mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
422 lines
24 KiB
Python
422 lines
24 KiB
Python
import os, sys
|
|
from typing import Optional
|
|
try:
|
|
from hf_bleeding_edge import AutoConfig
|
|
except ImportError:
|
|
from transformers import AutoConfig
|
|
|
|
import warnings
|
|
import utils
|
|
import json
|
|
import koboldai_settings
|
|
from logger import logger
|
|
from modeling.inference_model import InferenceModel
|
|
import torch
|
|
import gc
|
|
|
|
|
|
class HFInferenceModel(InferenceModel):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.model_config = None
|
|
|
|
# TODO: model_name should probably be an instantiation parameter all the
|
|
# way down the inheritance chain.
|
|
self.model_name = None
|
|
|
|
self.path = None
|
|
self.hf_torch = False
|
|
self.model = None
|
|
self.tokenizer = None
|
|
self.badwordsids = koboldai_settings.badwordsids_default
|
|
self.usegpu = False
|
|
|
|
def is_valid(self, model_name, model_path, menu_path):
|
|
try:
|
|
if model_path is not None and os.path.exists(model_path):
|
|
self.model_config = AutoConfig.from_pretrained(model_path)
|
|
elif(os.path.exists("models/{}".format(model_name.replace('/', '_')))):
|
|
self.model_config = AutoConfig.from_pretrained("models/{}".format(model_name.replace('/', '_')), revision=utils.koboldai_vars.revision, cache_dir="cache")
|
|
else:
|
|
self.model_config = AutoConfig.from_pretrained(model_name, revision=utils.koboldai_vars.revision, cache_dir="cache")
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
|
|
requested_parameters = []
|
|
if not self.hf_torch:
|
|
return []
|
|
if model_name in ('customhuggingface', 'customgptq'):
|
|
requested_parameters.append({
|
|
"uitype": "text",
|
|
"unit": "text",
|
|
"label": "Huggingface Model Name",
|
|
"id": "custom_model_name",
|
|
"default": parameters["custom_model_name"] if "custom_model_name" in parameters and parameters["custom_model_name"] != "" else "",
|
|
"check": {"value": "", 'check': "!="},
|
|
"tooltip": "Model name from https://huggingface.co/",
|
|
"menu_path": "",
|
|
"refresh_model_inputs": True,
|
|
"extra_classes": ""
|
|
})
|
|
|
|
if model_name not in ('customhuggingface', 'customgptq') or "custom_model_name" in parameters:
|
|
model_name = parameters["custom_model_name"] if "custom_model_name" in parameters and parameters["custom_model_name"] != "" else model_name
|
|
if model_path is not None and os.path.exists(model_path):
|
|
self.model_config = AutoConfig.from_pretrained(model_path)
|
|
elif(os.path.exists("models/{}".format(model_name.replace('/', '_')))):
|
|
self.model_config = AutoConfig.from_pretrained("models/{}".format(model_name.replace('/', '_')), revision=utils.koboldai_vars.revision, cache_dir="cache")
|
|
else:
|
|
self.model_config = AutoConfig.from_pretrained(model_name, revision=utils.koboldai_vars.revision, cache_dir="cache")
|
|
layer_count = self.model_config["n_layer"] if isinstance(self.model_config, dict) else self.model_config.num_layers if hasattr(self.model_config, "num_layers") else self.model_config.n_layer if hasattr(self.model_config, "n_layer") else self.model_config.num_hidden_layers if hasattr(self.model_config, 'num_hidden_layers') else None
|
|
layer_count = None if hasattr(self, "get_model_type") and self.get_model_type() == "gpt2" else layer_count #Skip layers if we're a GPT2 model as it doesn't support breakmodel
|
|
if layer_count is not None and layer_count >= 0 and not self.nobreakmodel:
|
|
if os.path.exists("settings/{}.generic_hf_torch.model_backend.settings".format(model_name.replace("/", "_"))) and 'base_url' not in vars(self):
|
|
with open("settings/{}.generic_hf_torch.model_backend.settings".format(model_name.replace("/", "_")), "r") as f:
|
|
temp = json.load(f)
|
|
break_values = temp['layers'] if 'layers' in temp else [layer_count]
|
|
disk_blocks = temp['disk_layers'] if 'disk_layers' in temp else 0
|
|
else:
|
|
break_values = [layer_count]
|
|
disk_blocks = 0
|
|
|
|
break_values = [int(x) for x in break_values if x != '' and x is not None]
|
|
gpu_count = torch.cuda.device_count()
|
|
break_values += [0] * (gpu_count - len(break_values))
|
|
if disk_blocks is not None:
|
|
break_values += [int(disk_blocks)]
|
|
requested_parameters.append({
|
|
"uitype": "Valid Display",
|
|
"unit": "text",
|
|
"label": "Current Allocated Layers: %1/{}".format(layer_count), #%1 will be the validation value
|
|
"id": "valid_layers",
|
|
"max": layer_count,
|
|
"step": 1,
|
|
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
|
|
"menu_path": "Layers",
|
|
"extra_classes": "",
|
|
"refresh_model_inputs": False
|
|
})
|
|
for i in range(gpu_count):
|
|
requested_parameters.append({
|
|
"uitype": "slider",
|
|
"unit": "int",
|
|
"label": "{} Layers".format(torch.cuda.get_device_name(i)),
|
|
"id": "{}_Layers".format(i),
|
|
"min": 0,
|
|
"max": layer_count,
|
|
"step": 1,
|
|
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
|
|
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
|
|
"default": break_values[i],
|
|
"tooltip": "The number of layers to put on {}.".format(torch.cuda.get_device_name(i)),
|
|
"menu_path": "Layers",
|
|
"extra_classes": "",
|
|
"refresh_model_inputs": False
|
|
})
|
|
requested_parameters.append({
|
|
"uitype": "slider",
|
|
"unit": "int",
|
|
"label": "CPU Layers",
|
|
"id": "CPU_Layers",
|
|
"min": 0,
|
|
"max": layer_count,
|
|
"step": 1,
|
|
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
|
|
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
|
|
"default": layer_count - sum(break_values),
|
|
"tooltip": "The number of layers to put on the CPU. This will use your system RAM. It will also do inference partially on CPU. Use if you must.",
|
|
"menu_path": "Layers",
|
|
"extra_classes": "",
|
|
"refresh_model_inputs": False
|
|
})
|
|
if disk_blocks is not None:
|
|
requested_parameters.append({
|
|
"uitype": "slider",
|
|
"unit": "int",
|
|
"label": "Disk Layers",
|
|
"id": "Disk_Layers",
|
|
"min": 0,
|
|
"max": layer_count,
|
|
"step": 1,
|
|
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
|
|
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
|
|
"default": disk_blocks,
|
|
"tooltip": "The number of layers to put on the disk. This will use your hard drive. The is VERY slow in comparison to GPU or CPU. Use as a last resort.",
|
|
"menu_path": "Layers",
|
|
"extra_classes": "",
|
|
"refresh_model_inputs": False
|
|
})
|
|
else:
|
|
requested_parameters.append({
|
|
"uitype": "toggle",
|
|
"unit": "bool",
|
|
"label": "Use GPU",
|
|
"id": "use_gpu",
|
|
"default": True,
|
|
"tooltip": "Whether or not to use the GPU",
|
|
"menu_path": "Layers",
|
|
"extra_classes": "",
|
|
"refresh_model_inputs": False
|
|
})
|
|
|
|
|
|
return requested_parameters
|
|
|
|
def set_input_parameters(self, parameters):
|
|
if self.hf_torch and hasattr(self, "get_model_type") and self.get_model_type() != "gpt2":
|
|
layer_count = self.model_config["n_layer"] if isinstance(self.model_config, dict) else self.model_config.num_layers if hasattr(self.model_config, "num_layers") else self.model_config.n_layer if hasattr(self.model_config, "n_layer") else self.model_config.num_hidden_layers if hasattr(self.model_config, 'num_hidden_layers') else None
|
|
if layer_count is not None and layer_count >= 0 and not self.nobreakmodel:
|
|
gpu_count = torch.cuda.device_count()
|
|
layers = []
|
|
for i in range(gpu_count):
|
|
if isinstance(parameters["{}_Layers".format(i)], str) and parameters["{}_Layers".format(i)].isnumeric():
|
|
layers.append(int(parameters["{}_Layers".format(i)]))
|
|
elif isinstance(parameters["{}_Layers".format(i)], str):
|
|
layers.append(None)
|
|
else:
|
|
layers.append(parameters["{}_Layers".format(i)])
|
|
self.cpu_layers = int(parameters['CPU_Layers']) if 'CPU_Layers' in parameters else None
|
|
if isinstance(self.cpu_layers, str):
|
|
self.cpu_layers = int(self.cpu_layers) if self.cpu_layers.isnumeric() else 0
|
|
self.layers = layers
|
|
self.disk_layers = parameters['Disk_Layers'] if 'Disk_Layers' in parameters else 0
|
|
if isinstance(self.disk_layers, str):
|
|
self.disk_layers = int(self.disk_layers) if self.disk_layers.isnumeric() else 0
|
|
print("TODO: Allow config")
|
|
# self.usegpu = self.cpu_layers == 0 and breakmodel.disk_blocks == 0 and sum(self.layers)-self.layers[0] == 0
|
|
self.model_type = self.get_model_type()
|
|
self.breakmodel = ((self.model_type != 'gpt2') or self.model_type in ("gpt_neo", "gptj", "xglm", "opt")) and not self.nobreakmodel
|
|
self.lazy_load = True
|
|
logger.debug("Model type: {}".format(self.model_type))
|
|
else:
|
|
logger.debug("Disabling breakmodel and lazyload")
|
|
self.usegpu = parameters['use_gpu'] if 'use_gpu' in parameters else None
|
|
self.breakmodel = False
|
|
self.lazy_load = False
|
|
logger.info(parameters)
|
|
self.model_name = parameters['custom_model_name'] if 'custom_model_name' in parameters else parameters['id']
|
|
self.path = parameters['path'] if 'path' in parameters else None
|
|
|
|
def unload(self):
|
|
if hasattr(self, 'model'):
|
|
self.model = None
|
|
if hasattr(self, 'tokenizer'):
|
|
self.tokenizer = None
|
|
if hasattr(self, 'model_config'):
|
|
self.model_config = None
|
|
with torch.no_grad():
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", message="torch.distributed.reduce_op is deprecated")
|
|
for tensor in gc.get_objects():
|
|
try:
|
|
if torch.is_tensor(tensor):
|
|
tensor.set_(torch.tensor((), device=tensor.device, dtype=tensor.dtype))
|
|
except:
|
|
pass
|
|
gc.collect()
|
|
try:
|
|
with torch.no_grad():
|
|
torch.cuda.empty_cache()
|
|
except:
|
|
pass
|
|
|
|
def _pre_load(self) -> None:
|
|
# HACK: Make model instantiation work without UI parameters
|
|
self.model_name = self.model_name or utils.koboldai_vars.model
|
|
return super()._pre_load()
|
|
|
|
def _post_load(self) -> None:
|
|
self.badwordsids = koboldai_settings.badwordsids_default
|
|
self.model_type = str(self.model_config.model_type)
|
|
|
|
# These are model specific tokenizer overrides if a model has bad defaults
|
|
if self.model_type == "llama" or self.model_type == "mistral":
|
|
# Note: self.tokenizer is a GenericTokenizer, and self.tokenizer.tokenizer is the actual LlamaTokenizer
|
|
self.tokenizer.add_bos_token = False
|
|
self.tokenizer.legacy = False
|
|
# HF transformers no longer supports decode_with_prefix_space
|
|
# We work around this by wrapping decode, encode, and __call__
|
|
# with versions that work around the 'prefix space' misfeature
|
|
# of sentencepiece.
|
|
vocab = self.tokenizer.convert_ids_to_tokens(range(self.tokenizer.vocab_size))
|
|
has_prefix_space = {i for i, tok in enumerate(vocab) if tok.startswith("▁")}
|
|
|
|
# Wrap 'decode' with a method that always returns text starting with a space
|
|
# when the head token starts with a space. This is what 'decode_with_prefix_space'
|
|
# used to do, and we implement it using the same technique (building a cache of
|
|
# tokens that should have a prefix space, and then prepending a space if the first
|
|
# token is in this set.) We also work around a bizarre behavior in which decoding
|
|
# a single token 13 behaves differently than decoding a squence containing only [13].
|
|
original_decode = type(self.tokenizer.tokenizer).decode
|
|
def decode_wrapper(self, token_ids, *args, **kwargs):
|
|
first = None
|
|
# Note, the code below that wraps single-value token_ids in a list
|
|
# is to work around this wonky behavior:
|
|
# >>> t.decode(13)
|
|
# '<0x0A>'
|
|
# >>> t.decode([13])
|
|
# '\n'
|
|
# Not doing this causes token streaming to receive <0x0A> characters
|
|
# instead of newlines.
|
|
if isinstance(token_ids, int):
|
|
first = token_ids
|
|
token_ids = [first]
|
|
elif hasattr(token_ids, 'dim'): # Check for e.g. torch.Tensor
|
|
# Tensors don't support the Python standard of 'empty is False'
|
|
# and the special case of dimension 0 tensors also needs to be
|
|
# handled separately.
|
|
if token_ids.dim() == 0:
|
|
first = int(token_ids.item())
|
|
token_ids = [first]
|
|
elif len(token_ids) > 0:
|
|
first = int(token_ids[0])
|
|
elif token_ids is not None and len(token_ids) > 0:
|
|
first = token_ids[0]
|
|
result = original_decode(self, token_ids, *args, **kwargs)
|
|
if first is not None and first in has_prefix_space:
|
|
result = " " + result
|
|
return result
|
|
# GenericTokenizer overrides __setattr__ so we need to use object.__setattr__ to bypass it
|
|
object.__setattr__(self.tokenizer, 'decode', decode_wrapper.__get__(self.tokenizer))
|
|
|
|
# Wrap encode and __call__ to work around the 'prefix space' misfeature also.
|
|
# The problem is that "Bob" at the start of text is encoded as if it is
|
|
# " Bob". This creates a problem because it means you can't split text, encode
|
|
# the pieces, concatenate the tokens, decode them, and get the original text back.
|
|
# The workaround is to prepend a known token that (1) starts with a space; and
|
|
# (2) is not the prefix of any other token. After searching through the vocab
|
|
# " ," (space comma) is the only token containing only printable ascii characters
|
|
# that fits this bill. By prepending ',' to the text, the original encode
|
|
# method always returns [1919, ...], where the tail of the sequence is the
|
|
# actual encoded result we want without the prefix space behavior.
|
|
original_encode = type(self.tokenizer.tokenizer).encode
|
|
def encode_wrapper(self, text, *args, **kwargs):
|
|
if type(text) is str:
|
|
text = ',' + text
|
|
result = original_encode(self, text, *args, **kwargs)
|
|
result = result[1:]
|
|
else:
|
|
result = original_encode(self, text, *args, **kwargs)
|
|
return result
|
|
object.__setattr__(self.tokenizer, 'encode', encode_wrapper.__get__(self.tokenizer))
|
|
|
|
# Since 'encode' is documented as being deprecated, also override __call__.
|
|
# This doesn't appear to currently be used by KoboldAI, but doing so
|
|
# in case someone uses it in the future.
|
|
original_call = type(self.tokenizer.tokenizer).__call__
|
|
def call_wrapper(self, text, *args, **kwargs):
|
|
if type(text) is str:
|
|
text = ',' + text
|
|
result = original_call(self, text, *args, **kwargs)
|
|
result = result[1:]
|
|
else:
|
|
result = original_call(self, text, *args, **kwargs)
|
|
return result
|
|
object.__setattr__(self.tokenizer, '__call__', call_wrapper.__get__(self.tokenizer))
|
|
|
|
elif self.model_type == "opt":
|
|
self.tokenizer._koboldai_header = self.tokenizer.encode("")
|
|
self.tokenizer.add_bos_token = False
|
|
self.tokenizer.add_prefix_space = False
|
|
|
|
# Change newline behavior to match model quirks
|
|
if self.model_type == "xglm":
|
|
# Default to </s> newline mode if using XGLM
|
|
utils.koboldai_vars.newlinemode = "s"
|
|
elif self.model_type in ["opt", "bloom"]:
|
|
# Handle </s> but don't convert newlines if using Fairseq models that have newlines trained in them
|
|
utils.koboldai_vars.newlinemode = "ns"
|
|
|
|
# Clean up tokens that cause issues
|
|
if (
|
|
self.badwordsids == koboldai_settings.badwordsids_default
|
|
and self.model_type not in ("gpt2", "gpt_neo", "gptj")
|
|
):
|
|
self.badwordsids = [
|
|
[v]
|
|
for k, v in self.tokenizer.get_vocab().items()
|
|
if any(c in str(k) for c in "[]")
|
|
]
|
|
|
|
try:
|
|
self.badwordsids.remove([self.tokenizer.pad_token_id])
|
|
except:
|
|
pass
|
|
|
|
if utils.koboldai_vars.newlinemode == "n":
|
|
self.badwordsids.append([self.tokenizer.eos_token_id])
|
|
|
|
return super()._post_load()
|
|
|
|
def get_local_model_path(
|
|
self, legacy: bool = False, ignore_existance: bool = False
|
|
) -> Optional[str]:
|
|
"""
|
|
Returns a string of the model's path locally, or None if it is not downloaded.
|
|
If ignore_existance is true, it will always return a path.
|
|
"""
|
|
if self.path is not None:
|
|
if os.path.exists(self.path):
|
|
return self.path
|
|
|
|
if self.model_name in ["NeoCustom", "GPT2Custom", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]:
|
|
model_path = self.path
|
|
assert model_path
|
|
|
|
# Path can be absolute or relative to models directory
|
|
if os.path.exists(model_path):
|
|
return model_path
|
|
|
|
model_path = os.path.join("models", model_path)
|
|
|
|
try:
|
|
assert os.path.exists(model_path)
|
|
except AssertionError:
|
|
logger.error(f"Custom model does not exist at '{utils.koboldai_vars.custmodpth}' or '{model_path}'.")
|
|
raise
|
|
|
|
return model_path
|
|
|
|
basename = self.model_name.replace("/", "_")
|
|
if legacy:
|
|
ret = basename
|
|
else:
|
|
ret = os.path.join("models", basename)
|
|
|
|
if os.path.isdir(ret) or ignore_existance:
|
|
return ret
|
|
return None
|
|
|
|
def init_model_config(self) -> None:
|
|
# Get the model_type from the config or assume a model type if it isn't present
|
|
try:
|
|
self.model_config = AutoConfig.from_pretrained(
|
|
self.get_local_model_path() or self.model_name,
|
|
revision=utils.koboldai_vars.revision,
|
|
cache_dir="cache",
|
|
)
|
|
|
|
self.model_type = self.model_config.model_type
|
|
|
|
if "gptq_bits" in dir(self.model_config):
|
|
self.gptq_model = True
|
|
self.gptq_bits = self.model_config.gptq_bits
|
|
self.gptq_groupsize = self.model_config.gptq_groupsize if getattr(self.model_config, "gptq_groupsize", False) else -1
|
|
self.gptq_version = self.model_config.gptq_version if getattr(self.model_config, "gptq_version", False) else 1
|
|
self.gptq_file = None
|
|
else:
|
|
self.gptq_model = False
|
|
except ValueError:
|
|
self.model_type = {
|
|
"NeoCustom": "gpt_neo",
|
|
"GPT2Custom": "gpt2",
|
|
}.get(self.model)
|
|
|
|
if not self.model_type:
|
|
logger.warning(
|
|
"No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)"
|
|
)
|
|
self.model_type = "gpt_neo"
|