Files
KoboldAI-Client/modeling/inference_models/gptq_hf_torch/class.py

241 lines
9.8 KiB
Python

from __future__ import annotations
import os
import glob
import json
import torch
import re
import shutil
import sys
from typing import Union
import utils
import modeling.lazy_loader as lazy_loader
import koboldai_settings
from logger import logger, set_logger_verbosity
from modeling.inference_models.hf_torch import HFTorchInferenceModel
from modeling.tokenizer import GenericTokenizer
from pathlib import Path
model_backend_type = "GPTQ"
model_backend_name = "Huggingface GPTQ"
def load_model_gptq_settings(path):
try:
js = json.load(open(path + "/config.json", "r"))
except Exception as e:
return False, -1, -1, False, -1
gptq_model = False
gptq_bits = -1
gptq_groupsize = -1
gptq_file = False
gptq_version = -1
gptq_legacy_files = glob.glob(os.path.join(path, "*4bit*.pt")) + glob.glob(os.path.join(path, "*4bit*.safetensors"))
if "gptq_bits" in js:
gptq_model = True
gptq_bits = js["gptq_bits"]
gptq_groupsize = js.get("gptq_groupsize", -1)
safetensors_file = os.path.join(path, "model.safetensors")
pt_file = os.path.join(path, "model.ckpt")
gptq_file = safetensors_file if os.path.isfile(safetensors_file) else pt_file
gptq_version = js.get("gptq_version", -1)
elif gptq_legacy_files:
gptq_model = True
gptq_bits = 4
gptq_file = gptq_legacy_files[0]
fname = Path(gptq_file).parts[-1]
g = re.findall("(?:4bit)(?:-)(\\d+)(?:g-?)", fname)
gptq_groupsize = int(g[0]) if g else -1
gptq_version = -1
return gptq_model, gptq_bits, gptq_groupsize, gptq_file, gptq_version
def get_gptq_version(fpath):
v1_strings = ["zeros", "scales", "bias", "qweight"]
v2_strings = ["qzeros", "scales", "bias", "qweight"]
v3_strings = ["qzeros", "scales", "g_idx", "qweight"]
with open(fpath, "rb") as f:
data = str(f.read(1024*1024))
v0 = all([s in data for s in v1_strings]) and not "qzeros" in data
v1 = all([s in data for s in v2_strings])
v2 = all([s in data for s in v3_strings])
if v2:
if v0:
logger.warning(f"GPTQ model identified as v2, but v0={v0}")
return 2, v1
if v1:
if v0 or v2:
logger.warning(f"GPTQ model identified as v1, but v0={v0} and v2={v2}")
return 1, False
if v0:
if v1 or v2:
logger.warning(f"GPTQ model identified as v0, but v1={v1} and v2={v2}")
return 0, False
class model_backend(HFTorchInferenceModel):
def is_valid(self, model_name, model_path, menu_path):
gptq_model, _, _, _, _ = load_model_gptq_settings(model_path)
return bool(gptq_model)
def _load(self, save_model: bool, initial_load: bool) -> None:
# Make model path the same as the model name to make this consistent
# with the other loading method if it isn't a known model type. This
# code is not just a workaround for below, it is also used to make the
# behavior consistent with other loading methods - Henk717
# if utils.koboldai_vars.model not in ["NeoCustom", "GPT2Custom"]:
# utils.koboldai_vars.custmodpth = utils.koboldai_vars.model
self.init_model_config()
self.lazy_load = False
gpulayers = self.breakmodel_config.gpu_blocks
try:
self.gpu_layers_list = [int(l) for l in gpulayers.split(",")]
except (ValueError, AttributeError):
self.gpu_layers_list = [utils.num_layers(self.model_config)]
tf_kwargs = {
"low_cpu_mem_usage": True,
}
# If we're using torch_lazy_loader, we need to get breakmodel config
# early so that it knows where to load the individual model tensors
logger.debug("lazy_load: {} hascuda: {} breakmodel: {} nobreakmode: {}".format(self.lazy_load, utils.koboldai_vars.hascuda, self.breakmodel, self.nobreakmodel))
if (
self.lazy_load
and utils.koboldai_vars.hascuda
and utils.koboldai_vars.breakmodel
and not utils.koboldai_vars.nobreakmodel
):
self.breakmodel_device_config(self.model_config)
if self.lazy_load:
# torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
tf_kwargs.pop("low_cpu_mem_usage", None)
# If we're using lazy loader, we need to figure out what the model's hidden layers are called
with lazy_loader.use_lazy_load(dematerialized_modules=True):
try:
metamodel = AutoModelForCausalLM.from_config(self.model_config)
utils.layers_module_names = utils.get_layers_module_names(metamodel)
utils.module_names = list(metamodel.state_dict().keys())
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
except Exception as e:
if utils.args.panic:
raise e
logger.warning(f"Gave up on lazy loading due to {e}")
self.lazy_load = False
if self.get_local_model_path():
# Model is stored locally, load it.
self.model = self._get_model(self.get_local_model_path(), tf_kwargs)
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
else:
raise NotImplementedError("GPTQ Model downloading not implemented")
if (
utils.koboldai_vars.badwordsids is koboldai_settings.badwordsids_default
and utils.koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")
):
utils.koboldai_vars.badwordsids = [
[v]
for k, v in self.tokenizer.get_vocab().items()
if any(c in str(k) for c in "[]")
]
self.patch_embedding()
self.model.kai_model = self
utils.koboldai_vars.modeldim = self.get_hidden_size()
def _get_model(self, location: str, tf_kwargs: Dict):
import gptq
from gptq.gptj import load_quant as gptj_load_quant
from gptq.gptneox import load_quant as gptneox_load_quant
from gptq.llama import load_quant as llama_load_quant
from gptq.opt import load_quant as opt_load_quant
from gptq.bigcode import load_quant as bigcode_load_quant
from gptq.mpt import load_quant as mpt_load_quant
from gptq.offload import load_quant_offload
gptq_model, gptq_bits, gptq_groupsize, gptq_file, gptq_version = load_model_gptq_settings(location)
v2_bias = False
if gptq_version < 0:
gptq_version, v2_bias = get_gptq_version(gptq_file)
gptq.modelutils.set_gptq_version(gptq_version)
model_type = self.get_model_type()
logger.info(f"Using GPTQ file: {gptq_file}, {gptq_bits}-bit model, type {model_type}, version {gptq_version}{' (with bias)' if v2_bias else ''}, groupsize {gptq_groupsize}")
if model_type == "gptj":
model = load_quant_offload(gptj_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
elif model_type == "gpt_neox":
model = load_quant_offload(gptneox_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
elif model_type == "llama":
model = load_quant_offload(llama_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
elif model_type == "opt":
model = load_quant_offload(opt_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
elif model_type == "mpt":
model = load_quant_offload(mpt_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
elif model_type == "gpt_bigcode":
model = load_quant_offload(bigcode_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias).half()
else:
try:
import auto_gptq
from auto_gptq import AutoGPTQForCausalLM
except ImportError:
raise RuntimeError(f"4-bit load failed. Model type {model_type} not supported in 4-bit")
try:
import hf_bleeding_edge
from hf_bleeding_edge import AutoModelForCausalLM
except ImportError:
from transformers import AutoModelForCausalLM
# Monkey patch in hf_bleeding_edge to avoid having to trust remote code
auto_gptq.modeling._utils.AutoConfig = hf_bleeding_edge.AutoConfig
auto_gptq.modeling._base.AutoConfig = hf_bleeding_edge.AutoConfig
auto_gptq.modeling._base.AutoModelForCausalLM = hf_bleeding_edge.AutoModelForCausalLM
model = AutoGPTQForCausalLM.from_quantized(location, model_basename=Path(gptq_file).stem, use_safetensors=gptq_file.endswith(".safetensors"))
# Patch in embeddings function
def get_input_embeddings(self):
return self.model.get_input_embeddings()
type(model).get_input_embeddings = get_input_embeddings
# Patch in args support..
def generate(self, *args, **kwargs):
"""shortcut for model.generate"""
with torch.inference_mode(), torch.amp.autocast(device_type=self.device.type):
return self.model.generate(*args, **kwargs)
type(model).generate = generate
return model
def _get_tokenizer(self, location: str):
from transformers import AutoTokenizer, LlamaTokenizer
model_type = self.get_model_type()
if model_type == "llama":
tokenizer = LlamaTokenizer.from_pretrained(location)
else:
tokenizer = AutoTokenizer.from_pretrained(location)
return GenericTokenizer(tokenizer)