mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2024-12-12 08:36:28 +01:00
1086 lines
48 KiB
Python
1086 lines
48 KiB
Python
import abc
|
|
import os
|
|
import sys
|
|
import math
|
|
import numpy as np
|
|
import termcolor
|
|
import contextlib
|
|
import traceback
|
|
import random
|
|
import zipfile
|
|
import json
|
|
import uuid
|
|
import datetime
|
|
import base64
|
|
import pickle
|
|
import hashlib
|
|
import itertools
|
|
import functools
|
|
import bisect
|
|
import eventlet
|
|
import packaging
|
|
import gc
|
|
import time
|
|
from tqdm.auto import tqdm
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.nn import Embedding, CrossEntropyLoss
|
|
import transformers
|
|
from transformers import __version__ as transformers_version
|
|
from transformers import AutoTokenizer, GPT2TokenizerFast, AutoConfig, AutoModelForCausalLM, GPTNeoForCausalLM, PreTrainedModel, modeling_utils
|
|
import accelerate
|
|
import accelerate.utils
|
|
from mkultra.tuning import GPTPromptTuningMixin, GPTNeoPromptTuningLM
|
|
from mkultra.soft_prompt import SoftPrompt
|
|
from typing import Dict, List, Optional, TextIO, Union
|
|
|
|
import logging
|
|
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
|
|
|
import breakmodel
|
|
import torch_lazy_loader
|
|
import utils
|
|
|
|
use_breakmodel = True
|
|
|
|
|
|
class colors:
|
|
PURPLE = '\033[95m'
|
|
BLUE = '\033[94m'
|
|
CYAN = '\033[96m'
|
|
GREEN = '\033[92m'
|
|
YELLOW = '\033[93m'
|
|
RED = '\033[91m'
|
|
END = '\033[0m'
|
|
UNDERLINE = '\033[4m'
|
|
|
|
class Send_to_socketio(object):
|
|
def write(self, bar):
|
|
print(bar, end="")
|
|
time.sleep(0.01)
|
|
try:
|
|
if utils.emit is not None:
|
|
utils.emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True)
|
|
except:
|
|
pass
|
|
|
|
def patch_transformers_download():
|
|
global transformers
|
|
import copy, requests, tqdm, time
|
|
class Send_to_socketio(object):
|
|
def write(self, bar):
|
|
bar = bar.replace("\r", "").replace("\n", "")
|
|
if bar != "":
|
|
try:
|
|
print(bar, end="\r")
|
|
if utils.emit is not None:
|
|
utils.emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True)
|
|
eventlet.sleep(seconds=0)
|
|
except:
|
|
pass
|
|
def http_get(
|
|
url: str,
|
|
temp_file: transformers.utils.hub.BinaryIO,
|
|
proxies=None,
|
|
resume_size=0,
|
|
headers: transformers.utils.hub.Optional[transformers.utils.hub.Dict[str, str]] = None,
|
|
file_name: transformers.utils.hub.Optional[str] = None,
|
|
):
|
|
"""
|
|
Download remote file. Do not gobble up errors.
|
|
"""
|
|
headers = copy.deepcopy(headers)
|
|
if resume_size > 0:
|
|
headers["Range"] = f"bytes={resume_size}-"
|
|
r = requests.get(url, stream=True, proxies=proxies, headers=headers)
|
|
transformers.utils.hub._raise_for_status(r)
|
|
content_length = r.headers.get("Content-Length")
|
|
total = resume_size + int(content_length) if content_length is not None else None
|
|
# `tqdm` behavior is determined by `utils.logging.is_progress_bar_enabled()`
|
|
# and can be set using `utils.logging.enable/disable_progress_bar()`
|
|
if url[-11:] != 'config.json':
|
|
progress = tqdm.tqdm(
|
|
unit="B",
|
|
unit_scale=True,
|
|
unit_divisor=1024,
|
|
total=total,
|
|
initial=resume_size,
|
|
desc=f"Downloading {file_name}" if file_name is not None else "Downloading",
|
|
file=Send_to_socketio(),
|
|
)
|
|
for chunk in r.iter_content(chunk_size=1024):
|
|
if chunk: # filter out keep-alive new chunks
|
|
if url[-11:] != 'config.json':
|
|
progress.update(len(chunk))
|
|
temp_file.write(chunk)
|
|
if url[-11:] != 'config.json':
|
|
progress.close()
|
|
|
|
transformers.utils.hub.http_get = http_get
|
|
|
|
|
|
def patch_transformers():
|
|
global transformers
|
|
|
|
patch_transformers_download()
|
|
|
|
old_from_pretrained = PreTrainedModel.from_pretrained.__func__
|
|
@classmethod
|
|
def new_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
|
utils.num_shards = None
|
|
utils.current_shard = 0
|
|
utils.from_pretrained_model_name = pretrained_model_name_or_path
|
|
utils.from_pretrained_index_filename = None
|
|
utils.from_pretrained_kwargs = kwargs
|
|
utils.bar = None
|
|
if utils.args is None or not utils.args.no_aria2:
|
|
utils.aria2_hook(pretrained_model_name_or_path, **kwargs)
|
|
return old_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
|
|
if(not hasattr(PreTrainedModel, "_kai_patched")):
|
|
PreTrainedModel.from_pretrained = new_from_pretrained
|
|
PreTrainedModel._kai_patched = True
|
|
if(hasattr(modeling_utils, "get_checkpoint_shard_files")):
|
|
old_get_checkpoint_shard_files = modeling_utils.get_checkpoint_shard_files
|
|
def new_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs):
|
|
utils.num_shards = utils.get_num_shards(index_filename)
|
|
utils.from_pretrained_index_filename = index_filename
|
|
return old_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs)
|
|
modeling_utils.get_checkpoint_shard_files = new_get_checkpoint_shard_files
|
|
|
|
# Some versions of transformers 4.17.0.dev0 are affected by
|
|
# https://github.com/huggingface/transformers/issues/15736
|
|
# This is a workaround for those versions of transformers.
|
|
if(transformers_version == "4.17.0.dev0"):
|
|
try:
|
|
from transformers.models.xglm.modeling_xglm import XGLMSinusoidalPositionalEmbedding
|
|
except ImportError:
|
|
pass
|
|
else:
|
|
@torch.no_grad()
|
|
def new_forward(self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0):
|
|
bsz, seq_len = inputs_embeds.size()[:-1]
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
sequence_length = input_shape[1]
|
|
position_ids = torch.arange(
|
|
past_key_values_length + self.padding_idx + 1, past_key_values_length + sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
|
).unsqueeze(0).expand(input_shape).contiguous()
|
|
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
|
|
if max_pos > self.weights.size(0):
|
|
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
|
|
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach()
|
|
XGLMSinusoidalPositionalEmbedding.forward = new_forward
|
|
|
|
|
|
# Fix a bug in OPTForCausalLM where self.lm_head is the wrong size
|
|
if(packaging.version.parse("4.19.0.dev0") <= packaging.version.parse(transformers_version) < packaging.version.parse("4.20.0")):
|
|
try:
|
|
from transformers import OPTForCausalLM, OPTModel
|
|
except ImportError:
|
|
pass
|
|
else:
|
|
# This is the same as the original __init__ but with
|
|
# config.hidden_size
|
|
# replaced with
|
|
# config.word_embed_proj_dim
|
|
def new_init(self, config):
|
|
super(OPTForCausalLM, self).__init__(config)
|
|
self.model = OPTModel(config)
|
|
self.lm_head = torch.nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
|
|
self.post_init()
|
|
OPTForCausalLM.__init__ = new_init
|
|
|
|
|
|
def device_list(n_layers, primary=None, selected=None):
|
|
device_count = torch.cuda.device_count()
|
|
if(device_count < 2):
|
|
primary = None
|
|
gpu_blocks = breakmodel.gpu_blocks + (device_count - len(breakmodel.gpu_blocks))*[0]
|
|
print(f"{colors.YELLOW} DEVICE ID | LAYERS | DEVICE NAME{colors.END}")
|
|
for i in range(device_count):
|
|
name = torch.cuda.get_device_name(i)
|
|
if(len(name) > 47):
|
|
name = "..." + name[-44:]
|
|
row_color = colors.END
|
|
sep_color = colors.YELLOW
|
|
print(f"{row_color}{colors.YELLOW + '->' + row_color if i == selected else ' '} {'(primary)' if i == primary else ' '*9} {i:3} {sep_color}|{row_color} {gpu_blocks[i]:3} {sep_color}|{row_color} {name}{colors.END}")
|
|
row_color = colors.END
|
|
sep_color = colors.YELLOW
|
|
print(f"{row_color}{colors.YELLOW + '->' + row_color if -1 == selected else ' '} {' '*9} N/A {sep_color}|{row_color} {breakmodel.disk_blocks:3} {sep_color}|{row_color} (Disk cache){colors.END}")
|
|
print(f"{row_color} {' '*9} N/A {sep_color}|{row_color} {n_layers:3} {sep_color}|{row_color} (CPU){colors.END}")
|
|
|
|
|
|
def move_model_to_devices(model, usegpu, gpu_device):
|
|
global generator
|
|
|
|
if(not use_breakmodel):
|
|
if(usegpu):
|
|
model = model.half().to(gpu_device)
|
|
else:
|
|
model = model.to('cpu').float()
|
|
generator = model.generate
|
|
return
|
|
|
|
for key, value in model.state_dict().items():
|
|
target_dtype = torch.float32 if breakmodel.primary_device == "cpu" else torch.float16
|
|
if(value.dtype is not target_dtype):
|
|
accelerate.utils.set_module_tensor_to_device(model, key, target_dtype)
|
|
disk_blocks = breakmodel.disk_blocks
|
|
gpu_blocks = breakmodel.gpu_blocks
|
|
ram_blocks = len(utils.layers_module_names) - sum(gpu_blocks)
|
|
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
|
|
device_map = {}
|
|
for name in utils.layers_module_names:
|
|
layer = int(name.rsplit(".", 1)[1])
|
|
device = ("disk" if layer < disk_blocks else "cpu") if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
|
|
device_map[name] = device
|
|
for name in utils.get_missing_module_names(model, list(device_map.keys())):
|
|
device_map[name] = breakmodel.primary_device
|
|
breakmodel.dispatch_model_ex(model, device_map, main_device=breakmodel.primary_device, offload_buffers=True, offload_dir="accelerate-disk-cache")
|
|
gc.collect()
|
|
generator = model.generate
|
|
return
|
|
|
|
|
|
_PromptTuningPreTrainedModel = Union["UniversalPromptTuningMixin", GPTPromptTuningMixin, transformers.PreTrainedModel]
|
|
|
|
class _WTEDummy:
|
|
def __init__(self, model: transformers.PreTrainedModel):
|
|
self.model = model
|
|
|
|
@property
|
|
def wte(self: "_WTEDummy"):
|
|
return self.model.get_input_embeddings()
|
|
|
|
@wte.setter
|
|
def wte(self: "_WTEDummy", v):
|
|
self.model.set_input_embeddings(v)
|
|
|
|
class _WTEMixin:
|
|
@property
|
|
def wte(self: Union["_WTEMixin", transformers.PreTrainedModel]):
|
|
return self.get_input_embeddings()
|
|
|
|
@wte.setter
|
|
def wte(self: Union["_WTEMixin", transformers.PreTrainedModel], v):
|
|
self.set_input_embeddings(v)
|
|
|
|
|
|
class UniversalPromptTuningMixin:
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
|
|
model: _PromptTuningPreTrainedModel = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
|
|
|
|
if not hasattr(model, "transformer"):
|
|
model.transformer = _WTEDummy(model)
|
|
elif not hasattr(model.transformer, "wte"):
|
|
assert isinstance(model.transformer, type)
|
|
model.transformer.__class__ = type("_UniversalPromptTuning" + model.transformer.__class__.__name__, (_WTEMixin, model.transformer.__class__), {})
|
|
|
|
model.__class__ = type("_UniversalPromptTuning" + model.__class__.__name__, (UniversalPromptTuningMixin, model.__class__), {})
|
|
|
|
for param in model.parameters():
|
|
param.requires_grad = False
|
|
model.initialize_soft_prompt()
|
|
|
|
return model
|
|
|
|
def forward(
|
|
self: _PromptTuningPreTrainedModel,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs,
|
|
):
|
|
assert input_ids is not None
|
|
assert input_ids.ndim == 2
|
|
|
|
input_ids = F.pad(input_ids, (self.learned_embedding.size(0), 0, 0, 0), value=self.transformer.wte.weight.size(0) // 2)
|
|
|
|
if labels is not None:
|
|
labels = self._extend_labels(labels)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = self._extend_attention_mask(attention_mask)
|
|
|
|
old_embedding_call = Embedding.__call__
|
|
model = self
|
|
|
|
def new_embedding_call(self, input_ids, *args, **kwargs):
|
|
inputs_embeds = old_embedding_call(self, input_ids, *args, **kwargs)
|
|
if model.transformer.wte is self:
|
|
assert inputs_embeds.ndim == 3
|
|
inputs_embeds[:, :model.learned_embedding.size(0), :] = model.learned_embedding[None]
|
|
return inputs_embeds
|
|
|
|
Embedding.__call__ = new_embedding_call
|
|
|
|
try:
|
|
return super().forward(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
labels=labels,
|
|
use_cache=use_cache,
|
|
return_dict=return_dict,
|
|
)
|
|
finally:
|
|
Embedding.__call__ = old_embedding_call
|
|
|
|
for k in dir(GPTPromptTuningMixin):
|
|
v = getattr(GPTPromptTuningMixin, k)
|
|
_v = getattr(UniversalPromptTuningMixin, k, None)
|
|
if _v is None or (_v is getattr(object, k, None) and callable(_v) and not isinstance(_v, type)):
|
|
setattr(UniversalPromptTuningMixin, k, v)
|
|
|
|
|
|
class AutoPromptTuningLM(UniversalPromptTuningMixin, transformers.AutoModelForCausalLM):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
|
|
default_quiet = False
|
|
|
|
|
|
def get_tokenizer(model_id, revision=None) -> transformers.PreTrainedTokenizerBase:
|
|
if(os.path.isdir(model_id)):
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache", use_fast=False)
|
|
except Exception as e:
|
|
try:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
|
elif(os.path.isdir("models/{}".format(model_id.replace('/', '_')))):
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(model_id.replace('/', '_')), revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(model_id.replace('/', '_')), revision=revision, cache_dir="cache", use_fast=False)
|
|
except Exception as e:
|
|
try:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(model_id.replace('/', '_')), revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
|
else:
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache", use_fast=False)
|
|
except Exception as e:
|
|
try:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
|
|
|
@contextlib.contextmanager
|
|
def _kai_no_prefix():
|
|
add_bos_token = getattr(tokenizer, "add_bos_token", False)
|
|
add_prefix_space = getattr(tokenizer, "add_prefix_space", False)
|
|
tokenizer.add_bos_token = False
|
|
tokenizer.add_prefix_space = False
|
|
try:
|
|
yield
|
|
finally:
|
|
tokenizer.add_bos_token = add_bos_token
|
|
tokenizer.add_prefix_space = add_prefix_space
|
|
|
|
tokenizer._kai_no_prefix = _kai_no_prefix
|
|
return tokenizer
|
|
|
|
|
|
class ConfigurationError(Exception):
|
|
def __init__(self, msg: str = "Unknown error", code: int = 1, quiet: Optional[bool] = None):
|
|
if quiet is None:
|
|
quiet = default_quiet
|
|
super().__init__(msg)
|
|
self.code = code
|
|
self.quiet = quiet
|
|
|
|
|
|
class TrainerBase(abc.ABC):
|
|
@abc.abstractmethod
|
|
def startup(self, step: int) -> None:
|
|
...
|
|
|
|
@abc.abstractmethod
|
|
def get_batch(self, step: int, size: int) -> np.ndarray:
|
|
...
|
|
|
|
@abc.abstractmethod
|
|
def get_num_sequences(self) -> int:
|
|
...
|
|
|
|
@abc.abstractmethod
|
|
def get_initial_soft_embeddings(self, model: transformers.PreTrainedModel) -> SoftPrompt:
|
|
...
|
|
|
|
@abc.abstractmethod
|
|
def tokenize_dataset_callback(self, tokenizer: transformers.PreTrainedTokenizerBase, text: str) -> List[int]:
|
|
...
|
|
|
|
class TrainerData:
|
|
def __init__(self):
|
|
self.__lazy_load_spec: Optional[dict] = None
|
|
self.model_spec: Optional[dict] = None
|
|
self.tokenizer_id: Optional[str] = None
|
|
self.newlinemode: Optional[str] = None
|
|
self.ckpt_path: Optional[str] = None
|
|
self.save_file: Optional[str] = None
|
|
self.params: Optional[dict] = None
|
|
self.stparams: Optional[dict] = None
|
|
self.gradient_accumulation_steps = -1
|
|
self.soft_in_dim = -1
|
|
self.prompt_method = "tokens"
|
|
self.prompt_seed = 42
|
|
|
|
@property
|
|
def lazy_load_spec(self):
|
|
print("WARNING: `TrainerData.lazy_load_spec` is currently unused", file=sys.stderr)
|
|
return self.__lazy_load_spec
|
|
|
|
@lazy_load_spec.setter
|
|
def lazy_load_spec(self, value: Optional[dict]):
|
|
print("WARNING: `TrainerData.lazy_load_spec` is currently unused", file=sys.stderr)
|
|
self.__lazy_load_spec = value
|
|
|
|
@property
|
|
def kaiming_size(self): # backwards compatibility
|
|
return self.soft_in_dim
|
|
|
|
@kaiming_size.setter
|
|
def kaiming_size(self, value: int): # backwards compatibility
|
|
self.prompt_method = "kaiming"
|
|
self.soft_in_dim = value
|
|
|
|
data: TrainerData
|
|
|
|
def __init__(self, universe: Optional[int] = None, quiet=False):
|
|
self.quiet = quiet
|
|
self.universe = universe
|
|
self.data = self.TrainerData()
|
|
self._spmodule: Optional[str] = None
|
|
if universe is not None:
|
|
print("WARNING: The `universe` argument of `TrainerBase.__init__` is currently unused", file=sys.stderr)
|
|
|
|
def raise_configuration_error(self, msg, **kwargs):
|
|
if "quiet" not in kwargs:
|
|
kwargs["quiet"] = self.quiet
|
|
raise ConfigurationError(msg, **kwargs)
|
|
|
|
def _get_model_config(self) -> transformers.configuration_utils.PretrainedConfig:
|
|
REVISION = None
|
|
if(os.path.isdir(self.data.ckpt_path)):
|
|
model_config = AutoConfig.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
|
elif(os.path.isdir("models/{}".format(self.data.ckpt_path.replace('/', '_')))):
|
|
model_config = AutoConfig.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
|
|
else:
|
|
model_config = AutoConfig.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
|
return model_config
|
|
|
|
def get_hf_checkpoint_metadata(self) -> bool:
|
|
params = {}
|
|
model_config = self._get_model_config()
|
|
params["tokenizer_id"] = self.data.ckpt_path
|
|
tokenizer = get_tokenizer(self.data.ckpt_path)
|
|
params["newlinemode"] = params.get(
|
|
"newlinemode", "s" if model_config.model_type == "xglm" else "n"
|
|
)
|
|
params["max_batch_size"] = 2048
|
|
with tokenizer._kai_no_prefix():
|
|
params["eos_token"] = (
|
|
[50259, 50259] if model_config.model_type == "xglm" and model_config.eos_token_id == 50259 else [model_config.eos_token_id]
|
|
)
|
|
params["seq"] = 2048
|
|
self.data.params = params
|
|
return True
|
|
|
|
def get_tokenizer(self) -> transformers.PreTrainedTokenizerBase:
|
|
return get_tokenizer(self.data.ckpt_path)
|
|
|
|
def save_data(self):
|
|
pass
|
|
|
|
def export_to_kobold(self, output_file: str, name: str, author: str, supported: str, description: str):
|
|
try:
|
|
z = torch.load(self.data.save_file)
|
|
assert z["step"] > 0
|
|
assert z["tensor"].ndim == 2 and "opt_state" in z
|
|
assert z["tensor"].shape[0] < self.data.params["max_batch_size"]
|
|
self.data.soft_in_dim = z["tensor"].shape[0]
|
|
except AssertionError:
|
|
self.raise_configuration_error("MKUSP file is corrupted.", code=14)
|
|
|
|
tensor = z["tensor"]
|
|
|
|
meta = {
|
|
"name": name,
|
|
"author": author,
|
|
"supported": supported,
|
|
"description": description,
|
|
}
|
|
if len(meta["author"].strip()) == 0:
|
|
meta.pop("author")
|
|
meta["supported"] = list(map(lambda m: m.strip(), supported.split(",")))
|
|
|
|
with zipfile.ZipFile(output_file, "w", compression=zipfile.ZIP_LZMA) as z:
|
|
with z.open("tensor.npy", "w") as f:
|
|
np.save(f, tensor.detach().cpu().numpy(), allow_pickle=False)
|
|
with zipfile.ZipFile(output_file, "a", compression=zipfile.ZIP_STORED) as z:
|
|
with z.open("meta.json", "w") as f:
|
|
f.write(json.dumps(meta, indent=2).encode("utf-8"))
|
|
|
|
def export_to_mkultra(self, output_file: str, soft_prompt_name: str, soft_prompt_description: str):
|
|
try:
|
|
z = torch.load(self.data.save_file)
|
|
assert z["step"] > 0
|
|
assert z["tensor"].ndim == 2 and "opt_state" in z
|
|
assert z["tensor"].shape[0] < self.data.params["max_batch_size"]
|
|
self.data.soft_in_dim = z["tensor"].shape[0]
|
|
_step = z["step"]
|
|
except AssertionError:
|
|
self.raise_configuration_error("MKUSP file is corrupted.", code=14)
|
|
|
|
tensor = z["tensor"]
|
|
|
|
with open(output_file, "w") as f:
|
|
json.dump(
|
|
{
|
|
"metadata": {
|
|
"step": _step,
|
|
"loss": float(z["loss"]),
|
|
"uuid": str(uuid.uuid4()),
|
|
"name": soft_prompt_name,
|
|
"description": soft_prompt_description,
|
|
"epoch": datetime.datetime.now().timestamp(),
|
|
},
|
|
"tensor": base64.b64encode(
|
|
pickle.dumps(
|
|
tensor.detach().cpu(),
|
|
protocol=4,
|
|
),
|
|
).decode("ascii"),
|
|
},
|
|
f,
|
|
)
|
|
|
|
def tokenize_dataset(
|
|
self,
|
|
dataset_path: Union[str, TextIO],
|
|
output_file: Union[str, TextIO],
|
|
batch_size=2048,
|
|
epochs=1,
|
|
use_ftfy=True,
|
|
shuffle_seed: Optional[Union[int, float, str, bytes, bytearray]] = 1729,
|
|
):
|
|
dataset_path = dataset_path.replace("\\", "/")
|
|
output_file = output_file.replace("\\", "/")
|
|
if not isinstance(batch_size, int) or batch_size < 1:
|
|
self.raise_configuration_error(
|
|
"batch_size must be an integer greater than zero.", code=9
|
|
)
|
|
if (
|
|
not isinstance(epochs, int) and not isinstance(epochs, float)
|
|
) or epochs <= 0:
|
|
self.raise_configuration_error(
|
|
"epochs must be an int or float greater than zero.", code=10
|
|
)
|
|
if isinstance(output_file, str) and output_file.endswith("/"):
|
|
self.raise_configuration_error(
|
|
"output_file should be the path to a file, not a directory.", code=11
|
|
)
|
|
if isinstance(dataset_path, str) and not os.path.exists(dataset_path):
|
|
self.raise_configuration_error(
|
|
"dataset_path is not set to a valid file or directory.", code=12
|
|
)
|
|
|
|
if use_ftfy:
|
|
import ftfy
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
batch_size = min(
|
|
batch_size,
|
|
self.data.params["max_batch_size"] - self.data.soft_in_dim,
|
|
)
|
|
assert batch_size >= 0
|
|
print(
|
|
termcolor.colored(
|
|
"\nIf you see a warning somewhere below about token indices, ignore it. That warning is normal.\n",
|
|
"magenta",
|
|
)
|
|
)
|
|
print("Batch size:", batch_size)
|
|
print(termcolor.colored("Tokenizing your dataset...\n", "magenta"))
|
|
|
|
if not isinstance(dataset_path, str):
|
|
files = [dataset_path]
|
|
elif os.path.isfile(dataset_path):
|
|
files = [dataset_path]
|
|
else:
|
|
files = sorted(
|
|
os.path.join(dataset_path, filename)
|
|
for filename in os.listdir(dataset_path)
|
|
)
|
|
if shuffle_seed is not None:
|
|
random.Random(shuffle_seed).shuffle(files)
|
|
tokens = []
|
|
eos = tokenizer.decode(self.data.params["eos_token"])
|
|
for path in files:
|
|
if isinstance(path, str):
|
|
f = open(path)
|
|
else:
|
|
f = path
|
|
try:
|
|
text = f.read()
|
|
if use_ftfy:
|
|
text = ftfy.fix_text(text)
|
|
text = text.replace("<|endoftext|>", eos)
|
|
tokens.extend(self.tokenize_dataset_callback(tokenizer, text))
|
|
finally:
|
|
if isinstance(path, str):
|
|
f.close()
|
|
|
|
print("Dataset size (in tokens):", len(tokens))
|
|
if len(tokens) < batch_size + 1:
|
|
self.raise_configuration_error(
|
|
"Your dataset is too small! The number of tokens has to be greater than the batch size. Try increasing the epochs.",
|
|
code=13,
|
|
)
|
|
tail = len(tokens) % (batch_size + 1)
|
|
if tail:
|
|
print(
|
|
f"We're removing the last {tail} tokens from your dataset to make the length a multiple of {batch_size+1}."
|
|
)
|
|
tokens = tokens[:-tail]
|
|
|
|
tokens = np.array(tokens, dtype=np.uint16).reshape((-1, batch_size + 1))
|
|
sequences_per_epoch = tokens.shape[0]
|
|
_epochs = math.ceil(epochs)
|
|
if _epochs > 1:
|
|
rng = np.random.Generator(np.random.PCG64(1729))
|
|
tokens = np.concatenate(
|
|
(
|
|
tokens,
|
|
*(rng.permutation(tokens, axis=0) for i in range(_epochs - 1)),
|
|
),
|
|
axis=0,
|
|
)
|
|
tokens = tokens[: math.ceil(epochs * sequences_per_epoch)]
|
|
print(f"Total sequences in your dataset: {tokens.shape[0]}")
|
|
|
|
if isinstance(output_file, str):
|
|
f = open(output_file, "w")
|
|
else:
|
|
f = output_file
|
|
try:
|
|
np.save(output_file, tokens)
|
|
finally:
|
|
if isinstance(output_file, str):
|
|
f.close()
|
|
|
|
def train(
|
|
self,
|
|
breakmodel_primary_device: Optional[Union[str, int, torch.device]] = None,
|
|
breakmodel_gpulayers: Optional[List[int]] = None,
|
|
breakmodel_disklayers = 0,
|
|
):
|
|
if breakmodel_gpulayers is None:
|
|
breakmodel_gpulayers = []
|
|
if breakmodel_primary_device is None:
|
|
breakmodel_primary_device = 0 if sum(x if x >= 0 else 1 for x in breakmodel_gpulayers) else "cpu"
|
|
|
|
if self.data.params is not None and "max_batch_size" not in self.data.params:
|
|
self.data.params["max_batch_size"] = 2048
|
|
|
|
if not os.path.exists(self.data.save_file):
|
|
print("We are starting a brand new soft-tuning session.\n")
|
|
self.startup(step=-1)
|
|
if self.data.soft_in_dim <= 0:
|
|
self.raise_configuration_error(
|
|
"You have not set a soft prompt size.", code=6
|
|
)
|
|
step = 0
|
|
else:
|
|
# If we're resuming a soft-tuning session, the soft prompt tensor is
|
|
# already in the save file and we just have to decode it.
|
|
try:
|
|
z = torch.load(self.data.save_file)
|
|
assert z["step"] > 0
|
|
assert z["tensor"].ndim == 2 and "opt_state" in z
|
|
assert z["tensor"].shape[0] < self.data.params["max_batch_size"]
|
|
self.data.soft_in_dim = z["tensor"].shape[0]
|
|
step = z["step"]
|
|
opt_state = z["opt_state"]
|
|
except AssertionError:
|
|
self.raise_configuration_error("MKUSP file is corrupted.", code=14)
|
|
print(f"We're resuming a previous soft-tuning session at step {step+1}.\n")
|
|
self.startup(step=step + 1)
|
|
soft_embeddings = z["tensor"]
|
|
|
|
REVISION = None
|
|
|
|
patch_transformers()
|
|
|
|
model: _PromptTuningPreTrainedModel
|
|
|
|
model_config = self._get_model_config()
|
|
n_layers = utils.num_layers(model_config)
|
|
breakmodel_gpulayers = [x if x >= 0 else n_layers for x in breakmodel_gpulayers]
|
|
|
|
convert_to_float16 = True
|
|
hascuda = torch.cuda.is_available()
|
|
usegpu = hascuda and not breakmodel_disklayers and len(breakmodel_gpulayers) == 1 and breakmodel_gpulayers[0] == n_layers
|
|
gpu_device = breakmodel_primary_device
|
|
use_breakmodel = bool(hascuda or breakmodel_disklayers or sum(breakmodel_gpulayers))
|
|
|
|
assert len(breakmodel_gpulayers) <= torch.cuda.device_count()
|
|
assert sum(breakmodel_gpulayers) + breakmodel_disklayers <= n_layers
|
|
|
|
breakmodel.gpu_blocks = breakmodel_gpulayers
|
|
breakmodel.disk_blocks = breakmodel_disklayers
|
|
disk_blocks = breakmodel.disk_blocks
|
|
gpu_blocks = breakmodel.gpu_blocks
|
|
ram_blocks = ram_blocks = n_layers - sum(gpu_blocks)
|
|
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
|
|
|
|
device_list(ram_blocks, primary=breakmodel.primary_device)
|
|
|
|
def lazy_load_callback(model_dict: Dict[str, Union[torch_lazy_loader.LazyTensor, torch.Tensor]], f, **_):
|
|
if lazy_load_callback.nested:
|
|
return
|
|
lazy_load_callback.nested = True
|
|
|
|
device_map: Dict[str, Union[str, int]] = {}
|
|
|
|
@functools.lru_cache(maxsize=None)
|
|
def get_original_key(key):
|
|
return max((original_key for original_key in utils.module_names if original_key.endswith(key)), key=len)
|
|
|
|
for key, value in model_dict.items():
|
|
original_key = get_original_key(key)
|
|
if isinstance(value, torch_lazy_loader.LazyTensor) and not any(original_key.startswith(n) for n in utils.layers_module_names):
|
|
device_map[key] = gpu_device if hascuda and usegpu else "cpu" if not hascuda or not use_breakmodel else breakmodel.primary_device
|
|
else:
|
|
layer = int(max((n for n in utils.layers_module_names if original_key.startswith(n)), key=len).rsplit(".", 1)[1])
|
|
device = gpu_device if hascuda and usegpu else "disk" if layer < disk_blocks and layer < ram_blocks else "cpu" if not hascuda or not use_breakmodel else "shared" if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
|
|
device_map[key] = device
|
|
|
|
if utils.num_shards is None or utils.current_shard == 0:
|
|
utils.offload_index = {}
|
|
if os.path.isdir("accelerate-disk-cache"):
|
|
# Delete all of the files in the disk cache folder without deleting the folder itself to allow people to create symbolic links for this folder
|
|
# (the folder doesn't contain any subfolders so os.remove will do just fine)
|
|
for filename in os.listdir("accelerate-disk-cache"):
|
|
try:
|
|
os.remove(os.path.join("accelerate-disk-cache", filename))
|
|
except OSError:
|
|
pass
|
|
os.makedirs("accelerate-disk-cache", exist_ok=True)
|
|
if utils.num_shards is not None:
|
|
num_tensors = len(utils.get_sharded_checkpoint_num_tensors(utils.from_pretrained_model_name, utils.from_pretrained_index_filename, **utils.from_pretrained_kwargs))
|
|
else:
|
|
num_tensors = len(device_map)
|
|
print(flush=True)
|
|
utils.bar = tqdm(total=num_tensors, desc="Loading model tensors", file=Send_to_socketio())
|
|
|
|
with zipfile.ZipFile(f, "r") as z:
|
|
try:
|
|
last_storage_key = None
|
|
f = None
|
|
current_offset = 0
|
|
able_to_pin_layers = True
|
|
if utils.num_shards is not None:
|
|
utils.current_shard += 1
|
|
for key in sorted(device_map.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset)):
|
|
storage_key = model_dict[key].key
|
|
if storage_key != last_storage_key or model_dict[key].seek_offset < current_offset:
|
|
last_storage_key = storage_key
|
|
if isinstance(f, zipfile.ZipExtFile):
|
|
f.close()
|
|
f = z.open(f"archive/data/{storage_key}")
|
|
current_offset = 0
|
|
if current_offset != model_dict[key].seek_offset:
|
|
f.read(model_dict[key].seek_offset - current_offset)
|
|
current_offset = model_dict[key].seek_offset
|
|
device = device_map[key]
|
|
size = functools.reduce(lambda x, y: x * y, model_dict[key].shape, 1)
|
|
dtype = model_dict[key].dtype
|
|
nbytes = size if dtype is torch.bool else size * ((torch.finfo if dtype.is_floating_point else torch.iinfo)(dtype).bits >> 3)
|
|
#print(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ", end="", flush=True)
|
|
model_dict[key] = model_dict[key].materialize(f, map_location="cpu")
|
|
# if model_dict[key].dtype is torch.float32:
|
|
# fp32_model = True
|
|
if convert_to_float16 and breakmodel.primary_device != "cpu" and hascuda and (use_breakmodel or usegpu) and model_dict[key].dtype is torch.float32:
|
|
model_dict[key] = model_dict[key].to(torch.float16)
|
|
if breakmodel.primary_device == "cpu" or (not usegpu and not use_breakmodel and model_dict[key].dtype is torch.float16):
|
|
model_dict[key] = model_dict[key].to(torch.float32)
|
|
if device == "shared":
|
|
model_dict[key] = model_dict[key].to("cpu").detach_()
|
|
if able_to_pin_layers:
|
|
try:
|
|
model_dict[key] = model_dict[key].pin_memory()
|
|
except:
|
|
able_to_pin_layers = False
|
|
elif device == "disk":
|
|
accelerate.utils.offload_weight(model_dict[key], get_original_key(key), "accelerate-disk-cache", index=utils.offload_index)
|
|
model_dict[key] = model_dict[key].to("meta")
|
|
else:
|
|
model_dict[key] = model_dict[key].to(device)
|
|
#print("OK", flush=True)
|
|
current_offset += nbytes
|
|
utils.bar.update(1)
|
|
finally:
|
|
if utils.num_shards is None or utils.current_shard >= utils.num_shards:
|
|
if utils.offload_index:
|
|
for name, tensor in utils.named_buffers:
|
|
if name not in utils.offload_index:
|
|
accelerate.utils.offload_weight(tensor, name, "accelerate-disk-cache", index=utils.offload_index)
|
|
accelerate.utils.save_offload_index(utils.offload_index, "accelerate-disk-cache")
|
|
utils.bar.close()
|
|
utils.bar = None
|
|
lazy_load_callback.nested = False
|
|
if isinstance(f, zipfile.ZipExtFile):
|
|
f.close()
|
|
|
|
lazy_load_callback.nested = False
|
|
|
|
# Since we're using lazy loader, we need to figure out what the model's hidden layers are called
|
|
with torch_lazy_loader.use_lazy_torch_load(dematerialized_modules=True, use_accelerate_init_empty_weights=True):
|
|
try:
|
|
metamodel = AutoModelForCausalLM.from_config(model_config)
|
|
except Exception as e:
|
|
metamodel = GPTNeoForCausalLM.from_config(model_config)
|
|
utils.layers_module_names = utils.get_layers_module_names(metamodel)
|
|
utils.module_names = list(metamodel.state_dict().keys())
|
|
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
|
|
|
|
with torch_lazy_loader.use_lazy_torch_load(callback=lazy_load_callback, dematerialized_modules=True):
|
|
if(os.path.isdir(self.data.ckpt_path)):
|
|
try:
|
|
model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
|
except Exception as e:
|
|
if("out of memory" in traceback.format_exc().lower()):
|
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
|
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
|
elif(os.path.isdir("models/{}".format(self.data.ckpt_path.replace('/', '_')))):
|
|
try:
|
|
model = AutoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
|
|
except Exception as e:
|
|
if("out of memory" in traceback.format_exc().lower()):
|
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
|
model = GPTNeoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
|
|
else:
|
|
try:
|
|
model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
|
except Exception as e:
|
|
if("out of memory" in traceback.format_exc().lower()):
|
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
|
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
|
|
|
if(hascuda):
|
|
if(usegpu):
|
|
model = model.half().to(gpu_device)
|
|
elif(use_breakmodel): # Use both RAM and VRAM (breakmodel)
|
|
move_model_to_devices(model, usegpu, gpu_device)
|
|
elif(__import__("breakmodel").disk_blocks > 0):
|
|
move_model_to_devices(model, usegpu, gpu_device)
|
|
else:
|
|
model = model.to('cpu').float()
|
|
elif(__import__("breakmodel").disk_blocks > 0):
|
|
move_model_to_devices(model, usegpu, gpu_device)
|
|
else:
|
|
model.to('cpu').float()
|
|
|
|
if step == 0:
|
|
soft_embeddings = self.get_initial_soft_embeddings(model)
|
|
else:
|
|
soft_embeddings = SoftPrompt.from_inputs_embeds(soft_embeddings)
|
|
model.set_soft_prompt(soft_embeddings)
|
|
|
|
steps = self.get_num_sequences() // self.data.gradient_accumulation_steps
|
|
warmup_steps = max(1, round(steps * self.data.stparams["warmup"]))
|
|
|
|
beta1: Optional[float] = self.data.stparams.get("beta1", 0.0)
|
|
if beta1 == 0.0:
|
|
beta1 = None
|
|
optimizer = transformers.Adafactor(
|
|
params=(model.get_soft_params(),),
|
|
scale_parameter=False,
|
|
relative_step=False,
|
|
warmup_init=False,
|
|
lr=self.data.stparams["lr"],
|
|
beta1=beta1,
|
|
decay_rate=self.data.stparams.get("decay_rate", -0.8),
|
|
weight_decay=self.data.stparams.get("weight_decay", 0.1),
|
|
)
|
|
if step != 0:
|
|
optimizer.load_state_dict(opt_state)
|
|
scheduler = transformers.get_cosine_with_hard_restarts_schedule_with_warmup(
|
|
optimizer=optimizer,
|
|
num_warmup_steps=warmup_steps,
|
|
num_training_steps=steps - warmup_steps,
|
|
num_cycles=(steps - warmup_steps) // self.data.stparams.get("training_steps_per_cycle", 56),
|
|
)
|
|
|
|
torch.cuda.empty_cache()
|
|
optimizer.state['step'] = step
|
|
cross_entropy_loss = CrossEntropyLoss()
|
|
|
|
def save_mkusp(
|
|
loss,
|
|
grad_norm,
|
|
):
|
|
with open(self.data.save_file, "wb") as f:
|
|
torch.save(
|
|
{
|
|
"tensor": soft_embeddings.get_inputs_embeds(),
|
|
"opt_state": optimizer.state_dict(),
|
|
"step": step,
|
|
"loss": loss,
|
|
"grad_norm": grad_norm,
|
|
},
|
|
f,
|
|
)
|
|
self.save_data()
|
|
|
|
bar1 = tqdm(initial=step + 1, total=steps, desc="CURRENT TRAINING STEP")
|
|
|
|
while step < steps:
|
|
step += 1
|
|
model.train()
|
|
|
|
total_loss = total_grad = total_grad_norm = 0
|
|
|
|
# Get the next sequences from the dataset
|
|
block = torch.tensor(np.int32(self.get_batch(step, self.data.gradient_accumulation_steps))).to(model.transformer.wte.weight.device)
|
|
|
|
for sequence in tqdm(block, desc="GRADIENT ACCUMULATION", leave=False):
|
|
# input_ids is the context to the model (without the soft prompt) and labels is what we expect the model to generate (the -100s represent soft prompt tokens for which loss is not calculated)
|
|
input_ids = sequence[:-1].unsqueeze(0).detach()
|
|
labels = torch.cat((torch.full((model.get_soft_params().size(0) - 1,), -100, device=sequence.device), sequence), dim=-1).unsqueeze(0).detach()
|
|
|
|
# Give the context to the model and compare the model's output logits with the labels to compute the loss
|
|
logits = model(input_ids=input_ids, labels=input_ids).logits
|
|
loss: torch.Tensor = cross_entropy_loss(logits.view(-1, model.transformer.wte.weight.size(0)), labels.view(-1))
|
|
total_loss += loss.detach()
|
|
|
|
# Compute the gradient of the loss function and add it to model.get_soft_params().grad (model.get_soft_params().grad += gradient)
|
|
loss.backward()
|
|
|
|
total_grad_norm += torch.linalg.norm(model.get_soft_params().grad.detach() - total_grad)
|
|
total_grad = model.get_soft_params().grad.detach()
|
|
|
|
del input_ids
|
|
del labels
|
|
del logits
|
|
torch.cuda.empty_cache()
|
|
|
|
mean_loss = (total_loss / self.data.gradient_accumulation_steps).item()
|
|
mean_grad_norm = (total_grad_norm / self.data.gradient_accumulation_steps).item()
|
|
|
|
# Apply the optimization algorithm using the accumulated gradients, which changes the contents of the soft prompt matrix very slightly to reduce the loss
|
|
optimizer.step()
|
|
lr = optimizer.param_groups[0]["lr"]
|
|
scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Save checkpoint every few steps
|
|
if step == 1 or step % self.data.stparams["save_every"] == 0:
|
|
save_mkusp(mean_loss, mean_grad_norm)
|
|
|
|
bar1.set_postfix({"loss": mean_loss, "grad_norm": mean_grad_norm, "learning_rate": lr})
|
|
bar1.update()
|
|
|
|
|
|
class BasicTrainer(TrainerBase):
|
|
class TrainerData(TrainerBase.TrainerData):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.dataset_file: Optional[str] = None
|
|
self.initial_softprompt: Optional[List[int]] = None
|
|
|
|
data: "BasicTrainer.TrainerData"
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.dataset: Optional[np.ndarray] = None
|
|
|
|
def startup(self, step: int) -> None:
|
|
if self.get_num_sequences() < self.data.gradient_accumulation_steps:
|
|
self.raise_configuration_error(
|
|
"Your dataset is too small! gradient_accumulation_steps must be less than or equal to the number of sequences.",
|
|
code=101,
|
|
)
|
|
if (
|
|
self.data.prompt_method == "tokens"
|
|
and step < 0
|
|
and self.data.initial_softprompt is None
|
|
):
|
|
self.raise_configuration_error(
|
|
"You have not set an initial soft prompt string.", code=103
|
|
)
|
|
if self.data.prompt_method == "tokens" and step < 0:
|
|
self.data.soft_in_dim = len(self.data.initial_softprompt)
|
|
|
|
def get_batch(self, step: int, size: int) -> np.ndarray:
|
|
return self.dataset[(step - 1) * size : step * size]
|
|
|
|
def get_num_sequences(self) -> int:
|
|
if self.dataset is None:
|
|
if self.data.dataset_file is None or not os.path.exists(
|
|
self.data.dataset_file
|
|
):
|
|
self.raise_configuration_error(
|
|
f"Dataset file not found at {repr(self.data.dataset_file)}",
|
|
code=102,
|
|
)
|
|
self.dataset = np.load(self.data.dataset_file, mmap_mode="r")
|
|
assert self.dataset.ndim >= 2
|
|
assert self.dataset.shape[0] >= 2
|
|
return self.dataset.shape[0]
|
|
|
|
def get_initial_soft_embeddings(self, model: transformers.PreTrainedModel) -> SoftPrompt:
|
|
if self.data.prompt_method == "vocab_sample":
|
|
rng = np.random.Generator(
|
|
np.random.PCG64(
|
|
[
|
|
self.data.prompt_seed,
|
|
int.from_bytes(hashlib.sha256(model.config.model_type.encode("utf8")).digest()[:4], "little"),
|
|
]
|
|
)
|
|
)
|
|
tokenizer = self.get_tokenizer()
|
|
with tokenizer._kai_no_prefix():
|
|
special_tokens = set(
|
|
itertools.chain.from_iterable(
|
|
tokenizer.encode(str(v))
|
|
for v in tokenizer.special_tokens_map_extended.values()
|
|
)
|
|
)
|
|
sample_space = [
|
|
k for k in range(model.get_input_embeddings().weight.shape[-2]) if k not in special_tokens
|
|
]
|
|
sample = rng.choice(sample_space, self.data.soft_in_dim, False)
|
|
return SoftPrompt.from_inputs_embeds(model.get_input_embeddings()(torch.tensor(sample, dtype=torch.int32, device=model.get_input_embeddings().weight.device)))
|
|
elif self.data.prompt_method == "tokens":
|
|
return SoftPrompt.from_inputs_embeds(model.get_input_embeddings()(torch.tensor(self.data.initial_softprompt, dtype=torch.int32, device=model.get_input_embeddings().weight.device)))
|
|
self.raise_configuration_error(
|
|
f"Unknown prompt method {repr(self.data.prompt_method)}", code=104
|
|
)
|
|
|
|
def tokenize_dataset_callback(
|
|
self, tokenizer: transformers.PreTrainedTokenizerBase, text: str
|
|
) -> List[int]:
|
|
if self.data.newlinemode == "s":
|
|
text = text.replace("\n", "</s>")
|
|
with tokenizer._kai_no_prefix():
|
|
return tokenizer.encode(text) + self.data.params["eos_token"]
|