KoboldAI-Client/prompt_tuner.py

1097 lines
48 KiB
Python

import abc
import os
import sys
import math
import numpy as np
import termcolor
import contextlib
import traceback
import random
import zipfile
import json
import uuid
import datetime
import base64
import pickle
import hashlib
import itertools
import functools
import bisect
import eventlet
import packaging
import gc
import time
from tqdm.auto import tqdm
import torch
import torch.nn.functional as F
from torch.nn import Embedding, CrossEntropyLoss
import transformers
from transformers import __version__ as transformers_version
from transformers import AutoTokenizer, GPT2TokenizerFast, AutoConfig, AutoModelForCausalLM, GPTNeoForCausalLM, PreTrainedModel, modeling_utils, GPTNeoModel, GPTJModel
import accelerate
import accelerate.utils
from mkultra.tuning import GPTPromptTuningMixin, GPTNeoPromptTuningLM
from mkultra.soft_prompt import SoftPrompt
from typing import Dict, List, Optional, TextIO, Union
try:
from transformers import XGLMModel
except:
pass
try:
from transformers.models.opt.modeling_opt import OPTDecoder
except:
pass
import breakmodel
import torch_lazy_loader
import utils
USE_BREAKMODEL = True
class Send_to_socketio(object):
def write(self, bar):
print(bar, end="")
time.sleep(0.01)
try:
if utils.emit is not None:
utils.emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True)
except:
pass
def patch_transformers_download():
global transformers
import copy, requests, tqdm, time
class Send_to_socketio(object):
def write(self, bar):
bar = bar.replace("\r", "").replace("\n", "")
if bar != "":
try:
print(bar, end="\r")
if utils.emit is not None:
utils.emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True)
eventlet.sleep(seconds=0)
except:
pass
def http_get(
url: str,
temp_file: transformers.utils.hub.BinaryIO,
proxies=None,
resume_size=0,
headers: transformers.utils.hub.Optional[transformers.utils.hub.Dict[str, str]] = None,
file_name: transformers.utils.hub.Optional[str] = None,
):
"""
Download remote file. Do not gobble up errors.
"""
headers = copy.deepcopy(headers)
if resume_size > 0:
headers["Range"] = f"bytes={resume_size}-"
r = requests.get(url, stream=True, proxies=proxies, headers=headers)
transformers.utils.hub._raise_for_status(r)
content_length = r.headers.get("Content-Length")
total = resume_size + int(content_length) if content_length is not None else None
# `tqdm` behavior is determined by `utils.logging.is_progress_bar_enabled()`
# and can be set using `utils.logging.enable/disable_progress_bar()`
if url[-11:] != 'config.json':
progress = tqdm.tqdm(
unit="B",
unit_scale=True,
unit_divisor=1024,
total=total,
initial=resume_size,
desc=f"Downloading {file_name}" if file_name is not None else "Downloading",
file=Send_to_socketio(),
)
for chunk in r.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
if url[-11:] != 'config.json':
progress.update(len(chunk))
temp_file.write(chunk)
if url[-11:] != 'config.json':
progress.close()
transformers.utils.hub.http_get = http_get
def patch_transformers():
global transformers
patch_transformers_download()
old_from_pretrained = PreTrainedModel.from_pretrained.__func__
@classmethod
def new_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
utils.num_shards = None
utils.current_shard = 0
utils.from_pretrained_model_name = pretrained_model_name_or_path
utils.from_pretrained_index_filename = None
utils.from_pretrained_kwargs = kwargs
utils.bar = None
if utils.args is None or not utils.args.no_aria2:
utils.aria2_hook(pretrained_model_name_or_path, **kwargs)
return old_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
if(not hasattr(PreTrainedModel, "_kai_patched")):
PreTrainedModel.from_pretrained = new_from_pretrained
PreTrainedModel._kai_patched = True
if(hasattr(modeling_utils, "get_checkpoint_shard_files")):
old_get_checkpoint_shard_files = modeling_utils.get_checkpoint_shard_files
def new_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs):
utils.num_shards = utils.get_num_shards(index_filename)
utils.from_pretrained_index_filename = index_filename
return old_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs)
modeling_utils.get_checkpoint_shard_files = new_get_checkpoint_shard_files
# Some versions of transformers 4.17.0.dev0 are affected by
# https://github.com/huggingface/transformers/issues/15736
# This is a workaround for those versions of transformers.
if(transformers_version == "4.17.0.dev0"):
try:
from transformers.models.xglm.modeling_xglm import XGLMSinusoidalPositionalEmbedding
except ImportError:
pass
else:
@torch.no_grad()
def new_forward(self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0):
bsz, seq_len = inputs_embeds.size()[:-1]
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
past_key_values_length + self.padding_idx + 1, past_key_values_length + sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
).unsqueeze(0).expand(input_shape).contiguous()
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach()
XGLMSinusoidalPositionalEmbedding.forward = new_forward
# Fix a bug in OPTForCausalLM where self.lm_head is the wrong size
if(packaging.version.parse("4.19.0.dev0") <= packaging.version.parse(transformers_version) < packaging.version.parse("4.20.0")):
try:
from transformers import OPTForCausalLM, OPTModel
except ImportError:
pass
else:
# This is the same as the original __init__ but with
# config.hidden_size
# replaced with
# config.word_embed_proj_dim
def new_init(self, config):
super(OPTForCausalLM, self).__init__(config)
self.model = OPTModel(config)
self.lm_head = torch.nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
self.post_init()
OPTForCausalLM.__init__ = new_init
def move_model_to_devices(model, usegpu, gpu_device):
global generator
if(not utils.HAS_ACCELERATE and not USE_BREAKMODEL):
if(usegpu):
model = model.half().to(gpu_device)
else:
model = model.to('cpu').float()
generator = model.generate
return
import breakmodel
if(utils.HAS_ACCELERATE):
import accelerate.utils
for key, value in model.state_dict().items():
target_dtype = torch.float32 if breakmodel.primary_device == "cpu" else torch.float16
if(value.dtype is not target_dtype):
accelerate.utils.set_module_tensor_to_device(model, key, target_dtype)
disk_blocks = breakmodel.disk_blocks
gpu_blocks = breakmodel.gpu_blocks
ram_blocks = len(utils.layers_module_names) - sum(gpu_blocks)
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
device_map = {}
for name in utils.layers_module_names:
layer = int(name.rsplit(".", 1)[1])
device = ("disk" if layer < disk_blocks else "cpu") if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
device_map[name] = device
for name in utils.get_missing_module_names(model, list(device_map.keys())):
device_map[name] = breakmodel.primary_device
breakmodel.dispatch_model_ex(model, device_map, main_device=breakmodel.primary_device, offload_buffers=True, offload_dir="accelerate-disk-cache")
gc.collect()
generator = model.generate
return
model.half()
gc.collect()
if(hasattr(model, "transformer")):
model.transformer.wte.to(breakmodel.primary_device)
model.transformer.ln_f.to(breakmodel.primary_device)
if(hasattr(model, 'lm_head')):
model.lm_head.to(breakmodel.primary_device)
if(hasattr(model.transformer, 'wpe')):
model.transformer.wpe.to(breakmodel.primary_device)
elif(not hasattr(model.model, "decoder")):
model.model.embed_tokens.to(breakmodel.primary_device)
model.model.layer_norm.to(breakmodel.primary_device)
model.lm_head.to(breakmodel.primary_device)
model.model.embed_positions.to(breakmodel.primary_device)
else:
model.model.decoder.embed_tokens.to(breakmodel.primary_device)
if(model.model.decoder.project_in is not None):
model.model.decoder.project_in.to(breakmodel.primary_device)
if(model.model.decoder.project_out is not None):
model.model.decoder.project_out.to(breakmodel.primary_device)
model.model.decoder.embed_positions.to(breakmodel.primary_device)
gc.collect()
GPTNeoModel.forward = breakmodel.new_forward_neo
if("GPTJModel" in globals()):
GPTJModel.forward = breakmodel.new_forward_neo # type: ignore
if("XGLMModel" in globals()):
XGLMModel.forward = breakmodel.new_forward_xglm # type: ignore
if("OPTDecoder" in globals()):
OPTDecoder.forward = breakmodel.new_forward_opt # type: ignore
generator = model.generate
if(hasattr(model, "transformer")):
breakmodel.move_hidden_layers(model.transformer)
elif(not hasattr(model.model, "decoder")):
breakmodel.move_hidden_layers(model.model, model.model.layers)
else:
breakmodel.move_hidden_layers(model.model.decoder, model.model.decoder.layers)
_PromptTuningPreTrainedModel = Union["UniversalPromptTuningMixin", GPTPromptTuningMixin, transformers.PreTrainedModel]
class _WTEDummy:
def __init__(self, model: transformers.PreTrainedModel):
self.model = model
@property
def wte(self: "_WTEDummy"):
return self.model.get_input_embeddings()
@wte.setter
def wte(self: "_WTEDummy", v):
self.model.set_input_embeddings(v)
class _WTEMixin:
@property
def wte(self: Union["_WTEMixin", transformers.PreTrainedModel]):
return self.get_input_embeddings()
@wte.setter
def wte(self: Union["_WTEMixin", transformers.PreTrainedModel], v):
self.set_input_embeddings(v)
class UniversalPromptTuningMixin:
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
model: _PromptTuningPreTrainedModel = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
if not hasattr(model, "transformer"):
model.transformer = _WTEDummy(model)
elif not hasattr(model.transformer, "wte"):
assert isinstance(model.transformer, type)
model.transformer.__class__ = type("_UniversalPromptTuning" + model.transformer.__class__.__name__, (_WTEMixin, model.transformer.__class__), {})
model.__class__ = type("_UniversalPromptTuning" + model.__class__.__name__, (UniversalPromptTuningMixin, model.__class__), {})
for param in model.parameters():
param.requires_grad = False
model.initialize_soft_prompt()
return model
def forward(
self: _PromptTuningPreTrainedModel,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
assert input_ids is not None
assert input_ids.ndim == 2
input_ids = F.pad(input_ids, (self.learned_embedding.size(0), 0, 0, 0), value=self.transformer.wte.weight.size(0) // 2)
if labels is not None:
labels = self._extend_labels(labels)
if attention_mask is not None:
attention_mask = self._extend_attention_mask(attention_mask)
old_embedding_call = Embedding.__call__
model = self
def new_embedding_call(self, input_ids, *args, **kwargs):
inputs_embeds = old_embedding_call(self, input_ids, *args, **kwargs)
if model.transformer.wte is self:
assert inputs_embeds.ndim == 3
inputs_embeds[:, :model.learned_embedding.size(0), :] = model.learned_embedding[None]
return inputs_embeds
Embedding.__call__ = new_embedding_call
try:
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
use_cache=use_cache,
return_dict=return_dict,
)
finally:
Embedding.__call__ = old_embedding_call
for k in dir(GPTPromptTuningMixin):
v = getattr(GPTPromptTuningMixin, k)
_v = getattr(UniversalPromptTuningMixin, k, None)
if _v is None or (_v is getattr(object, k, None) and callable(_v) and not isinstance(_v, type)):
setattr(UniversalPromptTuningMixin, k, v)
class AutoPromptTuningLM(UniversalPromptTuningMixin, transformers.AutoModelForCausalLM):
def __init__(self, config):
super().__init__(config)
default_quiet = False
def get_tokenizer(model_id, revision=None) -> transformers.PreTrainedTokenizerBase:
if(os.path.isdir(model_id)):
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache")
except Exception as e:
pass
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache", use_fast=False)
except Exception as e:
try:
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, revision=revision, cache_dir="cache")
except Exception as e:
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
elif(os.path.isdir("models/{}".format(model_id.replace('/', '_')))):
try:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(model_id.replace('/', '_')), revision=revision, cache_dir="cache")
except Exception as e:
pass
try:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(model_id.replace('/', '_')), revision=revision, cache_dir="cache", use_fast=False)
except Exception as e:
try:
tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(model_id.replace('/', '_')), revision=revision, cache_dir="cache")
except Exception as e:
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
else:
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache")
except Exception as e:
pass
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache", use_fast=False)
except Exception as e:
try:
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, revision=revision, cache_dir="cache")
except Exception as e:
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
@contextlib.contextmanager
def _kai_no_prefix():
add_bos_token = getattr(tokenizer, "add_bos_token", False)
add_prefix_space = getattr(tokenizer, "add_prefix_space", False)
tokenizer.add_bos_token = False
tokenizer.add_prefix_space = False
try:
yield
finally:
tokenizer.add_bos_token = add_bos_token
tokenizer.add_prefix_space = add_prefix_space
tokenizer._kai_no_prefix = _kai_no_prefix
return tokenizer
class ConfigurationError(Exception):
def __init__(self, msg: str = "Unknown error", code: int = 1, quiet: Optional[bool] = None):
if quiet is None:
quiet = default_quiet
super().__init__(msg)
self.code = code
self.quiet = quiet
class TrainerBase(abc.ABC):
@abc.abstractmethod
def startup(self, step: int) -> None:
...
@abc.abstractmethod
def get_batch(self, step: int, size: int) -> np.ndarray:
...
@abc.abstractmethod
def get_num_sequences(self) -> int:
...
@abc.abstractmethod
def get_initial_soft_embeddings(self, model: transformers.PreTrainedModel) -> SoftPrompt:
...
@abc.abstractmethod
def tokenize_dataset_callback(self, tokenizer: transformers.PreTrainedTokenizerBase, text: str) -> List[int]:
...
class TrainerData:
def __init__(self):
self.__lazy_load_spec: Optional[dict] = None
self.model_spec: Optional[dict] = None
self.tokenizer_id: Optional[str] = None
self.newlinemode: Optional[str] = None
self.ckpt_path: Optional[str] = None
self.save_file: Optional[str] = None
self.params: Optional[dict] = None
self.stparams: Optional[dict] = None
self.gradient_accumulation_steps = -1
self.soft_in_dim = -1
self.prompt_method = "tokens"
self.prompt_seed = 42
@property
def lazy_load_spec(self):
print("WARNING: `TrainerData.lazy_load_spec` is currently unused", file=sys.stderr)
return self.__lazy_load_spec
@lazy_load_spec.setter
def lazy_load_spec(self, value: Optional[dict]):
print("WARNING: `TrainerData.lazy_load_spec` is currently unused", file=sys.stderr)
self.__lazy_load_spec = value
@property
def kaiming_size(self): # backwards compatibility
return self.soft_in_dim
@kaiming_size.setter
def kaiming_size(self, value: int): # backwards compatibility
self.prompt_method = "kaiming"
self.soft_in_dim = value
data: TrainerData
def __init__(self, universe: Optional[int] = None, quiet=False):
self.quiet = quiet
self.universe = universe
self.data = self.TrainerData()
self._spmodule: Optional[str] = None
if universe is not None:
print("WARNING: The `universe` argument of `TrainerBase.__init__` is currently unused", file=sys.stderr)
def raise_configuration_error(self, msg, **kwargs):
if "quiet" not in kwargs:
kwargs["quiet"] = self.quiet
raise ConfigurationError(msg, **kwargs)
def _get_model_config(self) -> transformers.configuration_utils.PretrainedConfig:
REVISION = None
if(os.path.isdir(self.data.ckpt_path)):
model_config = AutoConfig.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
elif(os.path.isdir("models/{}".format(self.data.ckpt_path.replace('/', '_')))):
model_config = AutoConfig.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
else:
model_config = AutoConfig.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
return model_config
def get_hf_checkpoint_metadata(self) -> bool:
params = {}
model_config = self._get_model_config()
params["tokenizer_id"] = self.data.ckpt_path
tokenizer = get_tokenizer(self.data.ckpt_path)
params["newlinemode"] = params.get(
"newlinemode", "s" if model_config.model_type == "xglm" else "n"
)
params["max_batch_size"] = 2048
with tokenizer._kai_no_prefix():
params["eos_token"] = (
[50259, 50259] if model_config.model_type == "xglm" and model_config.eos_token_id == 50259 else tokenizer.encode(model_config.eos_token_id)
)
params["seq"] = 2048
self.data.params = params
return True
def get_tokenizer(self) -> transformers.PreTrainedTokenizerBase:
return get_tokenizer(self.data.ckpt_path)
def save_data(self):
pass
def export_to_kobold(self, output_file: str, name: str, author: str, supported: str, description: str):
try:
z = torch.load(self.data.save_file)
assert z["step"] > 0
assert z["tensor"].ndim == 2 and "opt_state" in z
assert z["tensor"].shape[0] < self.data.params["max_batch_size"]
self.data.soft_in_dim = z["tensor"].shape[0]
except AssertionError:
self.raise_configuration_error("MKUSP file is corrupted.", code=14)
tensor = z["tensor"]
meta = {
"name": name,
"author": author,
"supported": supported,
"description": description,
}
if len(meta["author"].strip()) == 0:
meta.pop("author")
meta["supported"] = list(map(lambda m: m.strip(), supported.split(",")))
with zipfile.ZipFile(output_file, "w", compression=zipfile.ZIP_LZMA) as z:
with z.open("tensor.npy", "w") as f:
np.save(f, tensor, allow_pickle=False)
with zipfile.ZipFile(output_file, "a", compression=zipfile.ZIP_STORED) as z:
with z.open("meta.json", "w") as f:
f.write(json.dumps(meta, indent=2).encode("utf-8"))
def export_to_mkultra(self, output_file: str, soft_prompt_name: str, soft_prompt_description: str):
try:
z = torch.load(self.data.save_file)
assert z["step"] > 0
assert z["tensor"].ndim == 2 and "opt_state" in z
assert z["tensor"].shape[0] < self.data.params["max_batch_size"]
self.data.soft_in_dim = z["tensor"].shape[0]
_step = z["step"]
except AssertionError:
self.raise_configuration_error("MKUSP file is corrupted.", code=14)
tensor = z["tensor"]
with open(output_file, "w") as f:
json.dump(
{
"metadata": {
"step": _step,
"loss": float(z["loss"].item()),
"uuid": str(uuid.uuid4()),
"name": soft_prompt_name,
"description": soft_prompt_description,
"epoch": datetime.datetime.now().timestamp(),
},
"tensor": base64.b64encode(
pickle.dumps(
tensor,
protocol=4,
),
).decode("ascii"),
},
f,
)
def tokenize_dataset(
self,
dataset_path: Union[str, TextIO],
output_file: Union[str, TextIO],
batch_size=2048,
epochs=1,
use_ftfy=True,
shuffle_seed: Optional[Union[int, float, str, bytes, bytearray]] = 1729,
):
dataset_path = dataset_path.replace("\\", "/")
output_file = output_file.replace("\\", "/")
if not isinstance(batch_size, int) or batch_size < 1:
self.raise_configuration_error(
"batch_size must be an integer greater than zero.", code=9
)
if (
not isinstance(epochs, int) and not isinstance(epochs, float)
) or epochs <= 0:
self.raise_configuration_error(
"epochs must be an int or float greater than zero.", code=10
)
if isinstance(output_file, str) and output_file.endswith("/"):
self.raise_configuration_error(
"output_file should be the path to a file, not a directory.", code=11
)
if isinstance(dataset_path, str) and not os.path.exists(dataset_path):
self.raise_configuration_error(
"dataset_path is not set to a valid file or directory.", code=12
)
if use_ftfy:
import ftfy
tokenizer = self.get_tokenizer()
batch_size = min(
batch_size,
self.data.params["max_batch_size"] - self.data.soft_in_dim,
)
assert batch_size >= 0
print(
termcolor.colored(
"\nIf you see a warning somewhere below about token indices, ignore it. That warning is normal.\n",
"magenta",
)
)
print("Batch size:", batch_size)
print(termcolor.colored("Tokenizing your dataset...\n", "magenta"))
if not isinstance(dataset_path, str):
files = [dataset_path]
elif os.path.isfile(dataset_path):
files = [dataset_path]
else:
files = sorted(
os.path.join(dataset_path, filename)
for filename in os.listdir(dataset_path)
)
if shuffle_seed is not None:
random.Random(shuffle_seed).shuffle(files)
tokens = []
eos = tokenizer.decode(self.data.params["eos_token"])
for path in files:
if isinstance(path, str):
f = open(path)
else:
f = path
try:
text = f.read()
if use_ftfy:
text = ftfy.fix_text(text)
text = text.replace("<|endoftext|>", eos)
tokens.extend(self.tokenize_dataset_callback(tokenizer, text))
finally:
if isinstance(path, str):
f.close()
print("Dataset size (in tokens):", len(tokens))
if len(tokens) < batch_size + 1:
self.raise_configuration_error(
"Your dataset is too small! The number of tokens has to be greater than the batch size. Try increasing the epochs.",
code=13,
)
tail = len(tokens) % (batch_size + 1)
if tail:
print(
f"We're removing the last {tail} tokens from your dataset to make the length a multiple of {batch_size+1}."
)
tokens = tokens[:-tail]
tokens = np.array(tokens, dtype=np.uint16).reshape((-1, batch_size + 1))
sequences_per_epoch = tokens.shape[0]
_epochs = math.ceil(epochs)
if _epochs > 1:
rng = np.random.Generator(np.random.PCG64(1729))
tokens = np.concatenate(
(
tokens,
*(rng.permutation(tokens, axis=0) for i in range(_epochs - 1)),
),
axis=0,
)
tokens = tokens[: math.ceil(epochs * sequences_per_epoch)]
print(f"Total sequences in your dataset: {tokens.shape[0]}")
if isinstance(output_file, str):
f = open(output_file, "w")
else:
f = output_file
try:
np.save(output_file, tokens)
finally:
if isinstance(output_file, str):
f.close()
def train(
self,
breakmodel_primary_device: Optional[Union[str, int, torch.device]] = None,
breakmodel_gpulayers: Optional[List[int]] = None,
breakmodel_disklayers = 0,
):
if breakmodel_gpulayers is None:
breakmodel_gpulayers = []
if breakmodel_primary_device is None:
breakmodel_primary_device = 0 if breakmodel_gpulayers else "cpu"
if self.data.params is not None and "max_batch_size" not in self.data.params:
self.data.params["max_batch_size"] = 2048
if not os.path.exists(self.data.save_file):
print("We are starting a brand new soft-tuning session.\n")
self.startup(step=-1)
if self.data.soft_in_dim <= 0:
self.raise_configuration_error(
"You have not set a soft prompt size.", code=6
)
step = 0
else:
# If we're resuming a soft-tuning session, the soft prompt tensor is
# already in the save file and we just have to decode it.
try:
z = torch.load(self.data.save_file)
assert z["step"] > 0
assert z["tensor"].ndim == 2 and "opt_state" in z
assert z["tensor"].shape[0] < self.data.params["max_batch_size"]
self.data.soft_in_dim = z["tensor"].shape[0]
step = z["step"]
opt_state = z["opt_state"]
except AssertionError:
self.raise_configuration_error("MKUSP file is corrupted.", code=14)
print(f"We're resuming a previous soft-tuning session at step {step+1}.\n")
self.startup(step=step + 1)
soft_embeddings = z["tensor"]
REVISION = None
patch_transformers()
model: _PromptTuningPreTrainedModel
model_config = self._get_model_config()
n_layers = utils.num_layers(model_config)
convert_to_float16 = True
hascuda = torch.cuda.is_available()
usegpu = not breakmodel_disklayers and len(breakmodel_gpulayers) == 1 and breakmodel_gpulayers[0] == n_layers
gpu_device = breakmodel_primary_device
breakmodel.disk_blocks = breakmodel_disklayers
disk_blocks = breakmodel.disk_blocks
gpu_blocks = breakmodel.gpu_blocks
ram_blocks = ram_blocks = n_layers - sum(gpu_blocks)
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
def lazy_load_callback(model_dict: Dict[str, Union[torch_lazy_loader.LazyTensor, torch.Tensor]], f, **_):
if lazy_load_callback.nested:
return
lazy_load_callback.nested = True
device_map: Dict[str, Union[str, int]] = {}
@functools.lru_cache(maxsize=None)
def get_original_key(key):
return max((original_key for original_key in utils.module_names if original_key.endswith(key)), key=len)
for key, value in model_dict.items():
original_key = get_original_key(key)
if isinstance(value, torch_lazy_loader.LazyTensor) and not any(original_key.startswith(n) for n in utils.layers_module_names):
device_map[key] = gpu_device if hascuda and usegpu else "cpu" if not hascuda or not USE_BREAKMODEL else breakmodel.primary_device
else:
layer = int(max((n for n in utils.layers_module_names if original_key.startswith(n)), key=len).rsplit(".", 1)[1])
device = gpu_device if hascuda and usegpu else "disk" if layer < disk_blocks and layer < ram_blocks else "cpu" if not hascuda or not USE_BREAKMODEL else "shared" if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
device_map[key] = device
if utils.num_shards is None or utils.current_shard == 0:
utils.offload_index = {}
if utils.HAS_ACCELERATE:
if os.path.isdir("accelerate-disk-cache"):
# Delete all of the files in the disk cache folder without deleting the folder itself to allow people to create symbolic links for this folder
# (the folder doesn't contain any subfolders so os.remove will do just fine)
for filename in os.listdir("accelerate-disk-cache"):
try:
os.remove(os.path.join("accelerate-disk-cache", filename))
except OSError:
pass
os.makedirs("accelerate-disk-cache", exist_ok=True)
if utils.num_shards is not None:
num_tensors = len(utils.get_sharded_checkpoint_num_tensors(utils.from_pretrained_model_name, utils.from_pretrained_index_filename, **utils.from_pretrained_kwargs))
else:
num_tensors = len(device_map)
print(flush=True)
utils.bar = tqdm(total=num_tensors, desc="Loading model tensors", file=Send_to_socketio())
with zipfile.ZipFile(f, "r") as z:
try:
last_storage_key = None
f = None
current_offset = 0
able_to_pin_layers = True
if utils.num_shards is not None:
utils.current_shard += 1
for key in sorted(device_map.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset)):
storage_key = model_dict[key].key
if storage_key != last_storage_key or model_dict[key].seek_offset < current_offset:
last_storage_key = storage_key
if isinstance(f, zipfile.ZipExtFile):
f.close()
f = z.open(f"archive/data/{storage_key}")
current_offset = 0
if current_offset != model_dict[key].seek_offset:
f.read(model_dict[key].seek_offset - current_offset)
current_offset = model_dict[key].seek_offset
device = device_map[key]
size = functools.reduce(lambda x, y: x * y, model_dict[key].shape, 1)
dtype = model_dict[key].dtype
nbytes = size if dtype is torch.bool else size * ((torch.finfo if dtype.is_floating_point else torch.iinfo)(dtype).bits >> 3)
#print(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ", end="", flush=True)
model_dict[key] = model_dict[key].materialize(f, map_location="cpu")
# if model_dict[key].dtype is torch.float32:
# fp32_model = True
if convert_to_float16 and breakmodel.primary_device != "cpu" and hascuda and (USE_BREAKMODEL or usegpu) and model_dict[key].dtype is torch.float32:
model_dict[key] = model_dict[key].to(torch.float16)
if breakmodel.primary_device == "cpu" or (not usegpu and not USE_BREAKMODEL and model_dict[key].dtype is torch.float16):
model_dict[key] = model_dict[key].to(torch.float32)
if device == "shared":
model_dict[key] = model_dict[key].to("cpu").detach_()
if able_to_pin_layers and utils.HAS_ACCELERATE:
try:
model_dict[key] = model_dict[key].pin_memory()
except:
able_to_pin_layers = False
elif device == "disk":
accelerate.utils.offload_weight(model_dict[key], get_original_key(key), "accelerate-disk-cache", index=utils.offload_index)
model_dict[key] = model_dict[key].to("meta")
else:
model_dict[key] = model_dict[key].to(device)
#print("OK", flush=True)
current_offset += nbytes
utils.bar.update(1)
finally:
if utils.num_shards is None or utils.current_shard >= utils.num_shards:
if utils.offload_index:
for name, tensor in utils.named_buffers:
if name not in utils.offload_index:
accelerate.utils.offload_weight(tensor, name, "accelerate-disk-cache", index=utils.offload_index)
accelerate.utils.save_offload_index(utils.offload_index, "accelerate-disk-cache")
utils.bar.close()
utils.bar = None
lazy_load_callback.nested = False
if isinstance(f, zipfile.ZipExtFile):
f.close()
lazy_load_callback.nested = False
# Since we're using lazy loader, we need to figure out what the model's hidden layers are called
with torch_lazy_loader.use_lazy_torch_load(dematerialized_modules=True, use_accelerate_init_empty_weights=True):
try:
metamodel = AutoModelForCausalLM.from_config(model_config)
except Exception as e:
metamodel = GPTNeoForCausalLM.from_config(model_config)
utils.layers_module_names = utils.get_layers_module_names(metamodel)
utils.module_names = list(metamodel.state_dict().keys())
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
with torch_lazy_loader.use_lazy_torch_load(callback=lazy_load_callback, dematerialized_modules=True):
if(os.path.isdir(self.data.ckpt_path)):
try:
model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
except Exception as e:
if("out of memory" in traceback.format_exc().lower()):
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
elif(os.path.isdir("models/{}".format(self.data.ckpt_path.replace('/', '_')))):
try:
model = AutoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
except Exception as e:
if("out of memory" in traceback.format_exc().lower()):
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
model = GPTNeoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
else:
try:
model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
except Exception as e:
if("out of memory" in traceback.format_exc().lower()):
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
if(hascuda):
if(usegpu):
model = model.half().to(gpu_device)
elif(breakmodel): # Use both RAM and VRAM (breakmodel)
move_model_to_devices(model, usegpu, gpu_device)
elif(__import__("breakmodel").disk_blocks > 0):
move_model_to_devices(model, usegpu, gpu_device)
else:
model = model.to('cpu').float()
elif(__import__("breakmodel").disk_blocks > 0):
move_model_to_devices(model, usegpu, gpu_device)
else:
model.to('cpu').float()
if step == 0:
soft_embeddings = self.get_initial_soft_embeddings(model)
else:
soft_embeddings = SoftPrompt.from_inputs_embeds(soft_embeddings)
model.set_soft_prompt(soft_embeddings)
steps = self.get_num_sequences() // self.data.gradient_accumulation_steps
warmup_steps = max(1, round(steps * self.data.stparams["warmup"]))
beta1: Optional[float] = self.data.stparams.get("beta1", 0.0)
if beta1 == 0.0:
beta1 = None
optimizer = transformers.Adafactor(
params=(model.get_soft_params(),),
scale_parameter=False,
relative_step=False,
warmup_init=False,
lr=self.data.stparams["lr"],
beta1=beta1,
decay_rate=self.data.stparams.get("decay_rate", -0.8),
weight_decay=self.data.stparams.get("weight_decay", 0.1),
)
if step != 0:
optimizer.load_state_dict(opt_state)
scheduler = transformers.get_cosine_with_hard_restarts_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=steps - warmup_steps,
num_cycles=(steps - warmup_steps) // self.data.stparams.get("training_steps_per_cycle", 56),
)
torch.cuda.empty_cache()
optimizer.state['step'] = step
cross_entropy_loss = CrossEntropyLoss()
def save_mkusp(
loss,
grad_norm,
):
with open(self.data.save_file, "wb") as f:
torch.save(
{
"tensor": soft_embeddings.get_inputs_embeds(),
"opt_state": optimizer.state_dict(),
"step": step,
"loss": loss,
"grad_norm": grad_norm,
},
f,
)
self.save_data()
bar1 = tqdm(initial=step + 1, total=steps, desc="CURRENT TRAINING STEP")
while step < steps:
step += 1
model.train()
total_loss = total_grad = total_grad_norm = 0
# Get the next sequences from the dataset
block = torch.tensor(np.int32(self.get_batch(step, self.data.gradient_accumulation_steps))).to(model.transformer.wte.weight.device)
for sequence in tqdm(block, desc="GRADIENT ACCUMULATION", leave=False):
# input_ids is the context to the model (without the soft prompt) and labels is what we expect the model to generate (the -100s represent soft prompt tokens for which loss is not calculated)
input_ids = sequence[:-1].unsqueeze(0).detach()
labels = torch.cat((torch.full((model.get_soft_params().size(0) - 1,), -100, device=sequence.device), sequence), dim=-1).unsqueeze(0).detach()
# Give the context to the model and compare the model's output logits with the labels to compute the loss
logits = model(input_ids=input_ids, labels=input_ids).logits
loss: torch.Tensor = cross_entropy_loss(logits.view(-1, model.transformer.wte.weight.size(1)), labels.view(-1))
total_loss += loss.detach()
# Compute the gradient of the loss function and add it to model.get_soft_params().grad (model.get_soft_params().grad += gradient)
loss.backward()
total_grad_norm += torch.linalg.norm(model.get_soft_params().grad.detach() - total_grad)
total_grad = model.get_soft_params().grad.detach()
del input_ids
del labels
del logits
torch.cuda.empty_cache()
mean_loss = (total_loss / self.data.gradient_accumulation_steps).item()
mean_grad_norm = (total_grad_norm / self.data.gradient_accumulation_steps).item()
# Apply the optimization algorithm using the accumulated gradients, which changes the contents of the soft prompt matrix very slightly to reduce the loss
optimizer.step()
lr = optimizer.param_groups[0]["lr"]
scheduler.step()
optimizer.zero_grad()
# Save checkpoint every few steps
if step == 1 or step % self.data.stparams["save_every"] == 0:
save_mkusp(mean_loss, mean_grad_norm)
bar1.set_postfix({"loss": mean_loss, "grad_norm": mean_grad_norm, "learning_rate": lr})
bar1.update()
class BasicTrainer(TrainerBase):
class TrainerData(TrainerBase.TrainerData):
def __init__(self):
super().__init__()
self.dataset_file: Optional[str] = None
self.initial_softprompt: Optional[List[int]] = None
data: "BasicTrainer.TrainerData"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dataset: Optional[np.ndarray] = None
def startup(self, step: int) -> None:
if self.get_num_sequences() < self.data.gradient_accumulation_steps:
self.raise_configuration_error(
"Your dataset is too small! gradient_accumulation_steps must be less than or equal to the number of sequences.",
code=101,
)
if (
self.data.prompt_method == "tokens"
and step < 0
and self.data.initial_softprompt is None
):
self.raise_configuration_error(
"You have not set an initial soft prompt string.", code=103
)
if self.data.prompt_method == "tokens" and step < 0:
self.data.soft_in_dim = len(self.data.initial_softprompt)
def get_batch(self, step: int, size: int) -> np.ndarray:
return self.dataset[(step - 1) * size : step * size]
def get_num_sequences(self) -> int:
if self.dataset is None:
if self.data.dataset_file is None or not os.path.exists(
self.data.dataset_file
):
self.raise_configuration_error(
f"Dataset file not found at {repr(self.data.dataset_file)}",
code=102,
)
self.dataset = np.load(self.data.dataset_file, mmap_mode="r")
assert self.dataset.ndim >= 2
assert self.dataset.shape[0] >= 2
return self.dataset.shape[0]
def get_initial_soft_embeddings(self, model: transformers.PreTrainedModel) -> SoftPrompt:
if self.data.prompt_method == "vocab_sample":
rng = np.random.Generator(
np.random.PCG64(
[
self.data.prompt_seed,
int.from_bytes(hashlib.sha256(model.config.model_type.encode("utf8")).digest()[:4], "little"),
]
)
)
tokenizer = self.get_tokenizer()
with tokenizer._kai_no_prefix():
special_tokens = set(
itertools.chain.from_iterable(
tokenizer.encode(str(v))
for v in tokenizer.special_tokens_map_extended.values()
)
)
sample_space = [
k for k in range(model.get_input_embeddings().weight.shape[-2]) if k not in special_tokens
]
sample = rng.choice(sample_space, self.data.soft_in_dim, False)
return SoftPrompt.from_inputs_embeds(model.get_input_embeddings()(torch.tensor(sample, dtype=torch.int32)))
elif self.data.prompt_method == "tokens":
return SoftPrompt.from_inputs_embeds(model.get_input_embeddings()(torch.tensor(self.data.initial_softprompt, dtype=torch.int32)))
self.raise_configuration_error(
f"Unknown prompt method {repr(self.data.prompt_method)}", code=104
)
def tokenize_dataset_callback(
self, tokenizer: transformers.PreTrainedTokenizerBase, text: str
) -> List[int]:
if self.data.newlinemode == "s":
text = text.replace("\n", "</s>")
with tokenizer._kai_no_prefix():
return tokenizer.encode(text) + self.data.params["eos_token"]