501 lines
20 KiB
Python
501 lines
20 KiB
Python
import abc
|
|
import os
|
|
import sys
|
|
import math
|
|
import numpy as np
|
|
import termcolor
|
|
import contextlib
|
|
import traceback
|
|
import random
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.nn import Embedding, CrossEntropyLoss
|
|
import transformers
|
|
from transformers import AutoTokenizer, GPT2TokenizerFast
|
|
from mkultra.tuning import GPTPromptTuningMixin, GPTNeoPromptTuningLM
|
|
from mkultra.soft_prompt import SoftPrompt
|
|
from typing import List, Optional, TextIO, Union
|
|
|
|
|
|
_PromptTuningPreTrainedModel = Union["UniversalPromptTuningMixin", GPTPromptTuningMixin, transformers.PreTrainedModel]
|
|
|
|
class _WTEMixin:
|
|
@property
|
|
def wte(self: Union["_WTEMixin", transformers.PreTrainedModel]):
|
|
return self.get_input_embeddings()
|
|
|
|
@wte.setter
|
|
def wte(self: Union["_WTEMixin", transformers.PreTrainedModel], v):
|
|
self.set_input_embeddings(v)
|
|
|
|
|
|
class UniversalPromptTuningMixin:
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
|
|
model: _PromptTuningPreTrainedModel = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
|
|
|
|
if not hasattr(model, "transformer"):
|
|
model.transformer = _WTEMixin()
|
|
elif not hasattr(model.transformer, "wte"):
|
|
assert isinstance(model.transformer, type)
|
|
model.transformer.__class__ = type("_UniversalPromptTuning" + model.transformer.__class__.__name__, (_WTEMixin, model.transformer.__class__), {})
|
|
|
|
model.__class__ = type("_UniversalPromptTuning" + model.__class__.__name__, (UniversalPromptTuningMixin, model.__class__), {})
|
|
|
|
for param in model.parameters():
|
|
param.requires_grad = False
|
|
model.initialize_soft_prompt()
|
|
|
|
return model
|
|
|
|
def forward(
|
|
self: _PromptTuningPreTrainedModel,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs,
|
|
):
|
|
assert input_ids is not None
|
|
assert input_ids.ndim == 2
|
|
|
|
input_ids = F.pad(input_ids, (self.learned_embedding.size(0), 0, 0, 0), value=self.transformer.wte.weight.size(0) // 2)
|
|
|
|
if labels is not None:
|
|
labels = self._extend_labels(labels)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = self._extend_attention_mask(attention_mask)
|
|
|
|
old_embedding_call = Embedding.__call__
|
|
model = self
|
|
|
|
def new_embedding_call(self, input_ids, *args, **kwargs):
|
|
inputs_embeds = old_embedding_call(self, input_ids, *args, **kwargs)
|
|
if model.transformer.wte is self:
|
|
assert inputs_embeds.ndim == 3
|
|
inputs_embeds[:, :model.learned_embedding.size(0), :] = model.learned_embedding[None]
|
|
return inputs_embeds
|
|
|
|
Embedding.__call__ = new_embedding_call
|
|
|
|
try:
|
|
return super().forward(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
labels=labels,
|
|
use_cache=use_cache,
|
|
return_dict=return_dict,
|
|
)
|
|
finally:
|
|
Embedding.__call__ = old_embedding_call
|
|
|
|
for k in dir(GPTPromptTuningMixin):
|
|
v = getattr(GPTPromptTuningMixin, k)
|
|
_v = getattr(UniversalPromptTuningMixin, k, None)
|
|
if _v is None or (_v is getattr(object, k, None) and callable(_v) and not isinstance(_v, type)):
|
|
setattr(UniversalPromptTuningMixin, k, v)
|
|
|
|
|
|
class AutoPromptTuningLM(UniversalPromptTuningMixin, transformers.AutoModelForCausalLM):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
|
|
default_quiet = False
|
|
|
|
|
|
def get_tokenizer(model_id, revision=None) -> transformers.PreTrainedTokenizerBase:
|
|
if(os.path.isdir(model_id)):
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache", use_fast=False)
|
|
except Exception as e:
|
|
try:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
|
elif(os.path.isdir("models/{}".format(vars.model.replace('/', '_')))):
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=revision, cache_dir="cache", use_fast=False)
|
|
except Exception as e:
|
|
try:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
|
else:
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=revision, cache_dir="cache", use_fast=False)
|
|
except Exception as e:
|
|
try:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained(vars.model, revision=revision, cache_dir="cache")
|
|
except Exception as e:
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
|
|
|
@contextlib.contextmanager
|
|
def _kai_no_prefix():
|
|
add_bos_token = getattr(tokenizer, "add_bos_token", False)
|
|
add_prefix_space = getattr(tokenizer, "add_prefix_space", False)
|
|
tokenizer.add_bos_token = False
|
|
tokenizer.add_prefix_space = False
|
|
try:
|
|
yield
|
|
finally:
|
|
tokenizer.add_bos_token = add_bos_token
|
|
tokenizer.add_prefix_space = add_prefix_space
|
|
|
|
tokenizer._kai_no_prefix = _kai_no_prefix
|
|
return tokenizer
|
|
|
|
|
|
class ConfigurationError(Exception):
|
|
def __init__(self, msg: str = "Unknown error", code: int = 1, quiet: Optional[bool] = None):
|
|
if quiet is None:
|
|
quiet = default_quiet
|
|
super().__init__(msg)
|
|
self.code = code
|
|
self.quiet = quiet
|
|
|
|
|
|
class TrainerBase(abc.ABC):
|
|
@abc.abstractmethod
|
|
def startup(self, step: int) -> None:
|
|
...
|
|
|
|
@abc.abstractmethod
|
|
def get_batch(self, step: int, size: int) -> np.ndarray:
|
|
...
|
|
|
|
@abc.abstractmethod
|
|
def get_num_sequences(self) -> int:
|
|
...
|
|
|
|
@abc.abstractmethod
|
|
def get_initial_soft_embeddings(self, model: transformers.PreTrainedModel) -> SoftPrompt:
|
|
...
|
|
|
|
@abc.abstractmethod
|
|
def tokenize_dataset_callback(self, tokenizer: transformers.PreTrainedTokenizerBase, text: str) -> List[int]:
|
|
...
|
|
|
|
class TrainerData:
|
|
def __init__(self):
|
|
self.__lazy_load_spec: Optional[dict] = None
|
|
self.model_spec: Optional[dict] = None
|
|
self.tokenizer_id: Optional[str] = None
|
|
self.newlinemode: Optional[str] = None
|
|
self.ckpt_path: Optional[str] = None
|
|
self.save_file: Optional[str] = None
|
|
self.params: Optional[dict] = None
|
|
self.stparams: Optional[dict] = None
|
|
self.gradient_accumulation_steps = -1
|
|
self.soft_in_dim = -1
|
|
self.prompt_method = "tokens"
|
|
self.prompt_seed = 42
|
|
|
|
@property
|
|
def lazy_load_spec(self):
|
|
print("WARNING: `TrainerData.lazy_load_spec` is currently unused", file=sys.stderr)
|
|
return self.__lazy_load_spec
|
|
|
|
@lazy_load_spec.setter
|
|
def lazy_load_spec(self, value: Optional[dict]):
|
|
print("WARNING: `TrainerData.lazy_load_spec` is currently unused", file=sys.stderr)
|
|
self.__lazy_load_spec = value
|
|
|
|
@property
|
|
def kaiming_size(self): # backwards compatibility
|
|
return self.soft_in_dim
|
|
|
|
@kaiming_size.setter
|
|
def kaiming_size(self, value: int): # backwards compatibility
|
|
self.prompt_method = "kaiming"
|
|
self.soft_in_dim = value
|
|
|
|
data: TrainerData
|
|
|
|
def __init__(self, universe: Optional[int] = None, quiet=False):
|
|
self.quiet = quiet
|
|
self.universe = universe
|
|
self.data = self.TrainerData()
|
|
self._spmodule: Optional[str] = None
|
|
if universe is not None:
|
|
print("WARNING: The `universe` argument of `TrainerBase.__init__` is currently unused", file=sys.stderr)
|
|
|
|
def raise_configuration_error(self, msg, **kwargs):
|
|
if "quiet" not in kwargs:
|
|
kwargs["quiet"] = self.quiet
|
|
raise ConfigurationError(msg, **kwargs)
|
|
|
|
def get_hf_checkpoint_metadata(self) -> bool:
|
|
return True
|
|
|
|
def get_tokenizer(self) -> transformers.PreTrainedTokenizerBase:
|
|
return get_tokenizer(self.ckpt_path)
|
|
|
|
def export_to_kobold(self, output_file: str, name: str, author: str, supported: str, description: str):
|
|
pass
|
|
|
|
def export_to_mkultra(self, output_file: str, soft_prompt_name: str, soft_prompt_description: str):
|
|
pass
|
|
|
|
def tokenize_dataset(
|
|
self,
|
|
dataset_path: Union[str, TextIO],
|
|
output_file: Union[str, TextIO],
|
|
batch_size=2048,
|
|
epochs=1,
|
|
use_ftfy=True,
|
|
shuffle_seed: Optional[Union[int, float, str, bytes, bytearray]] = 1729,
|
|
):
|
|
dataset_path = dataset_path.replace("\\", "/")
|
|
output_file = output_file.replace("\\", "/")
|
|
if not isinstance(batch_size, int) or batch_size < 1:
|
|
self.raise_configuration_error(
|
|
"batch_size must be an integer greater than zero.", code=9
|
|
)
|
|
if (
|
|
not isinstance(epochs, int) and not isinstance(epochs, float)
|
|
) or epochs <= 0:
|
|
self.raise_configuration_error(
|
|
"epochs must be an int or float greater than zero.", code=10
|
|
)
|
|
if isinstance(output_file, str) and output_file.endswith("/"):
|
|
self.raise_configuration_error(
|
|
"output_file should be the path to a file, not a directory.", code=11
|
|
)
|
|
if isinstance(dataset_path, str) and not os.path.exists(dataset_path):
|
|
self.raise_configuration_error(
|
|
"dataset_path is not set to a valid file or directory.", code=12
|
|
)
|
|
|
|
if use_ftfy:
|
|
import ftfy
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
batch_size = min(
|
|
batch_size,
|
|
self.data.params["max_batch_size"] - self.data.soft_in_dim,
|
|
)
|
|
assert batch_size >= 0
|
|
print(
|
|
termcolor.colored(
|
|
"\nIf you see a warning somewhere below about token indices, ignore it. That warning is normal.\n",
|
|
"magenta",
|
|
)
|
|
)
|
|
print("Batch size:", batch_size)
|
|
print(termcolor.colored("Tokenizing your dataset...\n", "magenta"))
|
|
|
|
if not isinstance(dataset_path, str):
|
|
files = [dataset_path]
|
|
elif os.path.isfile(dataset_path):
|
|
files = [dataset_path]
|
|
else:
|
|
files = sorted(
|
|
os.path.join(dataset_path, filename)
|
|
for filename in os.listdir(dataset_path)
|
|
)
|
|
if shuffle_seed is not None:
|
|
random.Random(shuffle_seed).shuffle(files)
|
|
tokens = []
|
|
eos = tokenizer.decode(self.data.params["eos_token"])
|
|
for path in files:
|
|
if isinstance(path, str):
|
|
f = open(path)
|
|
else:
|
|
f = path
|
|
try:
|
|
text = f.read()
|
|
if use_ftfy:
|
|
text = ftfy.fix_text(text)
|
|
text = text.replace("<|endoftext|>", eos)
|
|
tokens.extend(self.tokenize_dataset_callback(tokenizer, text))
|
|
finally:
|
|
if isinstance(path, str):
|
|
f.close()
|
|
|
|
print("Dataset size (in tokens):", len(tokens))
|
|
if len(tokens) < batch_size + 1:
|
|
self.raise_configuration_error(
|
|
"Your dataset is too small! The number of tokens has to be greater than the batch size. Try increasing the epochs.",
|
|
code=13,
|
|
)
|
|
tail = len(tokens) % (batch_size + 1)
|
|
if tail:
|
|
print(
|
|
f"We're removing the last {tail} tokens from your dataset to make the length a multiple of {batch_size+1}."
|
|
)
|
|
tokens = tokens[:-tail]
|
|
|
|
tokens = np.array(tokens, dtype=np.uint16).reshape((-1, batch_size + 1))
|
|
sequences_per_epoch = tokens.shape[0]
|
|
_epochs = math.ceil(epochs)
|
|
if _epochs > 1:
|
|
rng = np.random.Generator(np.random.PCG64(1729))
|
|
tokens = np.concatenate(
|
|
(
|
|
tokens,
|
|
*(rng.permutation(tokens, axis=0) for i in range(_epochs - 1)),
|
|
),
|
|
axis=0,
|
|
)
|
|
tokens = tokens[: math.ceil(epochs * sequences_per_epoch)]
|
|
print(f"Total sequences in your dataset: {tokens.shape[0]}")
|
|
|
|
if isinstance(output_file, str):
|
|
f = open(output_file, "w")
|
|
else:
|
|
f = output_file
|
|
try:
|
|
np.save(output_file, tokens)
|
|
finally:
|
|
if isinstance(output_file, str):
|
|
f.close()
|
|
|
|
def train(self):
|
|
if self.data.params is not None and "max_batch_size" not in self.data.params:
|
|
self.data.params["max_batch_size"] = 2048
|
|
|
|
if not os.path.exists(self.data.save_file):
|
|
print("We are starting a brand new soft-tuning session.\n")
|
|
self.startup(step=-1)
|
|
if self.data.soft_in_dim <= 0:
|
|
self.raise_configuration_error(
|
|
"You have not set a soft prompt size.", code=6
|
|
)
|
|
else:
|
|
# If we're resuming a soft-tuning session, the soft prompt tensor is
|
|
# already in the save file and we just have to decode it.
|
|
try:
|
|
z = torch.load(self.data.save_file)
|
|
assert z["step"] > 0
|
|
assert z["tensor"].ndim == 2 and "opt_state" in z
|
|
assert z["tensor"].shape[0] < self.data.params["max_batch_size"]
|
|
self.data.soft_in_dim = z["tensor"].shape[0]
|
|
step = z["step"]
|
|
opt_state = z["opt_state"]
|
|
except AssertionError:
|
|
self.raise_configuration_error("MTJSP file is corrupted.", code=14)
|
|
print(f"We're resuming a previous soft-tuning session at step {step+1}.\n")
|
|
self.startup(step=step + 1)
|
|
soft_embeddings = z["tensor"]
|
|
|
|
REVISION = None
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
model: _PromptTuningPreTrainedModel
|
|
|
|
if(os.path.isdir(self.data.ckpt_path)):
|
|
try:
|
|
model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
|
except Exception as e:
|
|
if("out of memory" in traceback.format_exc().lower()):
|
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
|
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
|
elif(os.path.isdir("models/{}".format(vars.model.replace('/', '_')))):
|
|
try:
|
|
model = AutoPromptTuningLM.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=REVISION, cache_dir="cache")
|
|
except Exception as e:
|
|
if("out of memory" in traceback.format_exc().lower()):
|
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
|
model = GPTNeoPromptTuningLM.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=REVISION, cache_dir="cache")
|
|
else:
|
|
try:
|
|
model = AutoPromptTuningLM.from_pretrained(vars.model, revision=REVISION, cache_dir="cache")
|
|
except Exception as e:
|
|
if("out of memory" in traceback.format_exc().lower()):
|
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
|
model = GPTNeoPromptTuningLM.from_pretrained(vars.model, revision=REVISION, cache_dir="cache")
|
|
|
|
if step == 0:
|
|
soft_embeddings = self.get_initial_soft_embeddings(model)
|
|
else:
|
|
soft_embeddings = SoftPrompt.from_inputs_embeds(soft_embeddings)
|
|
model.set_soft_prompt(soft_embeddings)
|
|
|
|
steps = self.get_num_sequences() // self.data.gradient_accumulation_steps
|
|
warmup_steps = max(1, round(steps * self.data.stparams["warmup"]))
|
|
|
|
beta1: Optional[float] = self.data.stparams.get("beta1", 0.0)
|
|
if beta1 == 0.0:
|
|
beta1 = None
|
|
optimizer = transformers.Adafactor(
|
|
params=model.get_soft_params(),
|
|
scale_parameter=False,
|
|
relative_step=False,
|
|
warmup_init=False,
|
|
lr=self.data.stparams["lr"],
|
|
beta1=beta1,
|
|
decay_rate=self.data.stparams.get("decay_rate", -0.8),
|
|
weight_decay=self.data.stparams.get("weight_decay", 0.1),
|
|
)
|
|
if step != 0:
|
|
optimizer.load_state_dict(opt_state)
|
|
scheduler = transformers.get_cosine_with_hard_restarts_schedule_with_warmup(
|
|
optimizer=optimizer,
|
|
num_warmup_steps=warmup_steps,
|
|
num_training_steps=steps - warmup_steps,
|
|
num_cycles=(steps - warmup_steps) // self.data.stparams.get("training_steps_per_cycle", 56),
|
|
)
|
|
|
|
torch.cuda.empty_cache()
|
|
optimizer.state['step'] = step
|
|
cross_entropy_loss = CrossEntropyLoss()
|
|
|
|
while step < steps:
|
|
model.train()
|
|
|
|
total_loss = total_grad = total_grad_norm = 0
|
|
|
|
for i in range(self.data.gradient_accumulation_steps):
|
|
# Get the next sequence from the dataset
|
|
block = self.get_batch(step, self.data.gradient_accumulation_steps).to(model.transformer.wte.weight.device)
|
|
|
|
# input_ids is the context to the model (without the soft prompt) and labels is what we expect the model to generate (the -100s represent soft prompt tokens for which loss is not calculated)
|
|
input_ids = block[:-1].unsqueeze(0).detach()
|
|
labels = torch.cat((torch.full((model.get_soft_params().size(0) - 1,), -100, device=block.device), block)).unsqueeze(0).cuda().detach()
|
|
|
|
# Give the context to the model and compare the model's output logits with the labels to compute the loss
|
|
logits = model(input_ids=input_ids, labels=input_ids).logits
|
|
loss: torch.Tensor = cross_entropy_loss(logits.view(-1, model.transformer.wte.weight.size(1)), labels.view(-1))
|
|
total_loss += loss.detach()
|
|
|
|
# Compute the gradient of the loss function and add it to model.get_soft_params().grad (model.get_soft_params().grad += gradient)
|
|
loss.backward()
|
|
|
|
total_grad_norm += torch.linalg.norm(model.get_soft_params().grad.detach() - total_grad)
|
|
total_grad = model.get_soft_params().grad.detach()
|
|
|
|
del input_ids
|
|
del labels
|
|
del logits
|
|
torch.cuda.empty_cache()
|
|
|
|
mean_loss = (total_loss / self.data.gradient_accumulation_steps).item()
|
|
mean_grad_norm = (total_grad_norm / self.data.gradient_accumulation_steps).item()
|
|
|
|
# Apply the optimization algorithm using the accumulated gradients, which changes the contents of the soft prompt matrix very slightly to reduce the loss
|
|
optimizer.step()
|
|
lr = optimizer.param_groups[0]["lr"]
|
|
scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Save checkpoint every few steps
|
|
pass
|
|
|
|
step += 1
|