Files
KoboldAI-Client/modeling/inference_models/basic_hf/class.py

182 lines
6.1 KiB
Python

from __future__ import annotations
import os
import shutil
import time
from typing import List, Optional, Union
import torch
import transformers
from transformers import LogitsProcessorList
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
import utils
from logger import logger
from modeling import warpers
from modeling.inference_model import (
GenerationResult,
GenerationSettings,
use_core_manipulations,
)
from modeling.inference_models.hf import HFInferenceModel
model_backend_name = "Basic Huggingface"
model_backend_type = "Huggingface"
class model_backend(HFInferenceModel):
# Model backends must inherit from InferenceModel. We inherit from HFInferenceModel here,
# as it provides some helpers for handling Huggingface configs.
def __init__(self) -> None:
super().__init__()
self.model_name = "Basic Huggingface"
# TODO: These feel weird to be in HFInferenceModel, maybe we could implement
# them in subclasses?
self.hf_torch = True
self.nobreakmodel = True
def _load(self, save_model: bool, initial_load: bool) -> None:
utils.koboldai_vars.allowsp = False
if self.model_name == "NeoCustom":
self.model_name = os.path.basename(os.path.normpath(self.path))
utils.koboldai_vars.model = self.model_name
# If we specify a model and it's in the root directory, we need to move
# it to the models directory (legacy folder structure to new)
if self.get_local_model_path(legacy=True):
shutil.move(
self.get_local_model_path(legacy=True, ignore_existance=True),
self.get_local_model_path(ignore_existance=True),
)
self.init_model_config()
self.model = AutoModelForCausalLM.from_pretrained(
self.get_local_model_path(), low_cpu_mem_usage=True
)
if self.usegpu:
self.model = self.model.to("cuda")
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
self.model.kai_model = self
utils.koboldai_vars.modeldim = self.model.get_input_embeddings().embedding_dim
# Patch Huggingface stuff to use our samplers
class KoboldLogitsWarperList(LogitsProcessorList):
def __call__(
_self, # Unused
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
*args,
**kwargs,
):
# Kobold sampling is done here.
scores = self._apply_warpers(scores=scores, input_ids=input_ids)
# Things like Lua integration, phrase bias, and probability visualization are done here.
for processor in self.logits_processors:
scores = processor(self, scores=scores, input_ids=input_ids)
assert (
scores is not None
), f"Scores are None; processor '{processor}' is to blame"
return scores
def new_sample(self, *args, **kwargs):
assert kwargs.pop("logits_warper", None) is not None
kwargs["logits_warper"] = KoboldLogitsWarperList()
if utils.koboldai_vars.newlinemode in ["s", "ns"]:
kwargs["eos_token_id"] = -1
kwargs.setdefault("pad_token_id", 2)
return new_sample.old_sample(self, *args, **kwargs)
new_sample.old_sample = transformers.GenerationMixin.sample
use_core_manipulations.sample = new_sample
def _apply_warpers(
self, scores: torch.Tensor, input_ids: torch.Tensor
) -> torch.Tensor:
"""Applies samplers/warpers to the given scores, returning the altered scores.
Args:
scores (torch.Tensor): The original scores.
input_ids (torch.Tensor): The input token sequence.
Returns:
torch.Tensor: The altered scores.
"""
warpers.update_settings()
for sid in utils.koboldai_vars.sampler_order:
warper = warpers.Warper.from_id(sid)
if not warper.value_is_valid():
continue
if warper == warpers.RepetitionPenalty:
# Rep pen needs access to input tokens to decide what to penalize
scores = warper.torch(scores, input_ids=input_ids)
else:
scores = warper.torch(scores)
assert scores is not None, f"Scores are None; warper '{warper}' is to blame"
return scores
def _raw_generate(
self,
prompt_tokens: Union[List[int], torch.Tensor],
max_new: int,
gen_settings: GenerationSettings,
single_line: bool = False,
batch_count: int = 1,
seed: Optional[int] = None,
**kwargs,
) -> GenerationResult:
if not isinstance(prompt_tokens, torch.Tensor):
gen_in = torch.tensor(prompt_tokens, dtype=torch.long)[None]
else:
gen_in = prompt_tokens
if not self.usegpu:
gen_in = gen_in.to("cpu")
else:
device = self.get_auxilary_device()
gen_in = gen_in.to(device)
additional_bad_words_ids = [self.tokenizer.encode("\n")] if single_line else []
if seed is not None:
torch.manual_seed(seed)
with torch.no_grad():
start_time = time.time()
genout = self.model.generate(
gen_in,
do_sample=True,
max_length=min(
len(prompt_tokens) + max_new, utils.koboldai_vars.max_length
),
repetition_penalty=1.0,
bad_words_ids=self.badwordsids + additional_bad_words_ids,
use_cache=True,
num_return_sequences=batch_count,
)
logger.debug(
"torch_raw_generate: run generator {}s".format(time.time() - start_time)
)
return GenerationResult(
self,
out_batches=genout,
prompt=prompt_tokens,
is_whole_generation=False,
output_includes_prompt=True,
)