Files
KoboldAI-Client/modeling/inference_models/hf.py
2023-05-03 18:33:11 +02:00

118 lines
4.5 KiB
Python

import os
from typing import Optional
from transformers import AutoConfig
import utils
import koboldai_settings
from logger import logger
from modeling.inference_model import InferenceModel
class HFInferenceModel(InferenceModel):
def __init__(self, model_name: str) -> None:
super().__init__()
self.model_config = None
self.model_name = model_name
self.model = None
self.tokenizer = None
def _post_load(self) -> None:
# These are model specific tokenizer overrides if a model has bad defaults
if utils.koboldai_vars.model_type == "llama":
self.tokenizer.decode_with_prefix_space = True
self.tokenizer.add_bos_token = False
elif utils.koboldai_vars.model_type == "opt":
self.tokenizer._koboldai_header = self.tokenizer.encode("")
self.tokenizer.add_bos_token = False
self.tokenizer.add_prefix_space = False
# Change newline behavior to match model quirks
if utils.koboldai_vars.model_type == "xglm":
# Default to </s> newline mode if using XGLM
utils.koboldai_vars.newlinemode = "s"
elif utils.koboldai_vars.model_type in ["opt", "bloom"]:
# Handle </s> but don't convert newlines if using Fairseq models that have newlines trained in them
utils.koboldai_vars.newlinemode = "ns"
# Clean up tokens that cause issues
if (
utils.koboldai_vars.badwordsids == koboldai_settings.badwordsids_default
and utils.koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")
):
utils.koboldai_vars.badwordsids = [
[v]
for k, v in self.tokenizer.get_vocab().items()
if any(c in str(k) for c in "[]")
]
if utils.koboldai_vars.newlinemode == "n":
utils.koboldai_vars.badwordsids.append([self.tokenizer.eos_token_id])
return super()._post_load()
def get_local_model_path(
self, legacy: bool = False, ignore_existance: bool = False
) -> Optional[str]:
"""
Returns a string of the model's path locally, or None if it is not downloaded.
If ignore_existance is true, it will always return a path.
"""
if self.model_name in ["NeoCustom", "GPT2Custom", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]:
model_path = utils.koboldai_vars.custmodpth
assert model_path
# Path can be absolute or relative to models directory
if os.path.exists(model_path):
return model_path
model_path = os.path.join("models", model_path)
try:
assert os.path.exists(model_path)
except AssertionError:
logger.error(f"Custom model does not exist at '{utils.koboldai_vars.custmodpth}' or '{model_path}'.")
raise
return model_path
basename = utils.koboldai_vars.model.replace("/", "_")
if legacy:
ret = basename
else:
ret = os.path.join("models", basename)
if os.path.isdir(ret) or ignore_existance:
return ret
return None
def init_model_config(self) -> None:
# Get the model_type from the config or assume a model type if it isn't present
try:
self.model_config = AutoConfig.from_pretrained(
self.get_local_model_path() or self.model_name,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
)
utils.koboldai_vars.model_type = self.model_config.model_type
if "gptq_bits" in dir(self.model_config):
utils.koboldai_vars.gptq_model = True
utils.koboldai_vars.gptq_bits = self.model_config.gptq_bits
utils.koboldai_vars.gptq_groupsize = self.model_config.gptq_groupsize
utils.koboldai_vars.gptq_file = None
else:
utils.koboldai_vars.gptq_model = False
except ValueError:
utils.koboldai_vars.model_type = {
"NeoCustom": "gpt_neo",
"GPT2Custom": "gpt2",
}.get(utils.koboldai_vars.model)
if not utils.koboldai_vars.model_type:
logger.warning(
"No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)"
)
utils.koboldai_vars.model_type = "gpt_neo"