from threading import Timer import re import shutil import json import subprocess import tempfile import requests import requests.adapters import time from tqdm.auto import tqdm import os import itertools from typing import Optional vars = None num_shards: Optional[int] = None current_shard = 0 from_pretrained_model_name = "" from_pretrained_index_filename: Optional[str] = None from_pretrained_kwargs = {} bar = None #==================================================================# # Decorator to prevent a function's actions from being run until # at least x seconds have passed without the function being called #==================================================================# def debounce(wait): def decorator(fun): def debounced(*args, **kwargs): def call_it(): fun(*args, **kwargs) try: debounced.t.cancel() except AttributeError: pass debounced.t = Timer(wait, call_it) debounced.t.start() return debounced return decorator #==================================================================# # Replace fancy quotes and apostrope's with standard ones #==================================================================# def fixquotes(txt): txt = txt.replace("“", '"') txt = txt.replace("”", '"') txt = txt.replace("’", "'") txt = txt.replace("`", "'") return txt #==================================================================# # #==================================================================# def trimincompletesentence(txt): # Cache length of text ln = len(txt) # Find last instance of punctuation (Borrowed from Clover-Edition by cloveranon) lastpunc = max(txt.rfind("."), txt.rfind("!"), txt.rfind("?")) # Is this the end of a quote? if(lastpunc < ln-1): if(txt[lastpunc+1] == '"'): lastpunc = lastpunc + 1 if(lastpunc >= 0): txt = txt[:lastpunc+1] return txt #==================================================================# # #==================================================================# def replaceblanklines(txt): txt = txt.replace("\n\n", "\n") return txt #==================================================================# # #==================================================================# def removespecialchars(txt, vars=None): if vars is None or vars.actionmode == 0: txt = re.sub(r"[#/@%<>{}+=~|\^]", "", txt) else: txt = re.sub(r"[#/@%{}+=~|\^]", "", txt) return txt #==================================================================# # If the next action follows a sentence closure, add a space #==================================================================# def addsentencespacing(txt, vars): # Get last character of last action if(len(vars.actions) > 0): if(len(vars.actions[vars.actions.get_last_key()]) > 0): action = vars.actions[vars.actions.get_last_key()] lastchar = action[-1] if len(action) else "" else: # Last action is blank, this should never happen, but # since it did let's bail out. return txt else: action = vars.prompt lastchar = action[-1] if len(action) else "" if(lastchar == "." or lastchar == "!" or lastchar == "?" or lastchar == "," or lastchar == ";" or lastchar == ":"): txt = " " + txt return txt def singlelineprocessing(txt, vars): txt = vars.regex_sl.sub('', txt) if(len(vars.actions) > 0): if(len(vars.actions[vars.actions.get_last_key()]) > 0): action = vars.actions[vars.actions.get_last_key()] lastchar = action[-1] if len(action) else "" else: # Last action is blank, this should never happen, but # since it did let's bail out. return txt else: action = vars.prompt lastchar = action[-1] if len(action) else "" if(lastchar != "\n"): txt = txt + "\n" return txt #==================================================================# # Cleans string for use in file name #==================================================================# def cleanfilename(filename): filteredcharacters = ('/','\\') filename = "".join(c for c in filename if c not in filteredcharacters).rstrip() return filename #==================================================================# # Newline substitution for fairseq models #==================================================================# def encodenewlines(txt): if(vars.newlinemode == "s"): return txt.replace('\n', "") return txt def decodenewlines(txt): if(vars.newlinemode == "s"): return txt.replace("", '\n') if(vars.newlinemode == "ns"): return txt.replace("", '') return txt #==================================================================# # Returns number of layers given an HF model config #==================================================================# def num_layers(config): return config.num_layers if hasattr(config, "num_layers") else config.n_layer if hasattr(config, "n_layer") else config.num_hidden_layers #==================================================================# # Downloads huggingface checkpoints using aria2c if possible #==================================================================# def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, mirror=None, **kwargs): import transformers import transformers.modeling_utils from huggingface_hub import HfFolder if shutil.which("aria2c") is None: # Don't do anything if aria2 is not installed return if local_files_only: # If local_files_only is true, we obviously don't need to download anything return if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path + ".index") or transformers.modeling_utils.is_remote_url(pretrained_model_name_or_path): return if proxies: print("WARNING: KoboldAI does not support using aria2 to download models from huggingface.co through a proxy. Disabling aria2 download mode.") return if use_auth_token: if isinstance(use_auth_token, str): token = use_auth_token else: token = HfFolder.get_token() if token is None: raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.") _cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE sharded = False headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)} if use_auth_token: headers["authorization"] = f"Bearer {use_auth_token}" def is_cached(url): try: transformers.file_utils.get_from_cache(url, cache_dir=cache_dir, local_files_only=True) except FileNotFoundError: return False return True while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file try: filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME except AttributeError: return url = transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, filename, revision=revision, mirror=mirror) if is_cached(url) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers): break if sharded: return else: sharded = True if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download filenames = [transformers.modeling_utils.WEIGHTS_NAME] else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it map_filename = transformers.file_utils.cached_path(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent) with open(map_filename) as f: map_data = json.load(f) filenames = set(map_data["weight_map"].values()) urls = [transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, n, revision=revision, mirror=mirror) for n in filenames] if not force_download: urls = [u for u in urls if not is_cached(u)] if not urls: return etags = [h.get("X-Linked-Etag") or h.get("ETag") for u in urls for h in [requests.head(u, headers=headers, allow_redirects=False, proxies=proxies, timeout=10).headers]] headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls] filenames = [transformers.file_utils.url_to_filename(u, t) for u, t in zip(urls, etags)] for n in filenames: path = os.path.join(_cache_dir, "kai-tempfile." + n + ".aria2") if os.path.exists(path): os.remove(path) path = os.path.join(_cache_dir, "kai-tempfile." + n) if os.path.exists(path): os.remove(path) if force_download: path = os.path.join(_cache_dir, n + ".json") if os.path.exists(path): os.remove(path) path = os.path.join(_cache_dir, n) if os.path.exists(path): os.remove(path) total_length = sum(int(h["Content-Length"]) for h in headers) lengths = {} aria2_config = "\n".join(f"{u}\n out=kai-tempfile.{n}" for u, n in zip(urls, filenames)).encode() s = requests.Session() s.mount("http://", requests.adapters.HTTPAdapter(max_retries=requests.adapters.Retry(total=120, backoff_factor=1))) bar = None done = False secret = os.urandom(17).hex() try: with tempfile.NamedTemporaryFile("w+b", delete=False) as f: f.write(aria2_config) f.flush() p = subprocess.Popen(["aria2c", "-x", "10", "-s", "10", "-j", "10", "--enable-rpc=true", f"--rpc-secret={secret}", "--rpc-listen-port", str(vars.aria2_port), "--disable-ipv6", "--file-allocation=trunc", "--allow-overwrite", "--auto-file-renaming=false", "-d", _cache_dir, "-i", f.name, "-U", transformers.file_utils.http_user_agent(user_agent)] + (["-c"] if not force_download else []) + ([f"--header='Authorization: Bearer {token}'"] if use_auth_token else []), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) while p.poll() is None: r = s.post(f"http://localhost:{vars.aria2_port}/jsonrpc", json={"jsonrpc": "2.0", "id": "kai", "method": "aria2.tellActive", "params": [f"token:{secret}"]}).json()["result"] if not r: s.close() if bar is not None: bar.n = bar.total bar.close() p.terminate() done = True break if bar is None: bar = tqdm(total=total_length, desc=f"[aria2] Downloading model", unit="B", unit_scale=True, unit_divisor=1000) visited = set() for x in r: filename = x["files"][0]["path"] lengths[filename] = (int(x["completedLength"]), int(x["totalLength"])) visited.add(filename) for k, v in lengths.items(): if k not in visited: lengths[k] = (v[1], v[1]) bar.n = sum(v[0] for v in lengths.values()) bar.update() time.sleep(0.1) path = f.name except Exception as e: p.terminate() raise e finally: try: os.remove(path) except OSError: pass code = p.wait() if not done and code: raise OSError(f"aria2 exited with exit code {code}") for u, t, n in zip(urls, etags, filenames): os.rename(os.path.join(_cache_dir, "kai-tempfile." + n), os.path.join(_cache_dir, n)) with open(os.path.join(_cache_dir, n + ".json"), "w") as f: json.dump({"url": u, "etag": t}, f) #==================================================================# # Given the path to a pytorch_model.bin.index.json, returns how many # shards there are in the model #==================================================================# def get_num_shards(filename): with open(filename) as f: map_data = json.load(f) return len(set(map_data["weight_map"].values())) #==================================================================# # Given the name/path of a sharded model and the path to a # pytorch_model.bin.index.json, returns a list of weight names in the # sharded model. Requires lazy loader to be enabled to work properl #==================================================================# def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, mirror=None, **kwargs): import transformers.modeling_utils import torch shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision, mirror=mirror) return list(itertools.chain(*(torch.load(p, map_location="cpu").keys() for p in shard_paths)))