Files
KoboldAI-Client/modeling/tokenizer.py
2023-05-01 19:42:52 -05:00

47 lines
1.7 KiB
Python

from typing import Any, List, Union
from tokenizers import Tokenizer
import torch
from transformers import PreTrainedTokenizer
class GenericTokenizer:
"""Bridges the gap between Transformers tokenizers and Tokenizers tokenizers. Why they aren't the same, I don't know."""
def __init__(self, tokenizer: Union[Tokenizer, PreTrainedTokenizer]) -> None:
self.tokenizer = tokenizer
try:
self.valid_tokens = set(self.tokenizer.vocab.values())
except AttributeError:
self.valid_tokens = set(self.tokenizer.get_vocab().values())
def __getattr__(self, name: str) -> Any:
# Fall back to tokenizer for non-generic stuff
return getattr(self.tokenizer, name)
def __setattr__(self, name: str, value: Any) -> None:
# To prevent infinite recursion on __init__ setting
if name == "tokenizer":
super().__setattr__(name, value)
return
setattr(self.tokenizer, name, value)
def encode(self, text: str) -> list:
ret = self.tokenizer.encode(text)
if isinstance(ret, list):
return ret
return ret.ids
def decode(self, tokens: Union[int, List[int], torch.Tensor]) -> str:
if isinstance(tokens, torch.Tensor):
tokens = tokens.cpu().tolist()
if isinstance(tokens, int):
tokens = [tokens]
# HACK: Sometimes soft token placeholders aren't in the vocab, which
# causes errors on decode. Obviously we can't express these tokens as
# text so we can probably slice 'em out without too much issue.
tokens = [t for t in tokens if t in self.valid_tokens]
return self.tokenizer.decode(tokens)