from __future__ import annotations import gc import os import time import bisect import zipfile import functools import itertools import traceback import contextlib from tqdm.auto import tqdm from typing import Dict, List, Union import torch from torch.nn import Embedding import transformers from transformers import ( StoppingCriteria, GPTNeoForCausalLM, AutoModelForCausalLM, LogitsProcessorList, LogitsProcessor, ) import utils import torch_lazy_loader from logger import logger, Colors from modeling import warpers from modeling import inference_model from modeling.warpers import Warper from modeling.stoppers import Stoppers from modeling.post_token_hooks import PostTokenHooks from modeling.inference_models.hf import HFInferenceModel from modeling.inference_model import ( GenerationResult, GenerationSettings, InferenceModel, ModelCapabilities, use_core_manipulations, ) try: import breakmodel import accelerate.utils except ModuleNotFoundError as e: if not utils.koboldai_vars.use_colab_tpu: raise e # When set to true, messages will appear in the console if samplers are not # changing the scores. Keep in mind some samplers don't always change the # scores for each token. LOG_SAMPLER_NO_EFFECT = False class HFTorchInferenceModel(HFInferenceModel): def __init__( self, model_name: str, lazy_load: bool, low_mem: bool, ) -> None: super().__init__() self.model_name = model_name self.lazy_load = lazy_load self.low_mem = low_mem self.post_token_hooks = [ PostTokenHooks.stream_tokens, ] self.stopper_hooks = [ Stoppers.core_stopper, Stoppers.dynamic_wi_scanner, Stoppers.singleline_stopper, Stoppers.chat_mode_stopper, ] self.model = None self.tokenizer = None self.capabilties = ModelCapabilities( embedding_manipulation=True, post_token_hooks=True, stopper_hooks=True, post_token_probs=True, ) self._old_stopping_criteria = None def _apply_warpers( self, scores: torch.Tensor, input_ids: torch.Tensor ) -> torch.Tensor: warpers.update_settings() if LOG_SAMPLER_NO_EFFECT: pre = torch.Tensor(scores) for sid in utils.koboldai_vars.sampler_order: warper = Warper.from_id(sid) if not warper.value_is_valid(): continue if warper == warpers.RepetitionPenalty: # Rep pen needs more data than other samplers scores = warper.torch(scores, input_ids=input_ids) else: scores = warper.torch(scores) if LOG_SAMPLER_NO_EFFECT: if torch.equal(pre, scores): logger.info(warper, "had no effect on the scores.") pre = torch.Tensor(scores) return scores def _post_load(model_self) -> None: # Patch stopping_criteria class PTHStopper(StoppingCriteria): def __call__( hf_self, input_ids: torch.LongTensor, scores: torch.FloatTensor, ) -> None: model_self._post_token_gen(input_ids) for stopper in model_self.stopper_hooks: do_stop = stopper(model_self, input_ids) if do_stop: return True return False old_gsc = transformers.GenerationMixin._get_stopping_criteria def _get_stopping_criteria( hf_self, *args, **kwargs, ): stopping_criteria = old_gsc(hf_self, *args, **kwargs) stopping_criteria.insert(0, PTHStopper()) return stopping_criteria use_core_manipulations.get_stopping_criteria = _get_stopping_criteria # Patch logitswarpers class PhraseBiasLogitsProcessor(LogitsProcessor): def __init__(self): pass def _find_intersection(self, big: List, small: List) -> int: """Find the maximum overlap between the beginning of small and the end of big. Return the index of the token in small following the overlap, or 0. big: The tokens in the context (as a tensor) small: The tokens in the phrase to bias (as a list) Both big and small are in "oldest to newest" order. """ # There are asymptotically more efficient methods for determining the overlap, # but typically there will be few (0-1) instances of small[0] in the last len(small) # elements of big, plus small will typically be fairly short. So this naive # approach is acceptable despite O(N^2) worst case performance. num_small = len(small) # The small list can only ever match against at most num_small tokens of big, # so create a slice. Typically, this slice will be as long as small, but it # may be shorter if the story has just started. # We need to convert the big slice to list, since natively big is a tensor # and tensor and list don't ever compare equal. It's better to convert here # and then use native equality tests than to iterate repeatedly later. big_slice = list(big[-num_small:]) # It's possible that the start token appears multiple times in small # For example, consider the phrase: # [ fair is foul, and foul is fair, hover through the fog and filthy air] # If we merely look for the first instance of [ fair], then we would # generate the following output: # " fair is foul, and foul is fair is foul, and foul is fair..." start = small[0] for i, t in enumerate(big_slice): # Strictly unnecessary, but it's marginally faster to test the first # token before creating slices to test for a full match. if t == start: remaining = len(big_slice) - i if big_slice[i:] == small[:remaining]: # We found a match. If the small phrase has any remaining tokens # then return the index of the next token. if remaining < num_small: return remaining # In this case, the entire small phrase matched, so start over. return 0 # There were no matches, so just begin at the beginning. return 0 def _allow_leftwards_tampering(self, phrase: str) -> bool: """Determines if a phrase should be tampered with from the left in the "soft" token encoding mode.""" if phrase[0] in [".", "?", "!", ";", ":", "\n"]: return False return True def _get_token_sequence(self, phrase: str) -> List[List]: """Convert the phrase string into a list of encoded biases, each one being a list of tokens. How this is done is determined by the phrase's format: - If the phrase is surrounded by square brackets ([]), the tokens will be the phrase split by commas (,). If a "token" isn't actually a number, it will be skipped. NOTE: Tokens output by this may not be in the model's vocabulary, and such tokens should be ignored later in the pipeline. - If the phrase is surrounded by curly brackets ({}), the phrase will be directly encoded with no synonym biases and no fancy tricks. - Otherwise, the phrase will be encoded, with close deviations being included as synonym biases. """ # TODO: Cache these tokens, invalidate when model or bias is # changed. # Handle direct token id input if phrase.startswith("[") and phrase.endswith("]"): no_brackets = phrase[1:-1] ret = [] for token_id in no_brackets.split(","): try: ret.append(int(token_id)) except ValueError: # Ignore non-numbers. Rascals! pass return [ret] # Handle direct phrases if phrase.startswith("{") and phrase.endswith("}"): no_brackets = phrase[1:-1] return [model_self.tokenizer.encode(no_brackets)] # Handle untamperable phrases if not self._allow_leftwards_tampering(phrase): return [model_self.tokenizer.encode(phrase)] # Handle slight alterations to original phrase phrase = phrase.strip(" ") ret = [] for alt_phrase in [phrase, f" {phrase}"]: ret.append( model_self.tokenizer.encode(alt_phrase) ) return ret def _get_biased_tokens(self, input_ids: List) -> Dict: # TODO: Different "bias slopes"? ret = {} for phrase, _bias in utils.koboldai_vars.biases.items(): bias_score, completion_threshold = _bias token_seqs = self._get_token_sequence(phrase) variant_deltas = {} for token_seq in token_seqs: bias_index = self._find_intersection(input_ids, token_seq) # Ensure completion after completion_threshold tokens # Only provide a positive bias when the base bias score is positive. if bias_score > 0 and bias_index + 1 > completion_threshold: bias_score = 999 token_to_bias = token_seq[bias_index] variant_deltas[token_to_bias] = bias_score # If multiple phrases bias the same token, add the modifiers # together. This should NOT be applied to automatic variants for token_to_bias, bias_score in variant_deltas.items(): if token_to_bias in ret: ret[token_to_bias] += bias_score else: ret[token_to_bias] = bias_score return ret def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor ) -> torch.FloatTensor: assert scores.ndim == 2 assert input_ids.ndim == 2 scores_shape = scores.shape for batch in range(scores_shape[0]): for token, bias in self._get_biased_tokens( input_ids[batch] ).items(): scores[batch][token] += bias return scores class LuaLogitsProcessor(LogitsProcessor): def __init__(self): pass def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor ) -> torch.FloatTensor: assert scores.ndim == 2 assert input_ids.ndim == 2 self.regeneration_required = False self.halt = False if utils.koboldai_vars.standalone: return scores scores_shape = scores.shape scores_list = scores.tolist() utils.koboldai_vars.lua_koboldbridge.logits = ( utils.koboldai_vars.lua_state.table() ) for r, row in enumerate(scores_list): utils.koboldai_vars.lua_koboldbridge.logits[ r + 1 ] = utils.koboldai_vars.lua_state.table(*row) utils.koboldai_vars.lua_koboldbridge.vocab_size = scores_shape[-1] utils.koboldai_vars.lua_koboldbridge.execute_genmod() scores = torch.Tensor( tuple( tuple(row.values()) for row in utils.koboldai_vars.lua_koboldbridge.logits.values() ), device=scores.device, dtype=scores.dtype, ) assert scores.shape == scores_shape return scores from torch.nn import functional as F def visualize_probabilities( model: InferenceModel, scores: torch.FloatTensor, ) -> None: assert scores.ndim == 2 if utils.koboldai_vars.numseqs > 1 or not utils.koboldai_vars.show_probs: return if not utils.koboldai_vars.show_probs: return scores option_offset = 0 if ( utils.koboldai_vars.actions.action_count + 1 in utils.koboldai_vars.actions.actions ): for x in range( len( utils.koboldai_vars.actions.actions[ utils.koboldai_vars.actions.action_count + 1 ]["Options"] ) ): option = utils.koboldai_vars.actions.actions[ utils.koboldai_vars.actions.action_count + 1 ]["Options"][x] if ( option["Pinned"] or option["Previous Selection"] or option["Edited"] ): option_offset = x + 1 batch_offset = ( int( (utils.koboldai_vars.generated_tkns - 1) / utils.koboldai_vars.genamt ) if utils.koboldai_vars.alt_multi_gen else 0 ) for batch_index, batch in enumerate(scores): probs = F.softmax(batch, dim=-1).cpu().numpy() token_prob_info = [] for token_id, score in sorted( enumerate(probs), key=lambda x: x[1], reverse=True )[:8]: token_prob_info.append( { "tokenId": token_id, "decoded": utils.decodenewlines( model.tokenizer.decode(token_id) ), "score": float(score), } ) if utils.koboldai_vars.numseqs == 1: utils.koboldai_vars.actions.set_probabilities(token_prob_info) else: utils.koboldai_vars.actions.set_option_probabilities( token_prob_info, batch_index + option_offset + batch_offset ) return scores def new_get_logits_processor(*args, **kwargs) -> LogitsProcessorList: processors = new_get_logits_processor.old_get_logits_processor( *args, **kwargs ) # TODOB4MERGE: These two # processors.insert(0, LuaLogitsProcessor()) # processors.append(PhraseBiasLogitsProcessor()) return processors use_core_manipulations.get_logits_processor = new_get_logits_processor new_get_logits_processor.old_get_logits_processor = ( transformers.GenerationMixin._get_logits_processor ) class KoboldLogitsWarperList(LogitsProcessorList): def __init__(self): pass def __call__( lw_self, input_ids: torch.LongTensor, scores: torch.FloatTensor, *args, **kwargs, ): # sampler_order = utils.koboldai_vars.sampler_order[:] # if ( # len(sampler_order) < 7 # ): # Add repetition penalty at beginning if it's not present # sampler_order = [6] + sampler_order # for k in sampler_order: # scores = self.__warper_list[k](input_ids, scores, *args, **kwargs) scores = model_self._apply_warpers(scores=scores, input_ids=input_ids) visualize_probabilities(model_self, scores) return scores def new_get_logits_warper( beams: int = 1, ) -> LogitsProcessorList: return KoboldLogitsWarperList() def new_sample(self, *args, **kwargs): assert kwargs.pop("logits_warper", None) is not None kwargs["logits_warper"] = new_get_logits_warper( beams=1, ) if utils.koboldai_vars.newlinemode in ["s", "ns"]: kwargs["eos_token_id"] = -1 kwargs.setdefault("pad_token_id", 2) return new_sample.old_sample(self, *args, **kwargs) new_sample.old_sample = transformers.GenerationMixin.sample use_core_manipulations.sample = new_sample def _raw_generate( self, prompt_tokens: Union[List[int], torch.Tensor], max_new: int, gen_settings: GenerationSettings, single_line: bool = False, batch_count: int = 1, **kwargs ) -> GenerationResult: if not isinstance(prompt_tokens, torch.Tensor): gen_in = torch.tensor(prompt_tokens, dtype=torch.long)[None] else: gen_in = prompt_tokens device = utils.get_auxilary_device() gen_in = gen_in.to(device) additional_bad_words_ids = [self.tokenizer.encode("\n")] if single_line else [] with torch.no_grad(): start_time = time.time() genout = self.model.generate( gen_in, do_sample=True, max_length=min( len(prompt_tokens) + max_new, utils.koboldai_vars.max_length ), repetition_penalty=1.0, bad_words_ids=utils.koboldai_vars.badwordsids + additional_bad_words_ids, use_cache=True, num_return_sequences=batch_count, ) logger.debug( "torch_raw_generate: run generator {}s".format(time.time() - start_time) ) return GenerationResult( self, out_batches=genout, prompt=prompt_tokens, is_whole_generation=False, output_includes_prompt=True, ) def _get_model(self, location: str, tf_kwargs: Dict): try: return AutoModelForCausalLM.from_pretrained( location, revision=utils.koboldai_vars.revision, cache_dir="cache", **tf_kwargs, ) except Exception as e: if "out of memory" in traceback.format_exc().lower(): raise RuntimeError( "One of your GPUs ran out of memory when KoboldAI tried to load your model." ) return GPTNeoForCausalLM.from_pretrained( location, revision=utils.koboldai_vars.revision, cache_dir="cache", **tf_kwargs, ) def get_hidden_size(self) -> int: return self.model.get_input_embeddings().embedding_dim def _move_to_devices(self) -> None: if not utils.koboldai_vars.breakmodel: if utils.koboldai_vars.usegpu: self.model = self.model.half().to(utils.koboldai_vars.gpu_device) else: self.model = self.model.to("cpu").float() return for key, value in self.model.state_dict().items(): target_dtype = ( torch.float32 if breakmodel.primary_device == "cpu" else torch.float16 ) if value.dtype is not target_dtype: accelerate.utils.set_module_tensor_to_device( self.model, key, target_dtype ) disk_blocks = breakmodel.disk_blocks gpu_blocks = breakmodel.gpu_blocks ram_blocks = len(utils.layers_module_names) - sum(gpu_blocks) cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks)) device_map = {} for name in utils.layers_module_names: layer = int(name.rsplit(".", 1)[1]) device = ( ("disk" if layer < disk_blocks else "cpu") if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks) ) device_map[name] = device for name in utils.get_missing_module_names(self.model, list(device_map.keys())): device_map[name] = breakmodel.primary_device breakmodel.dispatch_model_ex( self.model, device_map, main_device=breakmodel.primary_device, offload_buffers=True, offload_dir="accelerate-disk-cache", ) gc.collect() return # Function to patch transformers to use our soft prompt def patch_embedding(self) -> None: if getattr(Embedding, "_koboldai_patch_causallm_model", None): Embedding._koboldai_patch_causallm_model = self.model return old_embedding_call = Embedding.__call__ kai_model = self def new_embedding_call(self, input_ids, *args, **kwargs): # Don't touch embeddings for models other than the core inference model (that's us!) if ( Embedding._koboldai_patch_causallm_model.get_input_embeddings() is not self ): return old_embedding_call(self, input_ids, *args, **kwargs) assert input_ids is not None if utils.koboldai_vars.sp is not None: shifted_input_ids = input_ids - kai_model.model.config.vocab_size input_ids.clamp_(max=kai_model.model.config.vocab_size - 1) inputs_embeds = old_embedding_call(self, input_ids, *args, **kwargs) if utils.koboldai_vars.sp is not None: utils.koboldai_vars.sp = utils.koboldai_vars.sp.to( inputs_embeds.dtype ).to(inputs_embeds.device) inputs_embeds = torch.where( (shifted_input_ids >= 0)[..., None], utils.koboldai_vars.sp[shifted_input_ids.clamp(min=0)], inputs_embeds, ) return inputs_embeds Embedding.__call__ = new_embedding_call Embedding._koboldai_patch_causallm_model = self.model def _get_lazy_load_callback(self, n_layers: int, convert_to_float16: bool = True): if not self.lazy_load: return if utils.args.breakmodel_disklayers is not None: breakmodel.disk_blocks = utils.args.breakmodel_disklayers disk_blocks = breakmodel.disk_blocks gpu_blocks = breakmodel.gpu_blocks ram_blocks = ram_blocks = n_layers - sum(gpu_blocks) cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks)) def lazy_load_callback( model_dict: Dict[str, Union[torch_lazy_loader.LazyTensor, torch.Tensor]], f, **_, ): if lazy_load_callback.nested: return lazy_load_callback.nested = True device_map: Dict[str, Union[str, int]] = {} @functools.lru_cache(maxsize=None) def get_original_key(key): return max( ( original_key for original_key in utils.module_names if original_key.endswith(key) ), key=len, ) for key, value in model_dict.items(): original_key = get_original_key(key) if isinstance(value, torch_lazy_loader.LazyTensor) and not any( original_key.startswith(n) for n in utils.layers_module_names ): device_map[key] = ( utils.koboldai_vars.gpu_device if utils.koboldai_vars.hascuda and utils.koboldai_vars.usegpu else "cpu" if not utils.koboldai_vars.hascuda or not utils.koboldai_vars.breakmodel else breakmodel.primary_device ) else: layer = int( max( ( n for n in utils.layers_module_names if original_key.startswith(n) ), key=len, ).rsplit(".", 1)[1] ) device = ( utils.koboldai_vars.gpu_device if utils.koboldai_vars.hascuda and utils.koboldai_vars.usegpu else "disk" if layer < disk_blocks and layer < ram_blocks else "cpu" if not utils.koboldai_vars.hascuda or not utils.koboldai_vars.breakmodel else "shared" if layer < ram_blocks else bisect.bisect_right( cumulative_gpu_blocks, layer - ram_blocks ) ) device_map[key] = device if utils.num_shards is None or utils.current_shard == 0: utils.offload_index = {} if os.path.isdir("accelerate-disk-cache"): # Delete all of the files in the disk cache folder without deleting the folder itself to allow people to create symbolic links for this folder # (the folder doesn't contain any subfolders so os.remove will do just fine) for filename in os.listdir("accelerate-disk-cache"): try: os.remove(os.path.join("accelerate-disk-cache", filename)) except OSError: pass os.makedirs("accelerate-disk-cache", exist_ok=True) if utils.num_shards is not None: num_tensors = len( utils.get_sharded_checkpoint_num_tensors( utils.from_pretrained_model_name, utils.from_pretrained_index_filename, **utils.from_pretrained_kwargs, ) ) else: num_tensors = len(device_map) print(flush=True) utils.koboldai_vars.status_message = "Loading model" utils.koboldai_vars.total_layers = num_tensors utils.koboldai_vars.loaded_layers = 0 utils.bar = tqdm( total=num_tensors, desc="Loading model tensors", file=utils.UIProgressBarFile(), ) with zipfile.ZipFile(f, "r") as z: try: last_storage_key = None zipfolder = os.path.basename(os.path.normpath(f)).split(".")[0] f = None current_offset = 0 able_to_pin_layers = True if utils.num_shards is not None: utils.current_shard += 1 for key in sorted( device_map.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset), ): storage_key = model_dict[key].key if ( storage_key != last_storage_key or model_dict[key].seek_offset < current_offset ): last_storage_key = storage_key if isinstance(f, zipfile.ZipExtFile): f.close() try: f = z.open(f"archive/data/{storage_key}") except: f = z.open(f"{zipfolder}/data/{storage_key}") current_offset = 0 if current_offset != model_dict[key].seek_offset: f.read(model_dict[key].seek_offset - current_offset) current_offset = model_dict[key].seek_offset device = device_map[key] size = functools.reduce( lambda x, y: x * y, model_dict[key].shape, 1 ) dtype = model_dict[key].dtype nbytes = ( size if dtype is torch.bool else size * ( ( torch.finfo if dtype.is_floating_point else torch.iinfo )(dtype).bits >> 3 ) ) # print(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ", end="", flush=True) model_dict[key] = model_dict[key].materialize( f, map_location="cpu" ) if model_dict[key].dtype is torch.float32: utils.koboldai_vars.fp32_model = True if ( convert_to_float16 and breakmodel.primary_device != "cpu" and utils.koboldai_vars.hascuda and ( utils.koboldai_vars.breakmodel or utils.koboldai_vars.usegpu ) and model_dict[key].dtype is torch.float32 ): model_dict[key] = model_dict[key].to(torch.float16) if breakmodel.primary_device == "cpu" or ( not utils.koboldai_vars.usegpu and not utils.koboldai_vars.breakmodel and model_dict[key].dtype is torch.float16 ): model_dict[key] = model_dict[key].to(torch.float32) if device == "shared": model_dict[key] = model_dict[key].to("cpu").detach_() if able_to_pin_layers: try: model_dict[key] = model_dict[key].pin_memory() except: able_to_pin_layers = False elif device == "disk": accelerate.utils.offload_weight( model_dict[key], get_original_key(key), "accelerate-disk-cache", index=utils.offload_index, ) model_dict[key] = model_dict[key].to("meta") else: model_dict[key] = model_dict[key].to(device) # print("OK", flush=True) current_offset += nbytes utils.bar.update(1) utils.koboldai_vars.loaded_layers += 1 finally: if ( utils.num_shards is None or utils.current_shard >= utils.num_shards ): if utils.offload_index: for name, tensor in utils.named_buffers: dtype = tensor.dtype if ( convert_to_float16 and breakmodel.primary_device != "cpu" and utils.koboldai_vars.hascuda and ( utils.koboldai_vars.breakmodel or utils.koboldai_vars.usegpu ) ): dtype = torch.float16 if breakmodel.primary_device == "cpu" or ( not utils.koboldai_vars.usegpu and not utils.koboldai_vars.breakmodel ): dtype = torch.float32 if ( name in model_dict and model_dict[name].dtype is not dtype ): model_dict[name] = model_dict[name].to(dtype) if tensor.dtype is not dtype: tensor = tensor.to(dtype) if name not in utils.offload_index: accelerate.utils.offload_weight( tensor, name, "accelerate-disk-cache", index=utils.offload_index, ) accelerate.utils.save_offload_index( utils.offload_index, "accelerate-disk-cache" ) utils.bar.close() utils.bar = None utils.koboldai_vars.status_message = "" lazy_load_callback.nested = False if isinstance(f, zipfile.ZipExtFile): f.close() lazy_load_callback.nested = False return lazy_load_callback @contextlib.contextmanager def _maybe_use_float16(self, always_use: bool = False): if always_use or ( utils.koboldai_vars.hascuda and self.low_mem and (utils.koboldai_vars.usegpu or utils.koboldai_vars.breakmodel) ): original_dtype = torch.get_default_dtype() torch.set_default_dtype(torch.float16) yield True torch.set_default_dtype(original_dtype) else: yield False def breakmodel_device_list(self, n_layers, primary=None, selected=None): # TODO: Find a better place for this or rework this device_count = torch.cuda.device_count() if device_count < 2: primary = None gpu_blocks = breakmodel.gpu_blocks + ( device_count - len(breakmodel.gpu_blocks) ) * [0] print(f"{Colors.YELLOW} DEVICE ID | LAYERS | DEVICE NAME{Colors.END}") for i in range(device_count): name = torch.cuda.get_device_name(i) if len(name) > 47: name = "..." + name[-44:] row_color = Colors.END sep_color = Colors.YELLOW print( f"{row_color}{Colors.YELLOW + '->' + row_color if i == selected else ' '} {'(primary)' if i == primary else ' '*9} {i:3} {sep_color}|{row_color} {gpu_blocks[i]:3} {sep_color}|{row_color} {name}{Colors.END}" ) row_color = Colors.END sep_color = Colors.YELLOW print( f"{row_color}{Colors.YELLOW + '->' + row_color if -1 == selected else ' '} {' '*9} N/A {sep_color}|{row_color} {breakmodel.disk_blocks:3} {sep_color}|{row_color} (Disk cache){Colors.END}" ) print( f"{row_color} {' '*9} N/A {sep_color}|{row_color} {n_layers:3} {sep_color}|{row_color} (CPU){Colors.END}" ) def breakmodel_device_config(self, config): # TODO: Find a better place for this or rework this global breakmodel, generator import breakmodel n_layers = utils.num_layers(config) if utils.args.cpu: breakmodel.gpu_blocks = [0] * n_layers return elif ( utils.args.breakmodel_gpulayers is not None or utils.args.breakmodel_disklayers is not None ): try: if not utils.args.breakmodel_gpulayers: breakmodel.gpu_blocks = [] else: breakmodel.gpu_blocks = list( map(int, utils.args.breakmodel_gpulayers.split(",")) ) assert len(breakmodel.gpu_blocks) <= torch.cuda.device_count() s = n_layers for i in range(len(breakmodel.gpu_blocks)): if breakmodel.gpu_blocks[i] <= -1: breakmodel.gpu_blocks[i] = s break else: s -= breakmodel.gpu_blocks[i] assert sum(breakmodel.gpu_blocks) <= n_layers n_layers -= sum(breakmodel.gpu_blocks) if utils.args.breakmodel_disklayers is not None: assert utils.args.breakmodel_disklayers <= n_layers breakmodel.disk_blocks = utils.args.breakmodel_disklayers n_layers -= utils.args.breakmodel_disklayers except: logger.warning( "--breakmodel_gpulayers is malformatted. Please use the --help option to see correct usage of --breakmodel_gpulayers. Defaulting to all layers on device 0." ) breakmodel.gpu_blocks = [n_layers] n_layers = 0 elif utils.args.breakmodel_layers is not None: breakmodel.gpu_blocks = [ n_layers - max(0, min(n_layers, utils.args.breakmodel_layers)) ] n_layers -= sum(breakmodel.gpu_blocks) elif utils.args.model is not None: logger.info("Breakmodel not specified, assuming GPU 0") breakmodel.gpu_blocks = [n_layers] n_layers = 0 else: device_count = torch.cuda.device_count() if device_count > 1: print( Colors.CYAN + "\nPlease select one of your GPUs to be your primary GPU." ) print( "VRAM usage in your primary GPU will be higher than for your other ones." ) print("It is recommended you make your fastest GPU your primary GPU.") self.breakmodel_device_list(n_layers) while True: primaryselect = input("device ID> ") if ( primaryselect.isnumeric() and 0 <= int(primaryselect) < device_count ): breakmodel.primary_device = int(primaryselect) break else: print( f"{Colors.RED}Please enter an integer between 0 and {device_count-1}.{Colors.END}" ) else: breakmodel.primary_device = 0 print( Colors.PURPLE + "\nIf you don't have enough VRAM to run the model on a single GPU" ) print( "you can split the model between your CPU and your GPU(s), or between" ) print("multiple GPUs if you have more than one.") print("By putting more 'layers' on a GPU or CPU, more computations will be") print( "done on that device and more VRAM or RAM will be required on that device" ) print("(roughly proportional to number of layers).") print( "It should be noted that GPUs are orders of magnitude faster than the CPU." ) print( f"This model has{Colors.YELLOW} {n_layers} {Colors.PURPLE}layers.{Colors.END}\n" ) for i in range(device_count): self.breakmodel_device_list( n_layers, primary=breakmodel.primary_device, selected=i ) print( f"{Colors.CYAN}\nHow many of the remaining{Colors.YELLOW} {n_layers} {Colors.CYAN}layers would you like to put into device {i}?\nYou can also enter -1 to allocate all remaining layers to this device.{Colors.END}\n" ) while True: layerselect = input("# of layers> ") if ( layerselect.isnumeric() or layerselect.strip() == "-1" ) and -1 <= int(layerselect) <= n_layers: layerselect = int(layerselect) layerselect = n_layers if layerselect == -1 else layerselect breakmodel.gpu_blocks.append(layerselect) n_layers -= layerselect break else: print( f"{Colors.RED}Please enter an integer between -1 and {n_layers}.{Colors.END}" ) if n_layers == 0: break if n_layers > 0: self.breakmodel_device_list( n_layers, primary=breakmodel.primary_device, selected=-1 ) print( f"{Colors.CYAN}\nHow many of the remaining{Colors.YELLOW} {n_layers} {Colors.CYAN}layers would you like to put into the disk cache?\nYou can also enter -1 to allocate all remaining layers to this device.{Colors.END}\n" ) while True: layerselect = input("# of layers> ") if ( layerselect.isnumeric() or layerselect.strip() == "-1" ) and -1 <= int(layerselect) <= n_layers: layerselect = int(layerselect) layerselect = n_layers if layerselect == -1 else layerselect breakmodel.disk_blocks = layerselect n_layers -= layerselect break else: print( f"{Colors.RED}Please enter an integer between -1 and {n_layers}.{Colors.END}" ) logger.init_ok("Final device configuration:", status="Info") self.breakmodel_device_list(n_layers, primary=breakmodel.primary_device) # If all layers are on the same device, use the old GPU generation mode while len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] == 0: breakmodel.gpu_blocks.pop() if len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] in ( -1, utils.num_layers(config), ): utils.koboldai_vars.breakmodel = False utils.koboldai_vars.usegpu = True utils.koboldai_vars.gpu_device = len(breakmodel.gpu_blocks) - 1 return if not breakmodel.gpu_blocks: logger.warning("Nothing assigned to a GPU, reverting to CPU only mode") import breakmodel breakmodel.primary_device = "cpu" utils.koboldai_vars.breakmodel = False utils.koboldai_vars.usegpu = False return