mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
269 lines
12 KiB
Python
269 lines
12 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
import json
|
|
import torch
|
|
import shutil
|
|
from typing import Union
|
|
|
|
from transformers import AutoModelForCausalLM, GPTNeoForCausalLM
|
|
|
|
import utils
|
|
import torch_lazy_loader
|
|
import koboldai_settings
|
|
|
|
try:
|
|
import breakmodel
|
|
except ModuleNotFoundError as e:
|
|
# Breakmodel is only expected to work on GPU
|
|
if not utils.koboldai_vars.use_colab_tpu:
|
|
raise e
|
|
|
|
from modeling.inference_models.hf_torch import HFTorchInferenceModel
|
|
|
|
|
|
class GenericHFTorchInferenceModel(HFTorchInferenceModel):
|
|
def _load(self, save_model: bool, initial_load: bool) -> None:
|
|
utils.koboldai_vars.allowsp = True
|
|
|
|
# Make model path the same as the model name to make this consistent
|
|
# with the other loading method if it isn't a known model type. This
|
|
# code is not just a workaround for below, it is also used to make the
|
|
# behavior consistent with other loading methods - Henk717
|
|
# if utils.koboldai_vars.model not in ["NeoCustom", "GPT2Custom"]:
|
|
# utils.koboldai_vars.custmodpth = utils.koboldai_vars.model
|
|
|
|
if utils.koboldai_vars.model == "NeoCustom":
|
|
utils.koboldai_vars.model = os.path.basename(
|
|
os.path.normpath(utils.koboldai_vars.custmodpth)
|
|
)
|
|
|
|
# If we specify a model and it's in the root directory, we need to move
|
|
# it to the models directory (legacy folder structure to new)
|
|
if self.get_local_model_path(legacy=True):
|
|
shutil.move(
|
|
self.get_local_model_path(legacy=True, ignore_existance=True),
|
|
self.get_local_model_path(ignore_existance=True),
|
|
)
|
|
|
|
self.init_model_config()
|
|
|
|
tf_kwargs = {
|
|
"low_cpu_mem_usage": True,
|
|
}
|
|
|
|
if utils.koboldai_vars.model_type == "gpt2":
|
|
# We must disable low_cpu_mem_usage and if using a GPT-2 model
|
|
# because GPT-2 is not compatible with this feature yet.
|
|
tf_kwargs.pop("low_cpu_mem_usage", None)
|
|
|
|
# Also, lazy loader doesn't support GPT-2 models
|
|
utils.koboldai_vars.lazy_load = False
|
|
|
|
# If we're using torch_lazy_loader, we need to get breakmodel config
|
|
# early so that it knows where to load the individual model tensors
|
|
if (
|
|
utils.koboldai_vars.lazy_load
|
|
and utils.koboldai_vars.hascuda
|
|
and utils.koboldai_vars.breakmodel
|
|
and not utils.koboldai_vars.nobreakmodel
|
|
):
|
|
self.breakmodel_device_config(self.model_config)
|
|
|
|
if utils.koboldai_vars.lazy_load:
|
|
# If we're using lazy loader, we need to figure out what the model's hidden layers are called
|
|
with torch_lazy_loader.use_lazy_torch_load(
|
|
dematerialized_modules=True, use_accelerate_init_empty_weights=True
|
|
):
|
|
try:
|
|
metamodel = AutoModelForCausalLM.from_config(self.model_config)
|
|
except Exception as e:
|
|
metamodel = GPTNeoForCausalLM.from_config(self.model_config)
|
|
utils.layers_module_names = utils.get_layers_module_names(metamodel)
|
|
utils.module_names = list(metamodel.state_dict().keys())
|
|
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
|
|
|
|
# Download model from Huggingface if it does not exist, otherwise load locally
|
|
with self._maybe_use_float16(), torch_lazy_loader.use_lazy_torch_load(
|
|
enable=utils.koboldai_vars.lazy_load,
|
|
callback=self._get_lazy_load_callback(utils.num_layers(self.model_config))
|
|
if utils.koboldai_vars.lazy_load
|
|
else None,
|
|
dematerialized_modules=True,
|
|
):
|
|
if utils.koboldai_vars.lazy_load:
|
|
# torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
|
|
tf_kwargs.pop("low_cpu_mem_usage", None)
|
|
|
|
if self.get_local_model_path():
|
|
# Model is stored locally, load it.
|
|
self.model = self._get_model(self.get_local_model_path(), tf_kwargs)
|
|
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
|
|
else:
|
|
# Model not stored locally, we need to download it.
|
|
|
|
# _rebuild_tensor patch for casting dtype and supporting LazyTensors
|
|
old_rebuild_tensor = torch._utils._rebuild_tensor
|
|
|
|
def new_rebuild_tensor(
|
|
storage: Union[torch_lazy_loader.LazyTensor, torch.Storage],
|
|
storage_offset,
|
|
shape,
|
|
stride,
|
|
):
|
|
if not isinstance(storage, torch_lazy_loader.LazyTensor):
|
|
dtype = storage.dtype
|
|
else:
|
|
dtype = storage.storage_type.dtype
|
|
if not isinstance(dtype, torch.dtype):
|
|
dtype = storage.storage_type(0).dtype
|
|
if dtype is torch.float32 and len(shape) >= 2:
|
|
utils.koboldai_vars.fp32_model = True
|
|
return old_rebuild_tensor(storage, storage_offset, shape, stride)
|
|
|
|
torch._utils._rebuild_tensor = new_rebuild_tensor
|
|
self.model = self._get_model(utils.koboldai_vars.model, tf_kwargs)
|
|
self.tokenizer = self._get_tokenizer(utils.koboldai_vars.model)
|
|
torch._utils._rebuild_tensor = old_rebuild_tensor
|
|
|
|
if save_model:
|
|
self.tokenizer.save_pretrained(
|
|
self.get_local_model_path(ignore_existance=True)
|
|
)
|
|
|
|
if utils.koboldai_vars.fp32_model and not breakmodel.disk_blocks:
|
|
# Use save_pretrained to convert fp32 models to fp16,
|
|
# unless we are using disk cache because save_pretrained
|
|
# is not supported in that case
|
|
model = model.half()
|
|
model.save_pretrained(
|
|
self.get_local_model_path(ignore_existance=True),
|
|
max_shard_size="500MiB",
|
|
)
|
|
|
|
else:
|
|
# For fp16 models, we can just copy the model files directly
|
|
import transformers.configuration_utils
|
|
import transformers.modeling_utils
|
|
import transformers.file_utils
|
|
import huggingface_hub
|
|
|
|
# Save the config.json
|
|
shutil.move(
|
|
os.path.realpath(
|
|
huggingface_hub.hf_hub_download(
|
|
utils.koboldai_vars.model,
|
|
transformers.configuration_utils.CONFIG_NAME,
|
|
revision=utils.koboldai_vars.revision,
|
|
cache_dir="cache",
|
|
local_files_only=True,
|
|
legacy_cache_layout=False,
|
|
)
|
|
),
|
|
os.path.join(
|
|
self.get_local_model_path(ignore_existance=True),
|
|
transformers.configuration_utils.CONFIG_NAME,
|
|
),
|
|
)
|
|
|
|
if utils.num_shards is None:
|
|
# Save the pytorch_model.bin or model.safetensors of an unsharded model
|
|
for possible_weight_name in [
|
|
transformers.modeling_utils.WEIGHTS_NAME,
|
|
"model.safetensors",
|
|
]:
|
|
try:
|
|
shutil.move(
|
|
os.path.realpath(
|
|
huggingface_hub.hf_hub_download(
|
|
utils.koboldai_vars.model,
|
|
possible_weight_name,
|
|
revision=utils.koboldai_vars.revision,
|
|
cache_dir="cache",
|
|
local_files_only=True,
|
|
legacy_cache_layout=False,
|
|
)
|
|
),
|
|
os.path.join(
|
|
self.get_local_model_path(
|
|
ignore_existance=True
|
|
),
|
|
possible_weight_name,
|
|
),
|
|
)
|
|
except Exception:
|
|
if possible_weight_name == "model.safetensors":
|
|
raise
|
|
else:
|
|
# Handle saving sharded models
|
|
|
|
with open(utils.from_pretrained_index_filename) as f:
|
|
map_data = json.load(f)
|
|
filenames = set(map_data["weight_map"].values())
|
|
# Save the pytorch_model.bin.index.json of a sharded model
|
|
shutil.move(
|
|
os.path.realpath(utils.from_pretrained_index_filename),
|
|
os.path.join(
|
|
self.get_local_model_path(ignore_existance=True),
|
|
transformers.modeling_utils.WEIGHTS_INDEX_NAME,
|
|
),
|
|
)
|
|
# Then save the pytorch_model-#####-of-#####.bin files
|
|
for filename in filenames:
|
|
shutil.move(
|
|
os.path.realpath(
|
|
huggingface_hub.hf_hub_download(
|
|
utils.koboldai_vars.model,
|
|
filename,
|
|
revision=utils.koboldai_vars.revision,
|
|
cache_dir="cache",
|
|
local_files_only=True,
|
|
legacy_cache_layout=False,
|
|
)
|
|
),
|
|
os.path.join(
|
|
self.get_local_model_path(
|
|
ignore_existance=True
|
|
),
|
|
filename,
|
|
),
|
|
)
|
|
shutil.rmtree("cache/")
|
|
|
|
if (
|
|
utils.koboldai_vars.badwordsids is koboldai_settings.badwordsids_default
|
|
and utils.koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")
|
|
):
|
|
utils.koboldai_vars.badwordsids = [
|
|
[v]
|
|
for k, v in self.tokenizer.get_vocab().items()
|
|
if any(c in str(k) for c in "<>[]")
|
|
if utils.koboldai_vars.newlinemode != "s" or str(k) != "</s>"
|
|
]
|
|
|
|
self.patch_embedding()
|
|
|
|
if utils.koboldai_vars.hascuda:
|
|
if utils.koboldai_vars.usegpu:
|
|
# Use just VRAM
|
|
self.model = self.model.half().to(utils.koboldai_vars.gpu_device)
|
|
elif utils.koboldai_vars.breakmodel:
|
|
# Use both RAM and VRAM (breakmodel)
|
|
if not utils.koboldai_vars.lazy_load:
|
|
self.breakmodel_device_config(model.config)
|
|
self._move_to_devices()
|
|
elif breakmodel.disk_blocks > 0:
|
|
# Use disk
|
|
self._move_to_devices()
|
|
elif breakmodel.disk_blocks > 0:
|
|
self._move_to_devices()
|
|
else:
|
|
# Use CPU
|
|
self.model = self.model.to("cpu").float()
|
|
elif breakmodel.disk_blocks > 0:
|
|
self._move_to_devices()
|
|
else:
|
|
self.model = self.model.to("cpu").float()
|
|
self.model.kai_model = self
|
|
utils.koboldai_vars.modeldim = self.get_hidden_size()
|