last context and the generated content
|
|
ctxtokens = tokenizer.encode(vars.lastctx, max_length=int(2e9), truncation=True)
|
|
txttokens = tokenizer.encode(txt, max_length=int(2e9), truncation=True)
|
|
dif = (len(txttokens) - len(ctxtokens)) * -1
|
|
|
|
# Remove the context from the returned text
|
|
newtokens = txttokens[dif:]
|
|
|
|
return tokenizer.decode(newtokens)
|
|
|
|
#==================================================================#
|
|
# Applies chosen formatting options to text submitted to AI
|
|
#==================================================================#
|
|
def applyinputformatting(txt):
|
|
# Add sentence spacing
|
|
if(vars.formatoptns["frmtadsnsp"]):
|
|
txt = utils.addsentencespacing(txt, vars)
|
|
|
|
return txt
|
|
|
|
#==================================================================#
|
|
# Applies chosen formatting options to text returned from AI
|
|
#==================================================================#
|
|
def applyoutputformatting(txt):
|
|
# Use standard quotes and apostrophes
|
|
txt = utils.fixquotes(txt)
|
|
|
|
# Adventure mode clipping of all characters after '>'
|
|
if(vars.adventure):
|
|
txt = vars.acregex_ai.sub('', txt)
|
|
|
|
# Trim incomplete sentences
|
|
if(vars.formatoptns["frmttriminc"] and not vars.chatmode):
|
|
txt = utils.trimincompletesentence(txt)
|
|
# Replace blank lines
|
|
if(vars.formatoptns["frmtrmblln"] or vars.chatmode):
|
|
txt = utils.replaceblanklines(txt)
|
|
# Remove special characters
|
|
if(vars.formatoptns["frmtrmspch"]):
|
|
txt = utils.removespecialchars(txt, vars)
|
|
# Single Line Mode
|
|
if(vars.formatoptns["singleline"] or vars.chatmode):
|
|
txt = utils.singlelineprocessing(txt, vars)
|
|
|
|
return txt
|
|
|
|
#==================================================================#
|
|
# Sends the current story content to the Game Screen
|
|
#==================================================================#
|
|
def refresh_story():
|
|
text_parts = ['<chunk n="0" id="n0" tabindex="-1">', vars.comregex_ui.sub(lambda m: '\n'.join('<comment>' + l + '</comment>' for l in m.group().split('\n')), html.escape(vars.prompt)), '</chunk>']
|
|
for idx in vars.actions:
|
|
item = vars.actions[idx]
|
|
idx += 1
|
|
item = html.escape(item)
|
|
item = vars.comregex_ui.sub(lambda m: '\n'.join('<comment>' + l + '</comment>' for l in m.group().split('\n')), item) # Add special formatting to comments
|
|
item = vars.acregex_ui.sub('<action>\\1</action>', item) # Add special formatting to adventure actions
|
|
text_parts.extend(('<chunk n="', str(idx), '" id="n', str(idx), '" tabindex="-1">', item, '</chunk>'))
|
|
emit('from_server', {'cmd': 'updatescreen', 'gamestarted': vars.gamestarted, 'data': formatforhtml(''.join(text_parts))}, broadcast=True)
|
|
|
|
|
|
#==================================================================#
|
|
# Signals the Game Screen to update one of the chunks
|
|
#==================================================================#
|
|
def update_story_chunk(idx: Union[int, str]):
|
|
if idx == 'last':
|
|
if len(vars.actions) <= 1:
|
|
# In this case, we are better off just refreshing the whole thing as the
|
|
# prompt might not have been shown yet (with a "Generating story..."
|
|
# message instead).
|
|
refresh_story()
|
|
return
|
|
|
|
idx = (vars.actions.get_last_key() if len(vars.actions) else 0) + 1
|
|
|
|
if idx == 0:
|
|
text = vars.prompt
|
|
else:
|
|
# Actions are 0 based, but in chunks 0 is the prompt.
|
|
# So the chunk index is one more than the corresponding action index.
|
|
text = vars.actions[idx - 1]
|
|
|
|
item = html.escape(text)
|
|
item = vars.comregex_ui.sub(lambda m: '\n'.join('<comment>' + l + '</comment>' for l in m.group().split('\n')), item) # Add special formatting to comments
|
|
item = vars.acregex_ui.sub('<action>\\1</action>', item) # Add special formatting to adventure actions
|
|
|
|
chunk_text = f'<chunk n="{idx}" id="n{idx}" tabindex="-1">{formatforhtml(item)}</chunk>'
|
|
emit('from_server', {'cmd': 'updatechunk', 'data': {'index': idx, 'html': chunk_text}}, broadcast=True)
|
|
|
|
|
|
#==================================================================#
|
|
# Signals the Game Screen to remove one of the chunks
|
|
#==================================================================#
|
|
def remove_story_chunk(idx: int):
|
|
emit('from_server', {'cmd': 'removechunk', 'data': idx}, broadcast=True)
|
|
|
|
|
|
#==================================================================#
|
|
# Sends the current generator settings to the Game Menu
|
|
#==================================================================#
|
|
def refresh_settings():
|
|
# Suppress toggle change events while loading state
|
|
emit('from_server', {'cmd': 'allowtoggle', 'data': False}, broadcast=True)
|
|
|
|
if(vars.model != "InferKit"):
|
|
emit('from_server', {'cmd': 'updatetemp', 'data': vars.temp}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatetopp', 'data': vars.top_p}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatetopk', 'data': vars.top_k}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatetfs', 'data': vars.tfs}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatereppen', 'data': vars.rep_pen}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updateoutlen', 'data': vars.genamt}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatetknmax', 'data': vars.max_length}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatenumseq', 'data': vars.numseqs}, broadcast=True)
|
|
else:
|
|
emit('from_server', {'cmd': 'updatetemp', 'data': vars.temp}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatetopp', 'data': vars.top_p}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updateikgen', 'data': vars.ikgen}, broadcast=True)
|
|
|
|
emit('from_server', {'cmd': 'updateanotedepth', 'data': vars.andepth}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatewidepth', 'data': vars.widepth}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updateuseprompt', 'data': vars.useprompt}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updateadventure', 'data': vars.adventure}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatechatmode', 'data': vars.chatmode}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatedynamicscan', 'data': vars.dynamicscan}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatenopromptgen', 'data': vars.nopromptgen}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updaterngpersist', 'data': vars.rngpersist}, broadcast=True)
|
|
|
|
emit('from_server', {'cmd': 'updatefrmttriminc', 'data': vars.formatoptns["frmttriminc"]}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatefrmtrmblln', 'data': vars.formatoptns["frmtrmblln"]}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatefrmtrmspch', 'data': vars.formatoptns["frmtrmspch"]}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatefrmtadsnsp', 'data': vars.formatoptns["frmtadsnsp"]}, broadcast=True)
|
|
emit('from_server', {'cmd': 'updatesingleline', 'data': vars.formatoptns["singleline"]}, broadcast=True)
|
|
|
|
# Allow toggle events again
|
|
emit('from_server', {'cmd': 'allowtoggle', 'data': True}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Sets the logical and display states for the AI Busy condition
|
|
#==================================================================#
|
|
def set_aibusy(state):
|
|
if(state):
|
|
vars.aibusy = True
|
|
emit('from_server', {'cmd': 'setgamestate', 'data': 'wait'}, broadcast=True)
|
|
else:
|
|
vars.aibusy = False
|
|
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def editrequest(n):
|
|
if(n == 0):
|
|
txt = vars.prompt
|
|
else:
|
|
txt = vars.actions[n-1]
|
|
|
|
vars.editln = n
|
|
emit('from_server', {'cmd': 'setinputtext', 'data': txt}, broadcast=True)
|
|
emit('from_server', {'cmd': 'enablesubmit', 'data': ''}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def editsubmit(data):
|
|
vars.recentedit = True
|
|
if(vars.editln == 0):
|
|
vars.prompt = data
|
|
else:
|
|
vars.actions[vars.editln-1] = data
|
|
|
|
vars.mode = "play"
|
|
update_story_chunk(vars.editln)
|
|
emit('from_server', {'cmd': 'texteffect', 'data': vars.editln}, broadcast=True)
|
|
emit('from_server', {'cmd': 'editmode', 'data': 'false'})
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def deleterequest():
|
|
vars.recentedit = True
|
|
# Don't delete prompt
|
|
if(vars.editln == 0):
|
|
# Send error message
|
|
pass
|
|
else:
|
|
del vars.actions[vars.editln-1]
|
|
vars.mode = "play"
|
|
remove_story_chunk(vars.editln)
|
|
emit('from_server', {'cmd': 'editmode', 'data': 'false'})
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def inlineedit(chunk, data):
|
|
vars.recentedit = True
|
|
chunk = int(chunk)
|
|
if(chunk == 0):
|
|
if(len(data.strip()) == 0):
|
|
return
|
|
vars.prompt = data
|
|
else:
|
|
if(chunk-1 in vars.actions):
|
|
vars.actions[chunk-1] = data
|
|
|
|
update_story_chunk(chunk)
|
|
emit('from_server', {'cmd': 'texteffect', 'data': chunk}, broadcast=True)
|
|
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def inlinedelete(chunk):
|
|
vars.recentedit = True
|
|
chunk = int(chunk)
|
|
# Don't delete prompt
|
|
if(chunk == 0):
|
|
# Send error message
|
|
update_story_chunk(chunk)
|
|
emit('from_server', {'cmd': 'errmsg', 'data': "Cannot delete the prompt."})
|
|
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
|
|
else:
|
|
if(chunk-1 in vars.actions):
|
|
del vars.actions[chunk-1]
|
|
remove_story_chunk(chunk)
|
|
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Toggles the game mode for memory editing and sends UI commands
|
|
#==================================================================#
|
|
def togglememorymode():
|
|
if(vars.mode == "play"):
|
|
vars.mode = "memory"
|
|
emit('from_server', {'cmd': 'memmode', 'data': 'true'}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setinputtext', 'data': vars.memory}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True)
|
|
elif(vars.mode == "memory"):
|
|
vars.mode = "play"
|
|
emit('from_server', {'cmd': 'memmode', 'data': 'false'}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Toggles the game mode for WI editing and sends UI commands
|
|
#==================================================================#
|
|
def togglewimode():
|
|
if(vars.mode == "play"):
|
|
vars.mode = "wi"
|
|
emit('from_server', {'cmd': 'wimode', 'data': 'true'}, broadcast=True)
|
|
elif(vars.mode == "wi"):
|
|
# Commit WI fields first
|
|
requestwi()
|
|
# Then set UI state back to Play
|
|
vars.mode = "play"
|
|
emit('from_server', {'cmd': 'wimode', 'data': 'false'}, broadcast=True)
|
|
sendwi()
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def addwiitem(folder_uid=None):
|
|
assert folder_uid is None or folder_uid in vars.wifolders_d
|
|
ob = {"key": "", "keysecondary": "", "content": "", "comment": "", "folder": folder_uid, "num": len(vars.worldinfo), "init": False, "selective": False, "constant": False}
|
|
vars.worldinfo.append(ob)
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.worldinfo_u):
|
|
break
|
|
vars.worldinfo_u[uid] = vars.worldinfo[-1]
|
|
vars.worldinfo[-1]["uid"] = uid
|
|
if(folder_uid is not None):
|
|
vars.wifolders_u[folder_uid].append(vars.worldinfo[-1])
|
|
emit('from_server', {'cmd': 'addwiitem', 'data': ob}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Creates a new WI folder with an unused cryptographically secure random UID
|
|
#==================================================================#
|
|
def addwifolder():
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.wifolders_d):
|
|
break
|
|
ob = {"name": "", "collapsed": False}
|
|
vars.wifolders_d[uid] = ob
|
|
vars.wifolders_l.append(uid)
|
|
vars.wifolders_u[uid] = []
|
|
emit('from_server', {'cmd': 'addwifolder', 'uid': uid, 'data': ob}, broadcast=True)
|
|
addwiitem(folder_uid=uid)
|
|
|
|
#==================================================================#
|
|
# Move the WI entry with UID src so that it immediately precedes
|
|
# the WI entry with UID dst
|
|
#==================================================================#
|
|
def movewiitem(dst, src):
|
|
if(vars.worldinfo_u[src]["folder"] is not None):
|
|
for i, e in enumerate(vars.wifolders_u[vars.worldinfo_u[src]["folder"]]):
|
|
if(e is vars.worldinfo_u[src]):
|
|
vars.wifolders_u[vars.worldinfo_u[src]["folder"]].pop(i)
|
|
break
|
|
if(vars.worldinfo_u[dst]["folder"] is not None):
|
|
vars.wifolders_u[vars.worldinfo_u[dst]["folder"]].append(vars.worldinfo_u[src])
|
|
vars.worldinfo_u[src]["folder"] = vars.worldinfo_u[dst]["folder"]
|
|
for i, e in enumerate(vars.worldinfo):
|
|
if(e is vars.worldinfo_u[src]):
|
|
_src = i
|
|
elif(e is vars.worldinfo_u[dst]):
|
|
_dst = i
|
|
vars.worldinfo.insert(_dst - (_dst >= _src), vars.worldinfo.pop(_src))
|
|
sendwi()
|
|
|
|
#==================================================================#
|
|
# Move the WI folder with UID src so that it immediately precedes
|
|
# the WI folder with UID dst
|
|
#==================================================================#
|
|
def movewifolder(dst, src):
|
|
vars.wifolders_l.remove(src)
|
|
if(dst is None):
|
|
# If dst is None, that means we should move src to be the last folder
|
|
vars.wifolders_l.append(src)
|
|
else:
|
|
vars.wifolders_l.insert(vars.wifolders_l.index(dst), src)
|
|
sendwi()
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def sendwi():
|
|
# Cache len of WI
|
|
ln = len(vars.worldinfo)
|
|
|
|
# Clear contents of WI container
|
|
emit('from_server', {'cmd': 'wistart', 'wifolders_d': vars.wifolders_d, 'wifolders_l': vars.wifolders_l, 'data': ''}, broadcast=True)
|
|
|
|
# Stable-sort WI entries in order of folder
|
|
stablesortwi()
|
|
|
|
vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]]
|
|
|
|
# If there are no WI entries, send an empty WI object
|
|
if(ln == 0):
|
|
addwiitem()
|
|
else:
|
|
# Send contents of WI array
|
|
last_folder = ...
|
|
for wi in vars.worldinfo:
|
|
if(wi["folder"] != last_folder):
|
|
emit('from_server', {'cmd': 'addwifolder', 'uid': wi["folder"], 'data': vars.wifolders_d[wi["folder"]] if wi["folder"] is not None else None}, broadcast=True)
|
|
last_folder = wi["folder"]
|
|
ob = wi
|
|
emit('from_server', {'cmd': 'addwiitem', 'data': ob}, broadcast=True)
|
|
|
|
emit('from_server', {'cmd': 'wifinish', 'data': ''}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Request current contents of all WI HTML elements
|
|
#==================================================================#
|
|
def requestwi():
|
|
list = []
|
|
for wi in vars.worldinfo:
|
|
list.append(wi["num"])
|
|
emit('from_server', {'cmd': 'requestwiitem', 'data': list})
|
|
|
|
#==================================================================#
|
|
# Stable-sort WI items so that items in the same folder are adjacent,
|
|
# and items in different folders are sorted based on the order of the folders
|
|
#==================================================================#
|
|
def stablesortwi():
|
|
mapping = {uid: index for index, uid in enumerate(vars.wifolders_l)}
|
|
vars.worldinfo.sort(key=lambda x: mapping[x["folder"]] if x["folder"] is not None else float("inf"))
|
|
last_folder = ...
|
|
last_wi = None
|
|
for i, wi in enumerate(vars.worldinfo):
|
|
wi["num"] = i
|
|
wi["init"] = True
|
|
if(wi["folder"] != last_folder):
|
|
if(last_wi is not None and last_folder is not ...):
|
|
last_wi["init"] = False
|
|
last_folder = wi["folder"]
|
|
last_wi = wi
|
|
if(last_wi is not None):
|
|
last_wi["init"] = False
|
|
for folder in vars.wifolders_u:
|
|
vars.wifolders_u[folder].sort(key=lambda x: x["num"])
|
|
|
|
#==================================================================#
|
|
# Extract object from server and send it to WI objects
|
|
#==================================================================#
|
|
def commitwi(ar):
|
|
for ob in ar:
|
|
ob["uid"] = int(ob["uid"])
|
|
vars.worldinfo_u[ob["uid"]]["key"] = ob["key"]
|
|
vars.worldinfo_u[ob["uid"]]["keysecondary"] = ob["keysecondary"]
|
|
vars.worldinfo_u[ob["uid"]]["content"] = ob["content"]
|
|
vars.worldinfo_u[ob["uid"]]["comment"] = ob.get("comment", "")
|
|
vars.worldinfo_u[ob["uid"]]["folder"] = ob.get("folder", None)
|
|
vars.worldinfo_u[ob["uid"]]["selective"] = ob["selective"]
|
|
vars.worldinfo_u[ob["uid"]]["constant"] = ob.get("constant", False)
|
|
stablesortwi()
|
|
vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]]
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def deletewi(uid):
|
|
if(uid in vars.worldinfo_u):
|
|
# Store UID of deletion request
|
|
vars.deletewi = uid
|
|
if(vars.deletewi is not None):
|
|
if(vars.worldinfo_u[vars.deletewi]["folder"] is not None):
|
|
for i, e in enumerate(vars.wifolders_u[vars.worldinfo_u[vars.deletewi]["folder"]]):
|
|
if(e is vars.worldinfo_u[vars.deletewi]):
|
|
vars.wifolders_u[vars.worldinfo_u[vars.deletewi]["folder"]].pop(i)
|
|
for i, e in enumerate(vars.worldinfo):
|
|
if(e is vars.worldinfo_u[vars.deletewi]):
|
|
del vars.worldinfo[i]
|
|
break
|
|
del vars.worldinfo_u[vars.deletewi]
|
|
# Send the new WI array structure
|
|
sendwi()
|
|
# And reset deletewi
|
|
vars.deletewi = None
|
|
|
|
#==================================================================#
|
|
#
|
|
#==================================================================#
|
|
def deletewifolder(uid):
|
|
uid = int(uid)
|
|
del vars.wifolders_u[uid]
|
|
del vars.wifolders_d[uid]
|
|
del vars.wifolders_l[vars.wifolders_l.index(uid)]
|
|
# Delete uninitialized entries in the folder we're going to delete
|
|
vars.worldinfo = [wi for wi in vars.worldinfo if wi["folder"] != uid or wi["init"]]
|
|
vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]]
|
|
# Move WI entries that are inside of the folder we're going to delete
|
|
# so that they're outside of all folders
|
|
for wi in vars.worldinfo:
|
|
if(wi["folder"] == uid):
|
|
wi["folder"] = None
|
|
|
|
sendwi()
|
|
|
|
#==================================================================#
|
|
# Look for WI keys in text to generator
|
|
#==================================================================#
|
|
def checkworldinfo(txt, allowed_entries=None, allowed_folders=None, force_use_txt=False, scan_story=True):
|
|
original_txt = txt
|
|
|
|
# Dont go any further if WI is empty
|
|
if(len(vars.worldinfo) == 0):
|
|
return "", set()
|
|
|
|
# Cache actions length
|
|
ln = len(vars.actions)
|
|
|
|
# Don't bother calculating action history if widepth is 0
|
|
if(vars.widepth > 0 and scan_story):
|
|
depth = vars.widepth
|
|
# If this is not a continue, add 1 to widepth since submitted
|
|
# text is already in action history @ -1
|
|
if(not force_use_txt and (txt != "" and vars.prompt != txt)):
|
|
txt = ""
|
|
depth += 1
|
|
|
|
if(ln > 0):
|
|
chunks = collections.deque()
|
|
i = 0
|
|
for key in reversed(vars.actions):
|
|
chunk = vars.actions[key]
|
|
chunks.appendleft(chunk)
|
|
i += 1
|
|
if(i == depth):
|
|
break
|
|
|
|
if(ln >= depth):
|
|
txt = "".join(chunks)
|
|
elif(ln > 0):
|
|
txt = vars.comregex_ai.sub('', vars.prompt) + "".join(chunks)
|
|
elif(ln == 0):
|
|
txt = vars.comregex_ai.sub('', vars.prompt)
|
|
|
|
if(force_use_txt):
|
|
txt += original_txt
|
|
|
|
# Scan text for matches on WI keys
|
|
wimem = ""
|
|
found_entries = set()
|
|
for wi in vars.worldinfo:
|
|
if(allowed_entries is not None and wi["uid"] not in allowed_entries):
|
|
continue
|
|
if(allowed_folders is not None and wi["folder"] not in allowed_folders):
|
|
continue
|
|
|
|
if(wi.get("constant", False)):
|
|
wimem = wimem + wi["content"] + "\n"
|
|
found_entries.add(id(wi))
|
|
continue
|
|
|
|
if(len(wi["key"].strip()) > 0 and (not wi.get("selective", False) or len(wi.get("keysecondary", "").strip()) > 0)):
|
|
# Split comma-separated keys
|
|
keys = wi["key"].split(",")
|
|
keys_secondary = wi.get("keysecondary", "").split(",")
|
|
|
|
for k in keys:
|
|
ky = k
|
|
# Remove leading/trailing spaces if the option is enabled
|
|
if(vars.wirmvwhtsp):
|
|
ky = k.strip()
|
|
if ky in txt:
|
|
if wi.get("selective", False) and len(keys_secondary):
|
|
found = False
|
|
for ks in keys_secondary:
|
|
ksy = ks
|
|
if(vars.wirmvwhtsp):
|
|
ksy = ks.strip()
|
|
if ksy in txt:
|
|
wimem = wimem + wi["content"] + "\n"
|
|
found_entries.add(id(wi))
|
|
found = True
|
|
break
|
|
if found:
|
|
break
|
|
else:
|
|
wimem = wimem + wi["content"] + "\n"
|
|
found_entries.add(id(wi))
|
|
break
|
|
|
|
return wimem, found_entries
|
|
|
|
#==================================================================#
|
|
# Commit changes to Memory storage
|
|
#==================================================================#
|
|
def memsubmit(data):
|
|
# Maybe check for length at some point
|
|
# For now just send it to storage
|
|
vars.memory = data
|
|
vars.mode = "play"
|
|
emit('from_server', {'cmd': 'memmode', 'data': 'false'}, broadcast=True)
|
|
|
|
# Ask for contents of Author's Note field
|
|
emit('from_server', {'cmd': 'getanote', 'data': ''})
|
|
|
|
#==================================================================#
|
|
# Commit changes to Author's Note
|
|
#==================================================================#
|
|
def anotesubmit(data, template=""):
|
|
assert type(data) is str and type(template) is str
|
|
# Maybe check for length at some point
|
|
# For now just send it to storage
|
|
vars.authornote = data
|
|
|
|
if(vars.authornotetemplate != template):
|
|
vars.setauthornotetemplate = template
|
|
settingschanged()
|
|
vars.authornotetemplate = template
|
|
|
|
#==================================================================#
|
|
# Assembles game data into a request to InferKit API
|
|
#==================================================================#
|
|
def ikrequest(txt):
|
|
# Log request to console
|
|
print("{0}Len:{1}, Txt:{2}{3}".format(colors.YELLOW, len(txt), txt, colors.END))
|
|
|
|
# Build request JSON data
|
|
reqdata = {
|
|
'forceNoEnd': True,
|
|
'length': vars.ikgen,
|
|
'prompt': {
|
|
'isContinuation': False,
|
|
'text': txt
|
|
},
|
|
'startFromBeginning': False,
|
|
'streamResponse': False,
|
|
'temperature': vars.temp,
|
|
'topP': vars.top_p
|
|
}
|
|
|
|
# Create request
|
|
req = requests.post(
|
|
vars.url,
|
|
json = reqdata,
|
|
headers = {
|
|
'Authorization': 'Bearer '+vars.apikey
|
|
}
|
|
)
|
|
|
|
# Deal with the response
|
|
if(req.status_code == 200):
|
|
genout = req.json()["data"]["text"]
|
|
|
|
vars.lua_koboldbridge.outputs[1] = genout
|
|
|
|
execute_outmod()
|
|
if(vars.lua_koboldbridge.regeneration_required):
|
|
vars.lua_koboldbridge.regeneration_required = False
|
|
genout = vars.lua_koboldbridge.outputs[1]
|
|
assert genout is str
|
|
|
|
print("{0}{1}{2}".format(colors.CYAN, genout, colors.END))
|
|
vars.actions.append(genout)
|
|
update_story_chunk('last')
|
|
emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1 if len(vars.actions) else 0}, broadcast=True)
|
|
|
|
set_aibusy(0)
|
|
else:
|
|
# Send error message to web client
|
|
er = req.json()
|
|
if("error" in er):
|
|
code = er["error"]["extensions"]["code"]
|
|
elif("errors" in er):
|
|
code = er["errors"][0]["extensions"]["code"]
|
|
|
|
errmsg = "InferKit API Error: {0} - {1}".format(req.status_code, code)
|
|
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
|
|
set_aibusy(0)
|
|
|
|
#==================================================================#
|
|
# Assembles game data into a request to OpenAI API
|
|
#==================================================================#
|
|
def oairequest(txt, min, max):
|
|
# Log request to console
|
|
print("{0}Len:{1}, Txt:{2}{3}".format(colors.YELLOW, len(txt), txt, colors.END))
|
|
|
|
# Store context in memory to use it for comparison with generated content
|
|
vars.lastctx = txt
|
|
|
|
# Build request JSON data
|
|
reqdata = {
|
|
'prompt': txt,
|
|
'max_tokens': max,
|
|
'temperature': vars.temp,
|
|
'top_p': vars.top_p,
|
|
'n': 1,
|
|
'stream': False
|
|
}
|
|
|
|
req = requests.post(
|
|
vars.oaiurl,
|
|
json = reqdata,
|
|
headers = {
|
|
'Authorization': 'Bearer '+vars.oaiapikey,
|
|
'Content-Type': 'application/json'
|
|
}
|
|
)
|
|
|
|
# Deal with the response
|
|
if(req.status_code == 200):
|
|
genout = req.json()["choices"][0]["text"]
|
|
|
|
vars.lua_koboldbridge.outputs[1] = genout
|
|
|
|
execute_outmod()
|
|
if(vars.lua_koboldbridge.regeneration_required):
|
|
vars.lua_koboldbridge.regeneration_required = False
|
|
genout = vars.lua_koboldbridge.outputs[1]
|
|
assert genout is str
|
|
|
|
print("{0}{1}{2}".format(colors.CYAN, genout, colors.END))
|
|
vars.actions.append(genout)
|
|
update_story_chunk('last')
|
|
emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1 if len(vars.actions) else 0}, broadcast=True)
|
|
|
|
set_aibusy(0)
|
|
else:
|
|
# Send error message to web client
|
|
er = req.json()
|
|
if("error" in er):
|
|
type = er["error"]["type"]
|
|
message = er["error"]["message"]
|
|
|
|
errmsg = "OpenAI API Error: {0} - {1}".format(type, message)
|
|
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
|
|
set_aibusy(0)
|
|
|
|
#==================================================================#
|
|
# Forces UI to Play mode
|
|
#==================================================================#
|
|
def exitModes():
|
|
if(vars.mode == "edit"):
|
|
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
|
|
elif(vars.mode == "memory"):
|
|
emit('from_server', {'cmd': 'memmode', 'data': 'false'}, broadcast=True)
|
|
elif(vars.mode == "wi"):
|
|
emit('from_server', {'cmd': 'wimode', 'data': 'false'}, broadcast=True)
|
|
vars.mode = "play"
|
|
|
|
#==================================================================#
|
|
# Launch in-browser save prompt
|
|
#==================================================================#
|
|
def saveas(name):
|
|
# Check if filename exists already
|
|
name = utils.cleanfilename(name)
|
|
if(not fileops.saveexists(name) or (vars.saveow and vars.svowname == name)):
|
|
# All clear to save
|
|
e = saveRequest(fileops.storypath(name))
|
|
vars.saveow = False
|
|
vars.svowname = ""
|
|
if(e is None):
|
|
emit('from_server', {'cmd': 'hidesaveas', 'data': ''})
|
|
else:
|
|
print("{0}{1}{2}".format(colors.RED, str(e), colors.END))
|
|
emit('from_server', {'cmd': 'popuperror', 'data': str(e)})
|
|
else:
|
|
# File exists, prompt for overwrite
|
|
vars.saveow = True
|
|
vars.svowname = name
|
|
emit('from_server', {'cmd': 'askforoverwrite', 'data': ''})
|
|
|
|
#==================================================================#
|
|
# Launch in-browser story-delete prompt
|
|
#==================================================================#
|
|
def deletesave(name):
|
|
name = utils.cleanfilename(name)
|
|
e = fileops.deletesave(name)
|
|
if(e is None):
|
|
if(vars.smandelete):
|
|
emit('from_server', {'cmd': 'hidepopupdelete', 'data': ''})
|
|
getloadlist()
|
|
else:
|
|
emit('from_server', {'cmd': 'popuperror', 'data': "The server denied your request to delete this story"})
|
|
else:
|
|
print("{0}{1}{2}".format(colors.RED, str(e), colors.END))
|
|
emit('from_server', {'cmd': 'popuperror', 'data': str(e)})
|
|
|
|
#==================================================================#
|
|
# Launch in-browser story-rename prompt
|
|
#==================================================================#
|
|
def renamesave(name, newname):
|
|
# Check if filename exists already
|
|
name = utils.cleanfilename(name)
|
|
newname = utils.cleanfilename(newname)
|
|
if(not fileops.saveexists(newname) or name == newname or (vars.saveow and vars.svowname == newname)):
|
|
e = fileops.renamesave(name, newname)
|
|
vars.saveow = False
|
|
vars.svowname = ""
|
|
if(e is None):
|
|
if(vars.smanrename):
|
|
emit('from_server', {'cmd': 'hidepopuprename', 'data': ''})
|
|
getloadlist()
|
|
else:
|
|
emit('from_server', {'cmd': 'popuperror', 'data': "The server denied your request to rename this story"})
|
|
else:
|
|
print("{0}{1}{2}".format(colors.RED, str(e), colors.END))
|
|
emit('from_server', {'cmd': 'popuperror', 'data': str(e)})
|
|
else:
|
|
# File exists, prompt for overwrite
|
|
vars.saveow = True
|
|
vars.svowname = newname
|
|
emit('from_server', {'cmd': 'askforoverwrite', 'data': ''})
|
|
|
|
#==================================================================#
|
|
# Save the currently running story
|
|
#==================================================================#
|
|
def save():
|
|
# Check if a file is currently open
|
|
if(".json" in vars.savedir):
|
|
saveRequest(vars.savedir)
|
|
else:
|
|
emit('from_server', {'cmd': 'saveas', 'data': ''})
|
|
|
|
#==================================================================#
|
|
# Save the story via file browser
|
|
#==================================================================#
|
|
def savetofile():
|
|
savpath = fileops.getsavepath(vars.savedir, "Save Story As", [("Json", "*.json")])
|
|
saveRequest(savpath)
|
|
|
|
#==================================================================#
|
|
# Save the story to specified path
|
|
#==================================================================#
|
|
def saveRequest(savpath):
|
|
if(savpath):
|
|
# Leave Edit/Memory mode before continuing
|
|
exitModes()
|
|
|
|
# Save path for future saves
|
|
vars.savedir = savpath
|
|
txtpath = os.path.splitext(savpath)[0] + ".txt"
|
|
# Build json to write
|
|
js = {}
|
|
js["gamestarted"] = vars.gamestarted
|
|
js["prompt"] = vars.prompt
|
|
js["memory"] = vars.memory
|
|
js["authorsnote"] = vars.authornote
|
|
js["anotetemplate"] = vars.authornotetemplate
|
|
js["actions"] = tuple(vars.actions.values())
|
|
js["worldinfo"] = []
|
|
js["wifolders_d"] = vars.wifolders_d
|
|
js["wifolders_l"] = vars.wifolders_l
|
|
|
|
# Extract only the important bits of WI
|
|
for wi in vars.worldinfo:
|
|
if(wi["constant"] or wi["key"] != ""):
|
|
js["worldinfo"].append({
|
|
"key": wi["key"],
|
|
"keysecondary": wi["keysecondary"],
|
|
"content": wi["content"],
|
|
"comment": wi["comment"],
|
|
"folder": wi["folder"],
|
|
"selective": wi["selective"],
|
|
"constant": wi["constant"]
|
|
})
|
|
|
|
txt = vars.prompt + "".join(vars.actions.values())
|
|
|
|
# Write it
|
|
try:
|
|
file = open(savpath, "w")
|
|
except Exception as e:
|
|
return e
|
|
try:
|
|
file.write(json.dumps(js, indent=3))
|
|
except Exception as e:
|
|
file.close()
|
|
return e
|
|
file.close()
|
|
|
|
try:
|
|
file = open(txtpath, "w")
|
|
except Exception as e:
|
|
return e
|
|
try:
|
|
file.write(txt)
|
|
except Exception as e:
|
|
file.close()
|
|
return e
|
|
file.close()
|
|
|
|
filename = path.basename(savpath)
|
|
if(filename.endswith('.json')):
|
|
filename = filename[:-5]
|
|
vars.laststory = filename
|
|
emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True)
|
|
print("{0}Story saved to {1}!{2}".format(colors.GREEN, path.basename(savpath), colors.END))
|
|
|
|
#==================================================================#
|
|
# Show list of saved stories
|
|
#==================================================================#
|
|
def getloadlist():
|
|
emit('from_server', {'cmd': 'buildload', 'data': fileops.getstoryfiles()})
|
|
|
|
#==================================================================#
|
|
# Show list of soft prompts
|
|
#==================================================================#
|
|
def getsplist():
|
|
if(vars.allowsp):
|
|
emit('from_server', {'cmd': 'buildsp', 'data': fileops.getspfiles(vars.modeldim)})
|
|
|
|
#==================================================================#
|
|
# Get list of userscripts
|
|
#==================================================================#
|
|
def getuslist():
|
|
files = {i: v for i, v in enumerate(fileops.getusfiles())}
|
|
loaded = []
|
|
unloaded = []
|
|
userscripts = set(vars.userscripts)
|
|
for i in range(len(files)):
|
|
if files[i]["filename"] not in userscripts:
|
|
unloaded.append(files[i])
|
|
files = {files[k]["filename"]: files[k] for k in files}
|
|
userscripts = set(files.keys())
|
|
for filename in vars.userscripts:
|
|
if filename in userscripts:
|
|
loaded.append(files[filename])
|
|
return unloaded, loaded
|
|
|
|
#==================================================================#
|
|
# Load a saved story via file browser
|
|
#==================================================================#
|
|
def loadfromfile():
|
|
loadpath = fileops.getloadpath(vars.savedir, "Select Story File", [("Json", "*.json")])
|
|
loadRequest(loadpath)
|
|
|
|
#==================================================================#
|
|
# Load a stored story from a file
|
|
#==================================================================#
|
|
def loadRequest(loadpath, filename=None):
|
|
if(loadpath):
|
|
# Leave Edit/Memory mode before continuing
|
|
exitModes()
|
|
|
|
# Read file contents into JSON object
|
|
if(isinstance(loadpath, str)):
|
|
with open(loadpath, "r") as file:
|
|
js = json.load(file)
|
|
if(filename is None):
|
|
filename = path.basename(loadpath)
|
|
else:
|
|
js = loadpath
|
|
if(filename is None):
|
|
filename = "untitled.json"
|
|
|
|
# Copy file contents to vars
|
|
vars.gamestarted = js["gamestarted"]
|
|
vars.prompt = js["prompt"]
|
|
vars.memory = js["memory"]
|
|
vars.worldinfo = []
|
|
vars.worldinfo = []
|
|
vars.worldinfo_u = {}
|
|
vars.wifolders_d = {int(k): v for k, v in js.get("wifolders_d", {}).items()}
|
|
vars.wifolders_l = js.get("wifolders_l", [])
|
|
vars.wifolders_u = {uid: [] for uid in vars.wifolders_d}
|
|
vars.lastact = ""
|
|
vars.submission = ""
|
|
vars.lastctx = ""
|
|
|
|
del vars.actions
|
|
vars.actions = structures.KoboldStoryRegister()
|
|
actions = collections.deque(js["actions"])
|
|
|
|
if(len(vars.prompt.strip()) == 0):
|
|
while(len(actions)):
|
|
action = actions.popleft()
|
|
if(len(action.strip()) != 0):
|
|
vars.prompt = action
|
|
break
|
|
else:
|
|
vars.gamestarted = False
|
|
if(vars.gamestarted):
|
|
for s in actions:
|
|
vars.actions.append(s)
|
|
|
|
# Try not to break older save files
|
|
if("authorsnote" in js):
|
|
vars.authornote = js["authorsnote"]
|
|
else:
|
|
vars.authornote = ""
|
|
if("anotetemplate" in js):
|
|
vars.authornotetemplate = js["anotetemplate"]
|
|
else:
|
|
vars.authornotetemplate = "[Author's note: <|>]"
|
|
|
|
if("worldinfo" in js):
|
|
num = 0
|
|
for wi in js["worldinfo"]:
|
|
vars.worldinfo.append({
|
|
"key": wi["key"],
|
|
"keysecondary": wi.get("keysecondary", ""),
|
|
"content": wi["content"],
|
|
"comment": wi.get("comment", ""),
|
|
"folder": wi.get("folder", None),
|
|
"num": num,
|
|
"init": True,
|
|
"selective": wi.get("selective", False),
|
|
"constant": wi.get("constant", False),
|
|
"uid": None,
|
|
})
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.worldinfo_u):
|
|
break
|
|
vars.worldinfo_u[uid] = vars.worldinfo[-1]
|
|
vars.worldinfo[-1]["uid"] = uid
|
|
if(vars.worldinfo[-1]["folder"] is not None):
|
|
vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1])
|
|
num += 1
|
|
|
|
for uid in vars.wifolders_l + [None]:
|
|
vars.worldinfo.append({"key": "", "keysecondary": "", "content": "", "comment": "", "folder": uid, "num": None, "init": False, "selective": False, "constant": False, "uid": None})
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.worldinfo_u):
|
|
break
|
|
vars.worldinfo_u[uid] = vars.worldinfo[-1]
|
|
vars.worldinfo[-1]["uid"] = uid
|
|
if(vars.worldinfo[-1]["folder"] is not None):
|
|
vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1])
|
|
stablesortwi()
|
|
vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]]
|
|
|
|
# Save path for save button
|
|
vars.savedir = loadpath
|
|
|
|
# Clear loadselect var
|
|
vars.loadselect = ""
|
|
|
|
# Refresh game screen
|
|
_filename = filename
|
|
if(filename.endswith('.json')):
|
|
_filename = filename[:-5]
|
|
vars.laststory = _filename
|
|
emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True)
|
|
sendwi()
|
|
emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True)
|
|
refresh_story()
|
|
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True)
|
|
emit('from_server', {'cmd': 'hidegenseqs', 'data': ''}, broadcast=True)
|
|
print("{0}Story loaded from {1}!{2}".format(colors.GREEN, filename, colors.END))
|
|
|
|
#==================================================================#
|
|
# Load a soft prompt from a file
|
|
#==================================================================#
|
|
def spRequest(filename):
|
|
vars.spfilename = ""
|
|
settingschanged()
|
|
|
|
if(len(filename) == 0):
|
|
vars.sp = None
|
|
vars.sp_length = 0
|
|
return
|
|
|
|
global np
|
|
if 'np' not in globals():
|
|
import numpy as np
|
|
|
|
z, version, shape, fortran_order, dtype = fileops.checksp(filename, vars.modeldim)
|
|
assert isinstance(z, zipfile.ZipFile)
|
|
with z.open('meta.json') as f:
|
|
vars.spmeta = json.load(f)
|
|
z.close()
|
|
|
|
with np.load(fileops.sppath(filename), allow_pickle=False) as f:
|
|
tensor = f['tensor.npy']
|
|
|
|
# If the tensor is in bfloat16 format, convert it to float32
|
|
if(tensor.dtype == 'V2'):
|
|
tensor.dtype = np.uint16
|
|
tensor = np.uint32(tensor) << 16
|
|
tensor.dtype = np.float32
|
|
|
|
if(tensor.dtype != np.float16):
|
|
tensor = np.float32(tensor)
|
|
assert not np.isinf(tensor).any() and not np.isnan(tensor).any()
|
|
|
|
vars.sp_length = tensor.shape[0]
|
|
|
|
if(vars.model in ("TPUMeshTransformerGPTJ",)):
|
|
rows = tensor.shape[0]
|
|
padding_amount = tpu_mtj_backend.params["seq"] - (tpu_mtj_backend.params["seq"] % -tpu_mtj_backend.params["cores_per_replica"]) - rows
|
|
tensor = np.pad(tensor, ((0, padding_amount), (0, 0)))
|
|
tensor = tensor.reshape(
|
|
tpu_mtj_backend.params["cores_per_replica"],
|
|
-1,
|
|
tpu_mtj_backend.params["d_model"],
|
|
)
|
|
vars.sp = np.float32(tensor)
|
|
else:
|
|
vars.sp = torch.from_numpy(tensor)
|
|
|
|
vars.spfilename = filename
|
|
settingschanged()
|
|
|
|
#==================================================================#
|
|
# Import an AIDungon game exported with Mimi's tool
|
|
#==================================================================#
|
|
def importRequest():
|
|
importpath = fileops.getloadpath(vars.savedir, "Select AID CAT File", [("Json", "*.json")])
|
|
|
|
if(importpath):
|
|
# Leave Edit/Memory mode before continuing
|
|
exitModes()
|
|
|
|
# Read file contents into JSON object
|
|
file = open(importpath, "rb")
|
|
vars.importjs = json.load(file)
|
|
|
|
# If a bundle file is being imported, select just the Adventures object
|
|
if type(vars.importjs) is dict and "stories" in vars.importjs:
|
|
vars.importjs = vars.importjs["stories"]
|
|
|
|
# Clear Popup Contents
|
|
emit('from_server', {'cmd': 'clearpopup', 'data': ''}, broadcast=True)
|
|
|
|
# Initialize vars
|
|
num = 0
|
|
vars.importnum = -1
|
|
|
|
# Get list of stories
|
|
for story in vars.importjs:
|
|
ob = {}
|
|
ob["num"] = num
|
|
if(story["title"] != "" and story["title"] != None):
|
|
ob["title"] = story["title"]
|
|
else:
|
|
ob["title"] = "(No Title)"
|
|
if(story["description"] != "" and story["description"] != None):
|
|
ob["descr"] = story["description"]
|
|
else:
|
|
ob["descr"] = "(No Description)"
|
|
if("actions" in story):
|
|
ob["acts"] = len(story["actions"])
|
|
elif("actionWindow" in story):
|
|
ob["acts"] = len(story["actionWindow"])
|
|
emit('from_server', {'cmd': 'addimportline', 'data': ob})
|
|
num += 1
|
|
|
|
# Show Popup
|
|
emit('from_server', {'cmd': 'popupshow', 'data': True})
|
|
|
|
#==================================================================#
|
|
# Import an AIDungon game selected in popup
|
|
#==================================================================#
|
|
def importgame():
|
|
if(vars.importnum >= 0):
|
|
# Cache reference to selected game
|
|
ref = vars.importjs[vars.importnum]
|
|
|
|
# Copy game contents to vars
|
|
vars.gamestarted = True
|
|
|
|
# Support for different versions of export script
|
|
if("actions" in ref):
|
|
if(len(ref["actions"]) > 0):
|
|
vars.prompt = ref["actions"][0]["text"]
|
|
else:
|
|
vars.prompt = ""
|
|
elif("actionWindow" in ref):
|
|
if(len(ref["actionWindow"]) > 0):
|
|
vars.prompt = ref["actionWindow"][0]["text"]
|
|
else:
|
|
vars.prompt = ""
|
|
else:
|
|
vars.prompt = ""
|
|
vars.memory = ref["memory"]
|
|
vars.authornote = ref["authorsNote"] if type(ref["authorsNote"]) is str else ""
|
|
vars.authornotetemplate = "[Author's note: <|>]"
|
|
vars.actions = structures.KoboldStoryRegister()
|
|
vars.worldinfo = []
|
|
vars.worldinfo_i = []
|
|
vars.worldinfo_u = {}
|
|
vars.wifolders_d = {}
|
|
vars.wifolders_l = []
|
|
vars.wifolders_u = {uid: [] for uid in vars.wifolders_d}
|
|
vars.lastact = ""
|
|
vars.submission = ""
|
|
vars.lastctx = ""
|
|
|
|
# Get all actions except for prompt
|
|
if("actions" in ref):
|
|
if(len(ref["actions"]) > 1):
|
|
for act in ref["actions"][1:]:
|
|
vars.actions.append(act["text"])
|
|
elif("actionWindow" in ref):
|
|
if(len(ref["actionWindow"]) > 1):
|
|
for act in ref["actionWindow"][1:]:
|
|
vars.actions.append(act["text"])
|
|
|
|
# Get just the important parts of world info
|
|
if(ref["worldInfo"] != None):
|
|
if(len(ref["worldInfo"]) > 1):
|
|
num = 0
|
|
for wi in ref["worldInfo"]:
|
|
vars.worldinfo.append({
|
|
"key": wi["keys"],
|
|
"keysecondary": wi.get("keysecondary", ""),
|
|
"content": wi["entry"],
|
|
"comment": wi.get("comment", ""),
|
|
"folder": wi.get("folder", None),
|
|
"num": num,
|
|
"init": True,
|
|
"selective": wi.get("selective", False),
|
|
"constant": wi.get("constant", False),
|
|
"uid": None,
|
|
})
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.worldinfo_u):
|
|
break
|
|
vars.worldinfo_u[uid] = vars.worldinfo[-1]
|
|
vars.worldinfo[-1]["uid"] = uid
|
|
if(vars.worldinfo[-1]["folder"]) is not None:
|
|
vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1])
|
|
num += 1
|
|
|
|
for uid in vars.wifolders_l + [None]:
|
|
vars.worldinfo.append({"key": "", "keysecondary": "", "content": "", "comment": "", "folder": uid, "num": None, "init": False, "selective": False, "constant": False, "uid": None})
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.worldinfo_u):
|
|
break
|
|
vars.worldinfo_u[uid] = vars.worldinfo[-1]
|
|
vars.worldinfo[-1]["uid"] = uid
|
|
if(vars.worldinfo[-1]["folder"] is not None):
|
|
vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1])
|
|
stablesortwi()
|
|
vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]]
|
|
|
|
# Clear import data
|
|
vars.importjs = {}
|
|
|
|
# Reset current save
|
|
vars.savedir = getcwd()+"\stories"
|
|
|
|
# Refresh game screen
|
|
vars.laststory = None
|
|
emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True)
|
|
sendwi()
|
|
emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True)
|
|
refresh_story()
|
|
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True)
|
|
emit('from_server', {'cmd': 'hidegenseqs', 'data': ''}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Import an aidg.club prompt and start a new game with it.
|
|
#==================================================================#
|
|
def importAidgRequest(id):
|
|
exitModes()
|
|
|
|
urlformat = "https://prompts.aidg.club/api/"
|
|
req = requests.get(urlformat+id)
|
|
|
|
if(req.status_code == 200):
|
|
js = req.json()
|
|
|
|
# Import game state
|
|
vars.gamestarted = True
|
|
vars.prompt = js["promptContent"]
|
|
vars.memory = js["memory"]
|
|
vars.authornote = js["authorsNote"]
|
|
vars.authornotetemplate = "[Author's note: <|>]"
|
|
vars.actions = structures.KoboldStoryRegister()
|
|
vars.worldinfo = []
|
|
vars.worldinfo_i = []
|
|
vars.worldinfo_u = {}
|
|
vars.wifolders_d = {}
|
|
vars.wifolders_l = []
|
|
vars.wifolders_u = {uid: [] for uid in vars.wifolders_d}
|
|
vars.lastact = ""
|
|
vars.submission = ""
|
|
vars.lastctx = ""
|
|
|
|
num = 0
|
|
for wi in js["worldInfos"]:
|
|
vars.worldinfo.append({
|
|
"key": wi["keys"],
|
|
"keysecondary": wi.get("keysecondary", ""),
|
|
"content": wi["entry"],
|
|
"comment": wi.get("comment", ""),
|
|
"folder": wi.get("folder", None),
|
|
"num": num,
|
|
"init": True,
|
|
"selective": wi.get("selective", False),
|
|
"constant": wi.get("constant", False),
|
|
"uid": None,
|
|
})
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.worldinfo_u):
|
|
break
|
|
vars.worldinfo_u[uid] = vars.worldinfo[-1]
|
|
vars.worldinfo[-1]["uid"] = uid
|
|
if(vars.worldinfo[-1]["folder"]) is not None:
|
|
vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1])
|
|
num += 1
|
|
|
|
for uid in vars.wifolders_l + [None]:
|
|
vars.worldinfo.append({"key": "", "keysecondary": "", "content": "", "comment": "", "folder": uid, "num": None, "init": False, "selective": False, "constant": False, "uid": None})
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.worldinfo_u):
|
|
break
|
|
vars.worldinfo_u[uid] = vars.worldinfo[-1]
|
|
vars.worldinfo[-1]["uid"] = uid
|
|
if(vars.worldinfo[-1]["folder"] is not None):
|
|
vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1])
|
|
stablesortwi()
|
|
vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]]
|
|
|
|
# Reset current save
|
|
vars.savedir = getcwd()+"\stories"
|
|
|
|
# Refresh game screen
|
|
vars.laststory = None
|
|
emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True)
|
|
sendwi()
|
|
emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True)
|
|
refresh_story()
|
|
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True)
|
|
|
|
#==================================================================#
|
|
# Import World Info JSON file
|
|
#==================================================================#
|
|
def wiimportrequest():
|
|
importpath = fileops.getloadpath(vars.savedir, "Select World Info File", [("Json", "*.json")])
|
|
if(importpath):
|
|
file = open(importpath, "rb")
|
|
js = json.load(file)
|
|
if(len(js) > 0):
|
|
# If the most recent WI entry is blank, remove it.
|
|
if(not vars.worldinfo[-1]["init"]):
|
|
del vars.worldinfo[-1]
|
|
# Now grab the new stuff
|
|
num = len(vars.worldinfo)
|
|
for wi in js:
|
|
vars.worldinfo.append({
|
|
"key": wi["keys"],
|
|
"keysecondary": wi.get("keysecondary", ""),
|
|
"content": wi["entry"],
|
|
"comment": wi.get("comment", ""),
|
|
"folder": wi.get("folder", None),
|
|
"num": num,
|
|
"init": True,
|
|
"selective": wi.get("selective", False),
|
|
"constant": wi.get("constant", False),
|
|
"uid": None,
|
|
})
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.worldinfo_u):
|
|
break
|
|
vars.worldinfo_u[uid] = vars.worldinfo[-1]
|
|
vars.worldinfo[-1]["uid"] = uid
|
|
if(vars.worldinfo[-1]["folder"]) is not None:
|
|
vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1])
|
|
num += 1
|
|
for uid in [None]:
|
|
vars.worldinfo.append({"key": "", "keysecondary": "", "content": "", "comment": "", "folder": uid, "num": None, "init": False, "selective": False, "constant": False, "uid": None})
|
|
while(True):
|
|
uid = int.from_bytes(os.urandom(4), "little", signed=True)
|
|
if(uid not in vars.worldinfo_u):
|
|
break
|
|
vars.worldinfo_u[uid] = vars.worldinfo[-1]
|
|
vars.worldinfo[-1]["uid"] = uid
|
|
if(vars.worldinfo[-1]["folder"] is not None):
|
|
vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1])
|
|
|
|
print("{0}".format(vars.worldinfo[0]))
|
|
|
|
# Refresh game screen
|
|
sendwi()
|
|
|
|
#==================================================================#
|
|
# Starts a new story
|
|
#==================================================================#
|
|
def newGameRequest():
|
|
# Leave Edit/Memory mode before continuing
|
|
exitModes()
|
|
|
|
# Clear vars values
|
|
vars.gamestarted = False
|
|
vars.prompt = ""
|
|
vars.memory = ""
|
|
vars.actions = structures.KoboldStoryRegister()
|
|
|
|
vars.authornote = ""
|
|
vars.authornotetemplate = vars.setauthornotetemplate
|
|
vars.worldinfo = []
|
|
vars.worldinfo_i = []
|
|
vars.worldinfo_u = {}
|
|
vars.wifolders_d = {}
|
|
vars.wifolders_l = []
|
|
vars.lastact = ""
|
|
vars.submission = ""
|
|
vars.lastctx = ""
|
|
|
|
# Reset current save
|
|
vars.savedir = getcwd()+"\stories"
|
|
|
|
# Refresh game screen
|
|
vars.laststory = None
|
|
emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True)
|
|
sendwi()
|
|
emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True)
|
|
emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True)
|
|
setStartState()
|
|
|
|
def randomGameRequest(topic, memory=""):
|
|
if(vars.noai):
|
|
newGameRequest()
|
|
return
|
|
vars.recentrng = topic
|
|
vars.recentrngm = memory
|
|
newGameRequest()
|
|
_memory = memory
|
|
if(len(memory) > 0):
|
|
_memory = memory.rstrip() + "\n\n"
|
|
vars.memory = _memory + "You generate the following " + topic + " story concept :"
|
|
vars.lua_koboldbridge.feedback = None
|
|
actionsubmit("", force_submit=True, force_prompt_gen=True)
|
|
vars.memory = memory
|
|
|
|
# Load settings from client.settings
|
|
loadmodelsettings()
|
|
loadsettings()
|
|
|
|
#==================================================================#
|
|
# Final startup commands to launch Flask app
|
|
#==================================================================#
|
|
print("", end="", flush=True)
|
|
if __name__ == "__main__":
|
|
print("{0}\nStarting webserver...{1}".format(colors.GREEN, colors.END), flush=True)
|
|
|
|
# Start Flask/SocketIO (Blocking, so this must be last method!)
|
|
|
|
#socketio.run(app, host='0.0.0.0', port=5000)
|
|
if(vars.remote):
|
|
if(args.ngrok):
|
|
from flask_ngrok import _run_ngrok
|
|
cloudflare = _run_ngrok()
|
|
else:
|
|
from flask_cloudflared import _run_cloudflared
|
|
cloudflare = _run_cloudflared(5000)
|
|
with open('cloudflare.log', 'w') as cloudflarelog:
|
|
cloudflarelog.write("KoboldAI has finished loading and is available at the following link : " + cloudflare)
|
|
print(format(colors.GREEN) + "KoboldAI has finished loading and is available at the following link : " + cloudflare + format(colors.END))
|
|
vars.serverstarted = True
|
|
socketio.run(app, host='0.0.0.0', port=5000)
|
|
else:
|
|
import webbrowser
|
|
webbrowser.open_new('http://localhost:5000')
|
|
print("{0}Server started!\nYou may now connect with a browser at http://127.0.0.1:5000/{1}".format(colors.GREEN, colors.END))
|
|
vars.serverstarted = True
|
|
socketio.run(app, port=5000)
|
|
|
|
else:
|
|
print("{0}\nServer started in WSGI mode!{1}".format(colors.GREEN, colors.END), flush=True)
|