mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-01-22 13:19:52 +01:00
6faa27ef87
Fix the model selection GUI when there is no internet connection
379 lines
17 KiB
Python
379 lines
17 KiB
Python
from threading import Timer
|
||
import re
|
||
import shutil
|
||
import json
|
||
import subprocess
|
||
import tempfile
|
||
import requests
|
||
import requests.adapters
|
||
import time
|
||
from transformers import __version__ as transformers_version
|
||
from transformers import PreTrainedModel
|
||
import packaging.version
|
||
from tqdm.auto import tqdm
|
||
import os
|
||
import itertools
|
||
from typing import List, Optional
|
||
|
||
HAS_ACCELERATE = packaging.version.parse(transformers_version) >= packaging.version.parse("4.20.0.dev0")
|
||
try:
|
||
import accelerate
|
||
except ImportError:
|
||
HAS_ACCELERATE = False
|
||
|
||
vars = None
|
||
num_shards: Optional[int] = None
|
||
current_shard = 0
|
||
from_pretrained_model_name = ""
|
||
from_pretrained_index_filename: Optional[str] = None
|
||
from_pretrained_kwargs = {}
|
||
bar = None
|
||
|
||
layers_module_names: Optional[List[str]] = None
|
||
module_names: Optional[List[str]] = None
|
||
named_buffers: Optional[List[tuple]] = None
|
||
|
||
default_sampler_order = [6, 0, 1, 2, 3, 4, 5]
|
||
|
||
#==================================================================#
|
||
# Decorator to prevent a function's actions from being run until
|
||
# at least x seconds have passed without the function being called
|
||
#==================================================================#
|
||
def debounce(wait):
|
||
def decorator(fun):
|
||
def debounced(*args, **kwargs):
|
||
def call_it():
|
||
fun(*args, **kwargs)
|
||
|
||
try:
|
||
debounced.t.cancel()
|
||
except AttributeError:
|
||
pass
|
||
|
||
debounced.t = Timer(wait, call_it)
|
||
debounced.t.start()
|
||
|
||
return debounced
|
||
|
||
return decorator
|
||
|
||
#==================================================================#
|
||
# Replace fancy quotes and apostrope's with standard ones
|
||
#==================================================================#
|
||
def fixquotes(txt):
|
||
txt = txt.replace("“", '"')
|
||
txt = txt.replace("”", '"')
|
||
txt = txt.replace("’", "'")
|
||
txt = txt.replace("`", "'")
|
||
return txt
|
||
|
||
#==================================================================#
|
||
#
|
||
#==================================================================#
|
||
def trimincompletesentence(txt):
|
||
# Cache length of text
|
||
ln = len(txt)
|
||
# Find last instance of punctuation (Borrowed from Clover-Edition by cloveranon)
|
||
lastpunc = max(txt.rfind("."), txt.rfind("!"), txt.rfind("?"))
|
||
# Is this the end of a quote?
|
||
if(lastpunc < ln-1):
|
||
if(txt[lastpunc+1] == '"'):
|
||
lastpunc = lastpunc + 1
|
||
if(lastpunc >= 0):
|
||
txt = txt[:lastpunc+1]
|
||
return txt
|
||
|
||
#==================================================================#
|
||
#
|
||
#==================================================================#
|
||
def replaceblanklines(txt):
|
||
txt = txt.replace("\n\n", "\n")
|
||
return txt
|
||
|
||
#==================================================================#
|
||
#
|
||
#==================================================================#
|
||
def removespecialchars(txt, vars=None):
|
||
if vars is None or vars.actionmode == 0:
|
||
txt = re.sub(r"[#/@%<>{}+=~|\^]", "", txt)
|
||
else:
|
||
txt = re.sub(r"[#/@%{}+=~|\^]", "", txt)
|
||
return txt
|
||
|
||
#==================================================================#
|
||
# If the next action follows a sentence closure, add a space
|
||
#==================================================================#
|
||
def addsentencespacing(txt, vars):
|
||
# Don't add sentence spacing if submission is empty or starts with whitespace
|
||
if(len(txt) == 0 or len(txt) != len(txt.lstrip())):
|
||
return txt
|
||
# Get last character of last action
|
||
if(len(vars.actions) > 0):
|
||
if(len(vars.actions[vars.actions.get_last_key()]) > 0):
|
||
action = vars.actions[vars.actions.get_last_key()]
|
||
lastchar = action[-1] if len(action) else ""
|
||
else:
|
||
# Last action is blank, this should never happen, but
|
||
# since it did let's bail out.
|
||
return txt
|
||
else:
|
||
action = vars.prompt
|
||
lastchar = action[-1] if len(action) else ""
|
||
if(lastchar != " "):
|
||
txt = " " + txt
|
||
return txt
|
||
|
||
def singlelineprocessing(txt, vars):
|
||
txt = vars.regex_sl.sub('', txt)
|
||
if(len(vars.actions) > 0):
|
||
if(len(vars.actions[vars.actions.get_last_key()]) > 0):
|
||
action = vars.actions[vars.actions.get_last_key()]
|
||
lastchar = action[-1] if len(action) else ""
|
||
else:
|
||
# Last action is blank, this should never happen, but
|
||
# since it did let's bail out.
|
||
return txt
|
||
else:
|
||
action = vars.prompt
|
||
lastchar = action[-1] if len(action) else ""
|
||
if(lastchar != "\n"):
|
||
txt = txt + "\n"
|
||
return txt
|
||
|
||
#==================================================================#
|
||
# Cleans string for use in file name
|
||
#==================================================================#
|
||
def cleanfilename(filename):
|
||
filteredcharacters = ('/','\\')
|
||
filename = "".join(c for c in filename if c not in filteredcharacters).rstrip()
|
||
return filename
|
||
|
||
#==================================================================#
|
||
# Newline substitution for fairseq models
|
||
#==================================================================#
|
||
def encodenewlines(txt):
|
||
if(vars.newlinemode == "s"):
|
||
return txt.replace('\n', "</s>")
|
||
return txt
|
||
|
||
def decodenewlines(txt):
|
||
if(vars.newlinemode == "s"):
|
||
return txt.replace("</s>", '\n')
|
||
if(vars.newlinemode == "ns"):
|
||
return txt.replace("</s>", '')
|
||
return txt
|
||
|
||
#==================================================================#
|
||
# Returns number of layers given an HF model config
|
||
#==================================================================#
|
||
def num_layers(config):
|
||
return config["n_layer"] if isinstance(config, dict) else config.num_layers if hasattr(config, "num_layers") else config.n_layer if hasattr(config, "n_layer") else config.num_hidden_layers if hasattr(config, 'num_hidden_layers') else None
|
||
|
||
#==================================================================#
|
||
# Downloads huggingface checkpoints using aria2c if possible
|
||
#==================================================================#
|
||
from flask_socketio import emit
|
||
class Send_to_socketio(object):
|
||
def write(self, bar):
|
||
time.sleep(0.01)
|
||
try:
|
||
print(bar)
|
||
emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True)
|
||
except:
|
||
pass
|
||
|
||
def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, mirror=None, **kwargs):
|
||
import transformers
|
||
import transformers.modeling_utils
|
||
from huggingface_hub import HfFolder
|
||
if shutil.which("aria2c") is None: # Don't do anything if aria2 is not installed
|
||
return
|
||
if local_files_only: # If local_files_only is true, we obviously don't need to download anything
|
||
return
|
||
if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path + ".index") or transformers.modeling_utils.is_remote_url(pretrained_model_name_or_path):
|
||
return
|
||
if proxies:
|
||
print("WARNING: KoboldAI does not support using aria2 to download models from huggingface.co through a proxy. Disabling aria2 download mode.")
|
||
return
|
||
if use_auth_token:
|
||
if isinstance(use_auth_token, str):
|
||
token = use_auth_token
|
||
else:
|
||
token = HfFolder.get_token()
|
||
if token is None:
|
||
raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
|
||
_cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE
|
||
sharded = False
|
||
headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)}
|
||
if use_auth_token:
|
||
headers["authorization"] = f"Bearer {use_auth_token}"
|
||
def is_cached(url):
|
||
try:
|
||
transformers.file_utils.get_from_cache(url, cache_dir=cache_dir, local_files_only=True)
|
||
except (FileNotFoundError, transformers.file_utils.EntryNotFoundError):
|
||
return False
|
||
return True
|
||
while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file
|
||
try:
|
||
filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME
|
||
except AttributeError:
|
||
return
|
||
url = transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, filename, revision=revision, mirror=mirror)
|
||
if is_cached(url) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers):
|
||
break
|
||
if sharded:
|
||
return
|
||
else:
|
||
sharded = True
|
||
if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download
|
||
filenames = [transformers.modeling_utils.WEIGHTS_NAME]
|
||
else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it
|
||
map_filename = transformers.file_utils.cached_path(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent)
|
||
with open(map_filename) as f:
|
||
map_data = json.load(f)
|
||
filenames = set(map_data["weight_map"].values())
|
||
urls = [transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, n, revision=revision, mirror=mirror) for n in filenames]
|
||
if not force_download:
|
||
urls = [u for u in urls if not is_cached(u)]
|
||
if not urls:
|
||
return
|
||
etags = [h.get("X-Linked-Etag") or h.get("ETag") for u in urls for h in [requests.head(u, headers=headers, allow_redirects=False, proxies=proxies, timeout=10).headers]]
|
||
headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls]
|
||
filenames = [transformers.file_utils.url_to_filename(u, t) for u, t in zip(urls, etags)]
|
||
for n in filenames:
|
||
path = os.path.join(_cache_dir, "kai-tempfile." + n + ".aria2")
|
||
if os.path.exists(path):
|
||
os.remove(path)
|
||
path = os.path.join(_cache_dir, "kai-tempfile." + n)
|
||
if os.path.exists(path):
|
||
os.remove(path)
|
||
if force_download:
|
||
path = os.path.join(_cache_dir, n + ".json")
|
||
if os.path.exists(path):
|
||
os.remove(path)
|
||
path = os.path.join(_cache_dir, n)
|
||
if os.path.exists(path):
|
||
os.remove(path)
|
||
total_length = sum(int(h["Content-Length"]) for h in headers)
|
||
lengths = {}
|
||
aria2_config = "\n".join(f"{u}\n out=kai-tempfile.{n}" for u, n in zip(urls, filenames)).encode()
|
||
s = requests.Session()
|
||
s.mount("http://", requests.adapters.HTTPAdapter(max_retries=requests.adapters.Retry(total=120, backoff_factor=1)))
|
||
bar = None
|
||
done = False
|
||
secret = os.urandom(17).hex()
|
||
try:
|
||
with tempfile.NamedTemporaryFile("w+b", delete=False) as f:
|
||
f.write(aria2_config)
|
||
f.flush()
|
||
p = subprocess.Popen(["aria2c", "-x", "10", "-s", "10", "-j", "10", "--enable-rpc=true", f"--rpc-secret={secret}", "--rpc-listen-port", str(vars.aria2_port), "--disable-ipv6", "--file-allocation=trunc", "--allow-overwrite", "--auto-file-renaming=false", "-d", _cache_dir, "-i", f.name, "-U", transformers.file_utils.http_user_agent(user_agent)] + (["-c"] if not force_download else []) + ([f"--header='Authorization: Bearer {token}'"] if use_auth_token else []), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
||
while p.poll() is None:
|
||
r = s.post(f"http://localhost:{vars.aria2_port}/jsonrpc", json={"jsonrpc": "2.0", "id": "kai", "method": "aria2.tellActive", "params": [f"token:{secret}"]}).json()["result"]
|
||
if not r:
|
||
s.close()
|
||
if bar is not None:
|
||
bar.n = bar.total
|
||
bar.close()
|
||
p.terminate()
|
||
done = True
|
||
break
|
||
if bar is None:
|
||
bar = tqdm(total=total_length, desc=f"[aria2] Downloading model", unit="B", unit_scale=True, unit_divisor=1000, file=Send_to_socketio())
|
||
visited = set()
|
||
for x in r:
|
||
filename = x["files"][0]["path"]
|
||
lengths[filename] = (int(x["completedLength"]), int(x["totalLength"]))
|
||
visited.add(filename)
|
||
for k, v in lengths.items():
|
||
if k not in visited:
|
||
lengths[k] = (v[1], v[1])
|
||
bar.n = sum(v[0] for v in lengths.values())
|
||
bar.update()
|
||
time.sleep(0.1)
|
||
path = f.name
|
||
except Exception as e:
|
||
p.terminate()
|
||
raise e
|
||
finally:
|
||
try:
|
||
os.remove(path)
|
||
except OSError:
|
||
pass
|
||
code = p.wait()
|
||
if not done and code:
|
||
raise OSError(f"aria2 exited with exit code {code}")
|
||
for u, t, n in zip(urls, etags, filenames):
|
||
os.rename(os.path.join(_cache_dir, "kai-tempfile." + n), os.path.join(_cache_dir, n))
|
||
with open(os.path.join(_cache_dir, n + ".json"), "w") as f:
|
||
json.dump({"url": u, "etag": t}, f)
|
||
|
||
#==================================================================#
|
||
# Given the path to a pytorch_model.bin.index.json, returns how many
|
||
# shards there are in the model
|
||
#==================================================================#
|
||
def get_num_shards(filename):
|
||
with open(filename) as f:
|
||
map_data = json.load(f)
|
||
return len(set(map_data["weight_map"].values()))
|
||
|
||
#==================================================================#
|
||
# Given the name/path of a sharded model and the path to a
|
||
# pytorch_model.bin.index.json, returns a list of weight names in the
|
||
# sharded model. Requires lazy loader to be enabled to work properl
|
||
#==================================================================#
|
||
def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, mirror=None, **kwargs):
|
||
import transformers.modeling_utils
|
||
import torch
|
||
shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision, mirror=mirror)
|
||
return list(itertools.chain(*(torch.load(p, map_location="cpu").keys() for p in shard_paths)))
|
||
|
||
#==================================================================#
|
||
# Given a PreTrainedModel, returns the list of module names that correspond
|
||
# to the model's hidden layers.
|
||
#==================================================================#
|
||
def get_layers_module_names(model: PreTrainedModel) -> List[str]:
|
||
names: List[str] = []
|
||
def recurse(module, head=""):
|
||
for c in module.named_children():
|
||
name = head + c[0]
|
||
if c[0].isnumeric() and any(c[1].__class__.__name__.endswith(suffix) for suffix in ("Block", "Layer")):
|
||
names.append(name)
|
||
else:
|
||
recurse(c[1], head=name + ".")
|
||
recurse(model)
|
||
return names
|
||
|
||
#==================================================================#
|
||
# Given a PreTrainedModel, returns the module name that corresponds
|
||
# to the model's input embeddings.
|
||
#==================================================================#
|
||
def get_input_embeddings_module_name(model: PreTrainedModel) -> str:
|
||
embeddings = model.get_input_embeddings()
|
||
def recurse(module, head=""):
|
||
for c in module.named_children():
|
||
name = head + c[0]
|
||
if c[1] is embeddings:
|
||
return name
|
||
else:
|
||
return recurse(c[1], head=name + ".")
|
||
return recurse(model)
|
||
|
||
#==================================================================#
|
||
# Given a PreTrainedModel and a list of module names, returns a list
|
||
# of module names such that the union of the set of modules given as input
|
||
# and the set of modules returned as output contains all modules in the model.
|
||
#==================================================================#
|
||
def get_missing_module_names(model: PreTrainedModel, names: List[str]) -> List[str]:
|
||
missing_names: List[str] = []
|
||
def recurse(module, head=""):
|
||
for c in module.named_children():
|
||
name = head + c[0]
|
||
if any(name.startswith(n) for n in names):
|
||
continue
|
||
if next(c[1].named_children(), None) is None:
|
||
missing_names.append(name)
|
||
else:
|
||
recurse(c[1], head=name + ".")
|
||
recurse(model)
|
||
return missing_names
|